1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
|
//
// Copyright (C) 2004-2021 Greg Landrum and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
//#define DEBUG_EMBEDDING 1
#include "Embedder.h"
#include <DistGeom/BoundsMatrix.h>
#include <DistGeom/DistGeomUtils.h>
#include <DistGeom/TriangleSmooth.h>
#include <DistGeom/ChiralViolationContrib.h>
#include "BoundsMatrixBuilder.h"
#include <ForceField/ForceField.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/Atom.h>
#include <GraphMol/AtomIterators.h>
#include <GraphMol/RingInfo.h>
#include <GraphMol/Conformer.h>
#include <RDGeneral/types.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/Exceptions.h>
#include <Geometry/Transform3D.h>
#include <Numerics/Alignment/AlignPoints.h>
#include <DistGeom/ChiralSet.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/ForceFieldHelpers/CrystalFF/TorsionPreferences.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <boost/dynamic_bitset.hpp>
#include <iomanip>
#include <RDGeneral/RDThreads.h>
#ifdef RDK_BUILD_THREADSAFE_SSS
#include <future>
#endif
//#define DEBUG_EMBEDDING 1
namespace {
const double ERROR_TOL = 0.00001;
// these tolerances, all to detect and filter out bogus conformations, are a
// delicate balance between sensitive enough to detect obviously bad
// conformations but not so sensitive that a bunch of ok conformations get
// filtered out, which slows down the whole conformation generation process
const double MAX_MINIMIZED_E_PER_ATOM = 0.05;
const double MAX_MINIMIZED_E_CONTRIB = 0.20;
const double MIN_TETRAHEDRAL_CHIRAL_VOL = 0.50;
const double TETRAHEDRAL_CENTERINVOLUME_TOL = 0.30;
} // namespace
namespace RDKit {
namespace DGeomHelpers {
//! Parameters corresponding to Sereina Riniker's KDG approach
const EmbedParameters KDG(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
nullptr, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
false, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
1, // ETversion
nullptr, // boundsMat
true, // embedFragmentsSeparately
false, // useSmallRingTorsions
false, // useMacrocycleTorsions
false, // useMacrocycle14config
nullptr, // CPCI
nullptr // callback
);
//! Parameters corresponding to Sereina Riniker's ETDG approach
const EmbedParameters ETDG(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
nullptr, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
false, // enforceChirality
true, // useExpTorsionAnglePrefs
false, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
1, // ETversion
nullptr, // boundsMat
true, // embedFragmentsSeparately
false, // useSmallRingTorsions
false, // useMacrocycleTorsions
false, // useMacrocycle14config
nullptr, // CPCI
nullptr // callback
);
//! Parameters corresponding to Sereina Riniker's ETKDG approach
const EmbedParameters ETKDG(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
nullptr, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
true, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
1, // ETversion
nullptr, // boundsMat
true, // embedFragmentsSeparately
false, // useSmallRingTorsions
false, // useMacrocycleTorsions
false, // useMacrocycle14config
nullptr, // CPCI
nullptr // callback
);
//! Parameters corresponding to Sereina Riniker's ETKDG approach - version 2
const EmbedParameters ETKDGv2(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
nullptr, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
true, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
2, // ETversion
nullptr, // boundsMat
true, // embedFragmentsSeparately
false, // useSmallRingTorsions
false, // useMacrocycleTorsions
false, // useMacrocycle14config
nullptr, // CPCI
nullptr // callback
);
//! Parameters corresponding improved ETKDG by Wang, Witek, Landrum and Riniker
//! (10.1021/acs.jcim.0c00025) - the macrocycle part
const EmbedParameters ETKDGv3(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
nullptr, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
true, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
2, // ETversion
nullptr, // boundsMat
true, // embedFragmentsSeparately
false, // useSmallRingTorsions
true, // useMacrocycleTorsions
true, // useMacrocycle14config
nullptr, // CPCI
nullptr // callback
);
//! Parameters corresponding improved ETKDG by Wang, Witek, Landrum and Riniker
//! (10.1021/acs.jcim.0c00025) - the small ring part
const EmbedParameters srETKDGv3(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
nullptr, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
true, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
2, // ETversion
nullptr, // boundsMat
true, // embedFragmentsSeparately
true, // useSmallRingTorsions
false, // useMacrocycleTorsions
false, // useMacrocycle14config
nullptr, // CPCI
nullptr // callback
);
namespace detail {
struct EmbedArgs {
boost::dynamic_bitset<> *confsOk;
bool fourD;
INT_VECT *fragMapping;
std::vector<std::unique_ptr<Conformer>> *confs;
unsigned int fragIdx;
DistGeom::BoundsMatPtr mmat;
DistGeom::VECT_CHIRALSET const *chiralCenters;
DistGeom::VECT_CHIRALSET const *tetrahedralCarbons;
ForceFields::CrystalFF::CrystalFFDetails *etkdgDetails;
};
} // namespace detail
bool _volumeTest(const DistGeom::ChiralSetPtr &chiralSet,
const RDGeom::PointPtrVect &positions, bool verbose = false) {
RDGeom::Point3D p0((*positions[chiralSet->d_idx0])[0],
(*positions[chiralSet->d_idx0])[1],
(*positions[chiralSet->d_idx0])[2]);
RDGeom::Point3D p1((*positions[chiralSet->d_idx1])[0],
(*positions[chiralSet->d_idx1])[1],
(*positions[chiralSet->d_idx1])[2]);
RDGeom::Point3D p2((*positions[chiralSet->d_idx2])[0],
(*positions[chiralSet->d_idx2])[1],
(*positions[chiralSet->d_idx2])[2]);
RDGeom::Point3D p3((*positions[chiralSet->d_idx3])[0],
(*positions[chiralSet->d_idx3])[1],
(*positions[chiralSet->d_idx3])[2]);
RDGeom::Point3D p4((*positions[chiralSet->d_idx4])[0],
(*positions[chiralSet->d_idx4])[1],
(*positions[chiralSet->d_idx4])[2]);
// even if we are minimizing in higher dimension the chiral volume is
// calculated using only the first 3 dimensions
RDGeom::Point3D v1 = p0 - p1;
v1.normalize();
RDGeom::Point3D v2 = p0 - p2;
v2.normalize();
RDGeom::Point3D v3 = p0 - p3;
v3.normalize();
RDGeom::Point3D v4 = p0 - p4;
v4.normalize();
RDGeom::Point3D crossp = v1.crossProduct(v2);
double vol = crossp.dotProduct(v3);
if (verbose) {
std::cerr << " " << fabs(vol) << std::endl;
}
if (fabs(vol) < MIN_TETRAHEDRAL_CHIRAL_VOL) {
return false;
}
crossp = v1.crossProduct(v2);
vol = crossp.dotProduct(v4);
if (verbose) {
std::cerr << " " << fabs(vol) << std::endl;
}
if (fabs(vol) < MIN_TETRAHEDRAL_CHIRAL_VOL) {
return false;
}
crossp = v1.crossProduct(v3);
vol = crossp.dotProduct(v4);
if (verbose) {
std::cerr << " " << fabs(vol) << std::endl;
}
if (fabs(vol) < MIN_TETRAHEDRAL_CHIRAL_VOL) {
return false;
}
crossp = v2.crossProduct(v3);
vol = crossp.dotProduct(v4);
if (verbose) {
std::cerr << " " << fabs(vol) << std::endl;
}
return fabs(vol) >= MIN_TETRAHEDRAL_CHIRAL_VOL;
}
bool _sameSide(const RDGeom::Point3D &v1, const RDGeom::Point3D &v2,
const RDGeom::Point3D &v3, const RDGeom::Point3D &v4,
const RDGeom::Point3D &p0, double tol = 0.1) {
RDGeom::Point3D normal = (v2 - v1).crossProduct(v3 - v1);
double d1 = normal.dotProduct(v4 - v1);
double d2 = normal.dotProduct(p0 - v1);
// std::cerr << " " << d1 << " - " << d2 << std::endl;
if (fabs(d1) < tol || fabs(d2) < tol) {
return false;
}
return !((d1 < 0.) ^ (d2 < 0.));
}
bool _centerInVolume(unsigned int idx0, unsigned int idx1, unsigned int idx2,
unsigned int idx3, unsigned int idx4,
const RDGeom::PointPtrVect &positions, double tol,
bool verbose = false) {
RDGeom::Point3D p0((*positions[idx0])[0], (*positions[idx0])[1],
(*positions[idx0])[2]);
RDGeom::Point3D p1((*positions[idx1])[0], (*positions[idx1])[1],
(*positions[idx1])[2]);
RDGeom::Point3D p2((*positions[idx2])[0], (*positions[idx2])[1],
(*positions[idx2])[2]);
RDGeom::Point3D p3((*positions[idx3])[0], (*positions[idx3])[1],
(*positions[idx3])[2]);
RDGeom::Point3D p4((*positions[idx4])[0], (*positions[idx4])[1],
(*positions[idx4])[2]);
// RDGeom::Point3D centroid = (p1+p2+p3+p4)/4.;
if (verbose) {
std::cerr << _sameSide(p1, p2, p3, p4, p0, tol) << " "
<< _sameSide(p2, p3, p4, p1, p0, tol) << " "
<< _sameSide(p3, p4, p1, p2, p0, tol) << " "
<< _sameSide(p4, p1, p2, p3, p0, tol) << std::endl;
}
bool res = _sameSide(p1, p2, p3, p4, p0, tol) &&
_sameSide(p2, p3, p4, p1, p0, tol) &&
_sameSide(p3, p4, p1, p2, p0, tol) &&
_sameSide(p4, p1, p2, p3, p0, tol);
return res;
}
bool _centerInVolume(const DistGeom::ChiralSetPtr &chiralSet,
const RDGeom::PointPtrVect &positions, double tol = 0.1,
bool verbose = false) {
if (chiralSet->d_idx0 ==
chiralSet->d_idx4) { // this happens for three-coordinate centers
return true;
}
return _centerInVolume(chiralSet->d_idx0, chiralSet->d_idx1,
chiralSet->d_idx2, chiralSet->d_idx3,
chiralSet->d_idx4, positions, tol, verbose);
}
bool _boundsFulfilled(const std::vector<int> &atoms,
const DistGeom::BoundsMatrix &mmat,
const RDGeom::PointPtrVect &positions) {
// unsigned int N = mmat.numRows();
// std::cerr << N << " " << atoms.size() << std::endl;
// loop over all pair of atoms
for (unsigned int i = 0; i < atoms.size() - 1; ++i) {
for (unsigned int j = i + 1; j < atoms.size(); ++j) {
int a1 = atoms[i];
int a2 = atoms[j];
RDGeom::Point3D p0((*positions[a1])[0], (*positions[a1])[1],
(*positions[a1])[2]);
RDGeom::Point3D p1((*positions[a2])[0], (*positions[a2])[1],
(*positions[a2])[2]);
double d2 = (p0 - p1).length(); // distance
double lb = mmat.getLowerBound(a1, a2);
double ub = mmat.getUpperBound(a1, a2); // bounds
if (((d2 < lb) && (fabs(d2 - lb) > 0.1 * ub)) ||
((d2 > ub) && (fabs(d2 - ub) > 0.1 * ub))) {
#ifdef DEBUG_EMBEDDING
std::cerr << a1 << " " << a2 << ":" << d2 << " " << lb << " " << ub
<< " " << fabs(d2 - lb) << " " << fabs(d2 - ub) << std::endl;
#endif
return false;
}
}
}
return true;
}
namespace EmbeddingOps {
bool generateInitialCoords(RDGeom::PointPtrVect *positions,
const detail::EmbedArgs &eargs,
const EmbedParameters &embedParams,
RDNumeric::DoubleSymmMatrix &distMat,
RDKit::double_source_type *rng) {
bool gotCoords = false;
if (!embedParams.useRandomCoords) {
double largestDistance =
DistGeom::pickRandomDistMat(*eargs.mmat, distMat, *rng);
RDUNUSED_PARAM(largestDistance);
gotCoords = DistGeom::computeInitialCoords(distMat, *positions, *rng,
embedParams.randNegEig,
embedParams.numZeroFail);
} else {
double boxSize;
if (embedParams.boxSizeMult > 0) {
boxSize = 5. * embedParams.boxSizeMult;
} else {
boxSize = -1 * embedParams.boxSizeMult;
}
gotCoords = DistGeom::computeRandomCoords(*positions, boxSize, *rng);
if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
for (const auto &v : *embedParams.coordMap) {
auto p = positions->at(v.first);
for (unsigned int ci = 0; ci < v.second.dimension(); ++ci) {
(*p)[ci] = v.second[ci];
}
// zero out any higher dimensional components:
for (unsigned int ci = v.second.dimension(); ci < p->dimension();
++ci) {
(*p)[ci] = 0.0;
}
}
}
}
return gotCoords;
}
bool firstMinimization(RDGeom::PointPtrVect *positions,
const detail::EmbedArgs &eargs,
const EmbedParameters &embedParams) {
bool gotCoords = true;
boost::dynamic_bitset<> fixedPts(positions->size());
if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
for (const auto &v : *embedParams.coordMap) {
fixedPts.set(v.first);
}
}
std::unique_ptr<ForceFields::ForceField> field(DistGeom::constructForceField(
*eargs.mmat, *positions, *eargs.chiralCenters, 1.0, 0.1, nullptr,
embedParams.basinThresh, &fixedPts));
if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
for (const auto &v : *embedParams.coordMap) {
field->fixedPoints().push_back(v.first);
}
}
unsigned int nPasses = 0;
field->initialize();
if (field->calcEnergy() > ERROR_TOL) {
int needMore = 1;
while (needMore) {
needMore = field->minimize(400, embedParams.optimizerForceTol);
++nPasses;
}
}
std::vector<double> e_contribs;
double local_e = field->calcEnergy(&e_contribs);
#ifdef DEBUG_EMBEDDING
std::cerr << " Energy : " << local_e / positions->size() << " "
<< *(std::max_element(e_contribs.begin(), e_contribs.end()))
<< std::endl;
#endif
// check that neither the energy nor any of the contributions to it are
// too high (this is part of github #971)
if (local_e / positions->size() >= MAX_MINIMIZED_E_PER_ATOM ||
(e_contribs.size() &&
*(std::max_element(e_contribs.begin(), e_contribs.end())) >
MAX_MINIMIZED_E_CONTRIB)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " Energy fail: " << local_e / positions->size() << " "
<< *(std::max_element(e_contribs.begin(), e_contribs.end()))
<< std::endl;
#endif
gotCoords = false;
}
return gotCoords;
}
bool checkTetrahedralCenters(const RDGeom::PointPtrVect *positions,
const detail::EmbedArgs &eargs,
const EmbedParameters &) {
// for each of the atoms in the "tetrahedralCarbons" list, make sure
// that there is a minimum volume around them and that they are inside
// that volume. (this is part of github #971)
for (const auto &tetSet : *eargs.tetrahedralCarbons) {
// it could happen that the centroid is outside the volume defined
// by the other
// four points. That is also a fail.
if (!_volumeTest(tetSet, *positions) ||
!_centerInVolume(tetSet, *positions, TETRAHEDRAL_CENTERINVOLUME_TOL)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " fail2! (" << tetSet->d_idx0 << ") iter: " //<< iter
<< " vol: " << _volumeTest(tetSet, *positions, true)
<< " center: "
<< _centerInVolume(tetSet, *positions,
TETRAHEDRAL_CENTERINVOLUME_TOL, true)
<< std::endl;
#endif
return false;
}
}
return true;
}
bool checkChiralCenters(const RDGeom::PointPtrVect *positions,
const detail::EmbedArgs &eargs,
const EmbedParameters &) {
// check the chiral volume:
for (const auto &chiralSet : *eargs.chiralCenters) {
double vol = DistGeom::ChiralViolationContrib::calcChiralVolume(
chiralSet->d_idx1, chiralSet->d_idx2, chiralSet->d_idx3,
chiralSet->d_idx4, *positions);
double lb = chiralSet->getLowerVolumeBound();
double ub = chiralSet->getUpperVolumeBound();
if ((lb > 0 && vol < lb && (lb - vol) / lb > .2) ||
(ub < 0 && vol > ub && (vol - ub) / ub > .2)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " fail! (" << chiralSet->d_idx0 << ") iter: "
<< " " << vol << " " << lb << "-" << ub << std::endl;
#endif
return false;
}
}
return true;
}
bool minimizeFourthDimension(RDGeom::PointPtrVect *positions,
const detail::EmbedArgs &eargs,
const EmbedParameters &embedParams) {
// now redo the minimization if we have a chiral center
// or have started from random coords. This
// time removing the chiral constraints and
// increasing the weight on the fourth dimension
std::unique_ptr<ForceFields::ForceField> field2(DistGeom::constructForceField(
*eargs.mmat, *positions, *eargs.chiralCenters, 0.2, 1.0, nullptr,
embedParams.basinThresh));
if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
for (const auto &v : *embedParams.coordMap) {
field2->fixedPoints().push_back(v.first);
}
}
field2->initialize();
// std::cerr<<"FIELD2 E: "<<field2->calcEnergy()<<std::endl;
if (field2->calcEnergy() > ERROR_TOL) {
int needMore = 1;
int nPasses2 = 0;
while (needMore) {
needMore = field2->minimize(200, embedParams.optimizerForceTol);
++nPasses2;
}
// std::cerr<<" "<<field2->calcEnergy()<<" after npasses2:
// "<<nPasses2<<std::endl;
}
return true;
}
// the minimization using experimental torsion angle preferences
bool minimizeWithExpTorsions(RDGeom::PointPtrVect &positions,
const detail::EmbedArgs &eargs,
const EmbedParameters &embedParams) {
PRECONDITION(eargs.etkdgDetails, "bogus etkdgDetails pointer");
bool planar = true;
// convert to 3D positions and create coordMap
RDGeom::Point3DPtrVect positions3D;
for (auto &position : positions) {
positions3D.push_back(
new RDGeom::Point3D((*position)[0], (*position)[1], (*position)[2]));
}
// create the force field
std::unique_ptr<ForceFields::ForceField> field;
if (embedParams.useBasicKnowledge) { // ETKDG or KDG
if (embedParams.CPCI != nullptr) {
field.reset(DistGeom::construct3DForceField(
*eargs.mmat, positions3D, *eargs.etkdgDetails, *embedParams.CPCI));
} else {
field.reset(DistGeom::construct3DForceField(*eargs.mmat, positions3D,
*eargs.etkdgDetails));
}
} else { // plain ETDG
field.reset(DistGeom::constructPlain3DForceField(*eargs.mmat, positions3D,
*eargs.etkdgDetails));
}
if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
for (const auto &v : *embedParams.coordMap) {
field->fixedPoints().push_back(v.first);
}
}
// minimize!
field->initialize();
if (field->calcEnergy() > ERROR_TOL) {
// while (needMore) {
field->minimize(300, embedParams.optimizerForceTol);
// ++nPasses;
//}
}
// std::cout << field->calcEnergy() << std::endl;
// check for planarity if ETKDG or KDG
if (embedParams.useBasicKnowledge) {
// create a force field with only the impropers
std::unique_ptr<ForceFields::ForceField> field2(
DistGeom::construct3DImproperForceField(
*eargs.mmat, positions3D, eargs.etkdgDetails->improperAtoms,
eargs.etkdgDetails->atomNums));
if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
for (const auto &v : *embedParams.coordMap) {
field2->fixedPoints().push_back(v.first);
}
}
field2->initialize();
// check if the energy is low enough
double planarityTolerance = 0.7;
if (field2->calcEnergy() >
eargs.etkdgDetails->improperAtoms.size() * planarityTolerance) {
#ifdef DEBUG_EMBEDDING
std::cerr << " planar fail: " << field2->calcEnergy() << " "
<< eargs.etkdgDetails->improperAtoms.size() * planarityTolerance
<< std::endl;
#endif
planar = false;
}
}
// overwrite positions and delete the 3D ones
for (unsigned int i = 0; i < positions3D.size(); ++i) {
(*positions[i])[0] = (*positions3D[i])[0];
(*positions[i])[1] = (*positions3D[i])[1];
(*positions[i])[2] = (*positions3D[i])[2];
delete positions3D[i];
}
return planar;
}
bool finalChiralChecks(RDGeom::PointPtrVect *positions,
const detail::EmbedArgs &eargs,
const EmbedParameters &) {
// "distance matrix" chirality test
std::set<int> atoms;
for (const auto &chiralSet : *eargs.chiralCenters) {
if (chiralSet->d_idx0 != chiralSet->d_idx4) {
atoms.insert(chiralSet->d_idx0);
atoms.insert(chiralSet->d_idx1);
atoms.insert(chiralSet->d_idx2);
atoms.insert(chiralSet->d_idx3);
atoms.insert(chiralSet->d_idx4);
}
}
std::vector<int> atomsToCheck(atoms.begin(), atoms.end());
if (atomsToCheck.size() > 0) {
if (!_boundsFulfilled(atomsToCheck, *eargs.mmat, *positions)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " fail3a! (" << atomsToCheck[0] << ") iter: " //<< iter
<< std::endl;
#endif
return false;
}
}
// "center in volume" chirality test
for (const auto &chiralSet : *eargs.chiralCenters) {
// it could happen that the centroid is outside the volume defined
// by the other four points. That is also a fail.
if (!_centerInVolume(chiralSet, *positions)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " fail3b! (" << chiralSet->d_idx0 << ") iter: " //<< iter
<< std::endl;
#endif
return false;
}
}
return true;
}
bool embedPoints(RDGeom::PointPtrVect *positions, detail::EmbedArgs eargs,
EmbedParameters embedParams, int seed) {
PRECONDITION(positions, "bogus positions");
if (embedParams.maxIterations == 0) {
embedParams.maxIterations = 10 * positions->size();
}
RDNumeric::DoubleSymmMatrix distMat(positions->size(), 0.0);
// The basin threshold just gets us into trouble when we're using
// random coordinates since it ends up ignoring 1-4 (and higher)
// interactions. This causes us to get folded-up (and self-penetrating)
// conformations for large flexible molecules
if (embedParams.useRandomCoords) {
embedParams.basinThresh = 1e8;
}
RDKit::double_source_type *rng = nullptr;
RDKit::rng_type *generator;
RDKit::uniform_double *distrib;
CHECK_INVARIANT(seed >= -1,
"random seed must either be positive, zero, or negative one");
if (seed > -1) {
generator = new RDKit::rng_type(42u);
generator->seed(seed);
distrib = new RDKit::uniform_double(0.0, 1.0);
rng = new RDKit::double_source_type(*generator, *distrib);
} else {
rng = &RDKit::getDoubleRandomSource();
}
bool gotCoords = false;
unsigned int iter = 0;
while (!gotCoords && iter < embedParams.maxIterations) {
++iter;
if (embedParams.callback != nullptr) {
embedParams.callback(iter);
}
gotCoords = EmbeddingOps::generateInitialCoords(positions, eargs,
embedParams, distMat, rng);
#ifdef DEBUG_EMBEDDING
if (!gotCoords) {
std::cerr << "Initial embedding failed!, Iter: " << iter << std::endl;
}
#endif
if (gotCoords) {
gotCoords =
EmbeddingOps::firstMinimization(positions, eargs, embedParams);
if (gotCoords) {
gotCoords = EmbeddingOps::checkTetrahedralCenters(positions, eargs,
embedParams);
}
// Check if any of our chiral centers are badly out of whack.
if (gotCoords && embedParams.enforceChirality &&
eargs.chiralCenters->size() > 0) {
gotCoords =
EmbeddingOps::checkChiralCenters(positions, eargs, embedParams);
}
// redo the minimization if we have a chiral center
// or have started from random coords.
if (gotCoords &&
(eargs.chiralCenters->size() > 0 || embedParams.useRandomCoords)) {
gotCoords = EmbeddingOps::minimizeFourthDimension(positions, eargs,
embedParams);
}
// (ET)(K)DG
if (gotCoords && (embedParams.useExpTorsionAnglePrefs ||
embedParams.useBasicKnowledge)) {
gotCoords = EmbeddingOps::minimizeWithExpTorsions(*positions, eargs,
embedParams);
}
// test if chirality is correct
if (embedParams.enforceChirality && gotCoords &&
(eargs.chiralCenters->size() > 0)) {
gotCoords =
EmbeddingOps::finalChiralChecks(positions, eargs, embedParams);
}
} // if(gotCoords)
} // while
if (seed > -1) {
delete rng;
delete generator;
delete distrib;
}
return gotCoords;
}
void findChiralSets(const ROMol &mol, DistGeom::VECT_CHIRALSET &chiralCenters,
DistGeom::VECT_CHIRALSET &tetrahedralCenters,
const std::map<int, RDGeom::Point3D> *coordMap) {
for (const auto &atom : mol.atoms()) {
if (atom->getAtomicNum() != 1) { // skip hydrogens
Atom::ChiralType chiralType = atom->getChiralTag();
if ((chiralType == Atom::CHI_TETRAHEDRAL_CW ||
chiralType == Atom::CHI_TETRAHEDRAL_CCW) ||
((atom->getAtomicNum() == 6 || atom->getAtomicNum() == 7) &&
atom->getDegree() == 4)) {
// make a chiral set from the neighbors
INT_VECT nbrs;
nbrs.reserve(4);
// find the neighbors of this atom and enter them into the
// nbr list
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
nbrs.push_back(mol[*beg]->getOtherAtom(atom)->getIdx());
++beg;
}
// if we have less than 4 heavy atoms as neighbors,
// we need to include the chiral center into the mix
// we should at least have 3 though
CHECK_INVARIANT(nbrs.size() >= 3, "Cannot be a chiral center");
if (nbrs.size() < 4) {
nbrs.insert(nbrs.end(), atom->getIdx());
}
// now create a chiral set and set the upper and lower bound on the
// volume
if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
// positive chiral volume
auto *cset = new DistGeom::ChiralSet(atom->getIdx(), nbrs[0], nbrs[1],
nbrs[2], nbrs[3], 5.0, 100.0);
DistGeom::ChiralSetPtr cptr(cset);
chiralCenters.push_back(cptr);
} else if (chiralType == Atom::CHI_TETRAHEDRAL_CW) {
auto *cset = new DistGeom::ChiralSet(atom->getIdx(), nbrs[0], nbrs[1],
nbrs[2], nbrs[3], -100.0, -5.0);
DistGeom::ChiralSetPtr cptr(cset);
chiralCenters.push_back(cptr);
} else {
if ((coordMap && coordMap->find(atom->getIdx()) != coordMap->end()) ||
(mol.getRingInfo()->isInitialized() &&
(mol.getRingInfo()->numAtomRings(atom->getIdx()) < 2 ||
mol.getRingInfo()->isAtomInRingOfSize(atom->getIdx(), 3)))) {
// we only want to these tests for ring atoms that are not part of
// the coordMap
// there's no sense doing 3-rings because those are a nightmare
} else {
auto *cset = new DistGeom::ChiralSet(
atom->getIdx(), nbrs[0], nbrs[1], nbrs[2], nbrs[3], 0.0, 0.0);
DistGeom::ChiralSetPtr cptr(cset);
tetrahedralCenters.push_back(cptr);
}
}
} // if block -chirality check
} // if block - heavy atom check
} // for loop over atoms
} // end of _findChiralSets
void adjustBoundsMatFromCoordMap(
DistGeom::BoundsMatPtr mmat, unsigned int,
const std::map<int, RDGeom::Point3D> *coordMap) {
for (auto iIt = coordMap->begin(); iIt != coordMap->end(); ++iIt) {
unsigned int iIdx = iIt->first;
const RDGeom::Point3D &iPoint = iIt->second;
auto jIt = iIt;
while (++jIt != coordMap->end()) {
unsigned int jIdx = jIt->first;
const RDGeom::Point3D &jPoint = jIt->second;
double dist = (iPoint - jPoint).length();
mmat->setUpperBound(iIdx, jIdx, dist);
mmat->setLowerBound(iIdx, jIdx, dist);
}
}
}
void initETKDG(ROMol *mol, const EmbedParameters ¶ms,
ForceFields::CrystalFF::CrystalFFDetails &etkdgDetails) {
PRECONDITION(mol, "bad molecule");
unsigned int nAtoms = mol->getNumAtoms();
if (params.useExpTorsionAnglePrefs || params.useBasicKnowledge) {
ForceFields::CrystalFF::getExperimentalTorsions(
*mol, etkdgDetails, params.useExpTorsionAnglePrefs,
params.useSmallRingTorsions, params.useMacrocycleTorsions,
params.useBasicKnowledge, params.ETversion, params.verbose);
etkdgDetails.atomNums.resize(nAtoms);
for (unsigned int i = 0; i < nAtoms; ++i) {
etkdgDetails.atomNums[i] = mol->getAtomWithIdx(i)->getAtomicNum();
}
}
etkdgDetails.boundsMatForceScaling = params.boundsMatForceScaling;
}
bool setupInitialBoundsMatrix(
ROMol *mol, DistGeom::BoundsMatPtr mmat,
const std::map<int, RDGeom::Point3D> *coordMap,
const EmbedParameters ¶ms,
ForceFields::CrystalFF::CrystalFFDetails &etkdgDetails) {
PRECONDITION(mol, "bad molecule");
unsigned int nAtoms = mol->getNumAtoms();
if (params.useExpTorsionAnglePrefs || params.useBasicKnowledge) {
setTopolBounds(*mol, mmat, etkdgDetails.bonds, etkdgDetails.angles, true,
false, params.useMacrocycle14config,
params.forceTransAmides);
} else {
setTopolBounds(*mol, mmat, true, false, params.useMacrocycle14config,
params.forceTransAmides);
}
double tol = 0.0;
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
tol = 0.05;
}
if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
// ok this bound matrix failed to triangle smooth - re-compute the
// bounds matrix without 15 bounds and with VDW scaling
initBoundsMat(mmat);
setTopolBounds(*mol, mmat, false, true, params.useMacrocycle14config,
params.forceTransAmides);
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
}
// try triangle smoothing again
if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
// ok, we're not going to be able to smooth this,
if (params.ignoreSmoothingFailures) {
// proceed anyway with the more relaxed bounds matrix
initBoundsMat(mmat);
setTopolBounds(*mol, mmat, false, true, params.useMacrocycle14config,
params.forceTransAmides);
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
}
} else {
BOOST_LOG(rdWarningLog)
<< "Could not triangle bounds smooth molecule." << std::endl;
return false;
}
}
}
return true;
}
} // namespace EmbeddingOps
void _fillAtomPositions(RDGeom::Point3DConstPtrVect &pts, const Conformer &conf,
const ROMol &, const std::vector<unsigned int> &match) {
PRECONDITION(pts.size() == match.size(), "bad pts size");
for (unsigned int i = 0; i < match.size(); i++) {
pts[i] = &conf.getAtomPos(match[i]);
}
}
bool _isConfFarFromRest(
const ROMol &mol, const Conformer &conf, double threshold,
const std::vector<std::vector<unsigned int>> &selfMatches) {
// NOTE: it is tempting to use some triangle inequality to prune
// conformations here but some basic testing has shown very
// little advantage and given that the time for pruning fades in
// comparison to embedding - we will use a simple for loop below
// over all conformation until we find a match
RDGeom::Point3DConstPtrVect refPoints(selfMatches[0].size());
RDGeom::Point3DConstPtrVect prbPoints(selfMatches[0].size());
_fillAtomPositions(refPoints, conf, mol, selfMatches[0]);
double ssrThres = conf.getNumAtoms() * threshold * threshold;
for (const auto &match : selfMatches) {
for (auto confi = mol.beginConformers(); confi != mol.endConformers();
++confi) {
_fillAtomPositions(prbPoints, *(*confi), mol, match);
RDGeom::Transform3D trans;
auto ssr =
RDNumeric::Alignments::AlignPoints(refPoints, prbPoints, trans);
if (ssr < ssrThres) {
return false;
}
}
}
return true;
}
namespace detail {
template <class T>
bool multiplication_overflows_(T a, T b) {
// a * b > c if and only if a > c / b
if (a == 0 || b == 0) {
return false;
}
return a > std::numeric_limits<T>::max() / b;
}
void embedHelper_(int threadId, int numThreads, EmbedArgs *eargs,
const EmbedParameters *params) {
PRECONDITION(eargs, "bogus eargs");
PRECONDITION(params, "bogus params");
unsigned int nAtoms = eargs->mmat->numRows();
RDGeom::PointPtrVect positions(nAtoms);
// we might thrown an exception in a callback
// in order to avoid leaking the points we're working with
// allocate them with unique_ptrs and then work with the naked
// pointers from those
std::vector<std::unique_ptr<RDGeom::Point>> positionsStore;
positionsStore.reserve(nAtoms);
for (unsigned int i = 0; i < nAtoms; ++i) {
if (eargs->fourD) {
positionsStore.emplace_back(new RDGeom::PointND(4));
} else {
positionsStore.emplace_back(new RDGeom::Point3D());
}
positions[i] = positionsStore[i].get();
}
for (size_t ci = 0; ci < eargs->confs->size(); ci++) {
if (rdcast<int>(ci % numThreads) != threadId) {
continue;
}
if (!(*eargs->confsOk)[ci]) {
// we call this function for each fragment in a molecule,
// if one of the fragments has already failed, there's no
// sense in embedding this one
continue;
}
CHECK_INVARIANT(
params->randomSeed >= -1,
"random seed must either be positive, zero, or negative one");
int new_seed = params->randomSeed;
if (new_seed > -1) {
if (!multiplication_overflows_(rdcast<int>(ci + 1), params->randomSeed)) {
// old method of computing a new seed
new_seed = (ci + 1) * params->randomSeed;
} else {
// If the above simple multiplication will overflow, use a
// cheap and easy way to hash the conformer index and seed
// together: for N'ary numerical system, where N is the
// maximum possible value of the pair of numbers. The
// following will generate unique integers:
// hash(a, b) = a + b * N
auto big_seed = rdcast<size_t>(params->randomSeed);
size_t max_val = std::max(ci + 1, big_seed);
size_t big_num = big_seed + max_val * (ci + 1);
// only grab the first 31 bits xor'd with the next 31 bits to
// make sure its positive, careful, the 'ULL' is important
// here, 0x7fffffff is the 'int' type because of C default
// number semantics and that we definitely don't want!
const size_t positive_int_mask = 0x7fffffffULL;
size_t folded_num = (big_num & positive_int_mask) ^ (big_num >> 31ULL);
new_seed = rdcast<int>(folded_num & positive_int_mask);
}
}
CHECK_INVARIANT(new_seed >= -1,
"Something went wrong calculating a new seed");
bool gotCoords =
EmbeddingOps::embedPoints(&positions, *eargs, *params, new_seed);
// copy the coordinates into the correct conformer
if (gotCoords) {
auto &conf = (*eargs->confs)[ci];
unsigned int fragAtomIdx = 0;
for (unsigned int i = 0; i < conf->getNumAtoms(); ++i) {
if (!eargs->fragMapping ||
(*eargs->fragMapping)[i] == static_cast<int>(eargs->fragIdx)) {
conf->setAtomPos(i, RDGeom::Point3D((*positions[fragAtomIdx])[0],
(*positions[fragAtomIdx])[1],
(*positions[fragAtomIdx])[2]));
++fragAtomIdx;
}
}
} else {
(*eargs->confsOk)[ci] = 0;
}
}
}
std::vector<std::vector<unsigned int>> getMolSelfMatches(
const ROMol &mol, const EmbedParameters ¶ms) {
std::vector<std::vector<unsigned int>> res;
if (params.pruneRmsThresh && params.useSymmetryForPruning) {
RWMol tmol(mol);
MolOps::RemoveHsParameters ps;
bool sanitize = false;
MolOps::removeHs(tmol, ps, sanitize);
SubstructMatchParameters sssps;
sssps.maxMatches = 1;
// provides the atom indices in the molecule corresponding
// to the indices in the H-stripped version
auto strippedMatch = SubstructMatch(mol, tmol, sssps);
CHECK_INVARIANT(strippedMatch.size() == 1, "expected match not found");
sssps.maxMatches = 1000;
sssps.uniquify = false;
auto heavyAtomMatches = SubstructMatch(tmol, tmol, sssps);
for (const auto &match : heavyAtomMatches) {
res.emplace_back(0);
res.back().reserve(match.size());
for (auto midx : match) {
res.back().push_back(strippedMatch[0][midx.second].second);
}
}
} else if (params.onlyHeavyAtomsForRMS) {
res.emplace_back(0);
for (const auto &at : mol.atoms()) {
if (at->getAtomicNum() != 1) {
res.back().push_back(at->getIdx());
}
}
} else {
res.emplace_back(0);
res.back().reserve(mol.getNumAtoms());
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
res.back().push_back(i);
}
}
return res;
}
} // end of namespace detail
void EmbedMultipleConfs(ROMol &mol, INT_VECT &res, unsigned int numConfs,
const EmbedParameters ¶ms) {
if (!mol.getNumAtoms()) {
throw ValueErrorException("molecule has no atoms");
}
if (params.ETversion < 1 || params.ETversion > 2) {
throw ValueErrorException(
"Only version 1 and 2 of the experimental "
"torsion-angle preferences (ETversion) supported");
}
if (MolOps::needsHs(mol)) {
BOOST_LOG(rdWarningLog)
<< "Molecule does not have explicit Hs. Consider calling AddHs()"
<< std::endl;
}
// initialize the conformers we're going to be creating:
if (params.clearConfs) {
res.clear();
mol.clearConformers();
}
std::vector<std::unique_ptr<Conformer>> confs;
confs.reserve(numConfs);
for (unsigned int i = 0; i < numConfs; ++i) {
confs.emplace_back(new Conformer(mol.getNumAtoms()));
}
boost::dynamic_bitset<> confsOk(numConfs);
confsOk.set();
INT_VECT fragMapping;
std::vector<ROMOL_SPTR> molFrags;
if (params.embedFragmentsSeparately) {
molFrags = MolOps::getMolFrags(mol, true, &fragMapping);
} else {
molFrags.push_back(ROMOL_SPTR(new ROMol(mol)));
fragMapping.resize(mol.getNumAtoms());
std::fill(fragMapping.begin(), fragMapping.end(), 0);
}
const std::map<int, RDGeom::Point3D> *coordMap = params.coordMap;
if (molFrags.size() > 1 && coordMap) {
BOOST_LOG(rdWarningLog)
<< "Constrained conformer generation (via the coordMap argument) "
"does not work with molecules that have multiple fragments."
<< std::endl;
coordMap = nullptr;
}
if (molFrags.size() > 1 && params.boundsMat != nullptr) {
BOOST_LOG(rdWarningLog)
<< "Conformer generation using a user-provided boundsMat "
"does not work with molecules that have multiple fragments. The "
"boundsMat will be ignored."
<< std::endl;
coordMap = nullptr; // FIXME not directly related to ETKDG, but here I
// think it should be params.boundsMat = nullptr
}
// we will generate conformations for each fragment in the molecule
// separately, so loop over them:
for (unsigned int fragIdx = 0; fragIdx < molFrags.size(); ++fragIdx) {
ROMOL_SPTR piece = molFrags[fragIdx];
unsigned int nAtoms = piece->getNumAtoms();
ForceFields::CrystalFF::CrystalFFDetails etkdgDetails;
EmbeddingOps::initETKDG(piece.get(), params, etkdgDetails);
DistGeom::BoundsMatPtr mmat;
if (params.boundsMat == nullptr || molFrags.size() > 1) {
// The user didn't provide one, so create and initialize the distance
// bounds matrix
mmat.reset(new DistGeom::BoundsMatrix(nAtoms));
initBoundsMat(mmat);
if (!EmbeddingOps::setupInitialBoundsMatrix(piece.get(), mmat, coordMap,
params, etkdgDetails)) {
// return if we couldn't setup the bounds matrix
// possible causes include a triangle smoothing failure
return;
}
} else {
// just use what they gave us
// first make sure it's the right size though:
if (params.boundsMat->numRows() != nAtoms) {
throw ValueErrorException(
"size of boundsMat provided does not match the number of atoms in "
"the molecule.");
}
collectBondsAndAngles((*piece.get()), etkdgDetails.bonds,
etkdgDetails.angles);
mmat.reset(new DistGeom::BoundsMatrix(*params.boundsMat));
}
// find all the chiral centers in the molecule
MolOps::assignStereochemistry(*piece);
DistGeom::VECT_CHIRALSET chiralCenters;
DistGeom::VECT_CHIRALSET tetrahedralCarbons;
EmbeddingOps::findChiralSets(*piece, chiralCenters, tetrahedralCarbons,
coordMap);
// if we have any chiral centers or are using random coordinates, we will
// first embed the molecule in four dimensions, otherwise we will use 3D
bool fourD = false;
if (params.useRandomCoords || chiralCenters.size() > 0) {
fourD = true;
}
int numThreads = getNumThreadsToUse(params.numThreads);
// do the embedding, using multiple threads if requested
detail::EmbedArgs eargs = {
&confsOk, fourD, &fragMapping, &confs, fragIdx,
mmat, &chiralCenters, &tetrahedralCarbons, &etkdgDetails};
if (numThreads == 1) {
detail::embedHelper_(0, 1, &eargs, ¶ms);
}
#ifdef RDK_BUILD_THREADSAFE_SSS
else {
std::vector<std::future<void>> tg;
for (int tid = 0; tid < numThreads; ++tid) {
tg.emplace_back(std::async(std::launch::async, detail::embedHelper_,
tid, numThreads, &eargs, ¶ms));
}
for (auto &fut : tg) {
fut.get();
}
}
#endif
}
auto selfMatches = detail::getMolSelfMatches(mol, params);
for (unsigned int ci = 0; ci < confs.size(); ++ci) {
auto &conf = confs[ci];
if (confsOk[ci]) {
// check if we are pruning away conformations and
// a close-by conformation has already been chosen :
if (params.pruneRmsThresh <= 0.0 ||
_isConfFarFromRest(mol, *conf, params.pruneRmsThresh, selfMatches)) {
int confId = (int)mol.addConformer(conf.release(), true);
res.push_back(confId);
}
}
}
}
} // end of namespace DGeomHelpers
} // end of namespace RDKit
|