File: MolFileStereochem.cpp

package info (click to toggle)
rdkit 202209.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 203,880 kB
  • sloc: cpp: 334,239; python: 80,247; ansic: 24,579; java: 7,667; sql: 2,123; yacc: 1,884; javascript: 1,358; lex: 1,260; makefile: 576; xml: 229; fortran: 183; cs: 181; sh: 101
file content (643 lines) | stat: -rw-r--r-- 23,467 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
//
//  Copyright (C) 2004-2021 Greg Landrum and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
//
#include <list>
#include <RDGeneral/RDLog.h>
#include <GraphMol/Chirality.h>
#include "MolFileStereochem.h"
#include <Geometry/point.h>
#include <boost/dynamic_bitset.hpp>
#include <algorithm>
#include <RDGeneral/Ranking.h>

namespace RDKit {

void GetMolFileBondStereoInfo(const Bond *bond, const INT_MAP_INT &wedgeBonds,
                              const Conformer *conf, int &dirCode,
                              bool &reverse);

typedef std::list<double> DOUBLE_LIST;

void WedgeBond(Bond *bond, unsigned int fromAtomIdx, const Conformer *conf) {
  PRECONDITION(bond, "no bond");
  PRECONDITION(conf, "no conformer");
  PRECONDITION(&conf->getOwningMol() == &bond->getOwningMol(),
               "bond and conformer do not belong to same molecule");
  if (bond->getBondType() != Bond::SINGLE) {
    return;
  }
  Bond::BondDir dir = DetermineBondWedgeState(bond, fromAtomIdx, conf);
  if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
    bond->setBondDir(dir);
  }
}

void WedgeMolBonds(ROMol &mol, const Conformer *conf) {
  PRECONDITION(conf, "no conformer");
  auto wedgeBonds = pickBondsToWedge(mol);
  for (auto bond : mol.bonds()) {
    if (bond->getBondType() == Bond::SINGLE) {
      Bond::BondDir dir = DetermineBondWedgeState(bond, wedgeBonds, conf);
      if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
        bond->setBondDir(dir);

        // it is possible that this
        // wedging was determined by a chiral atom at the end of the
        // bond (instead of at the beginning). In this case we need to
        // reverse the begin and end atoms for the bond
        auto wbi = wedgeBonds.find(bond->getIdx());
        if (wbi != wedgeBonds.end() &&
            static_cast<unsigned int>(wbi->second) != bond->getBeginAtomIdx()) {
          auto tmp = bond->getBeginAtomIdx();
          bond->setBeginAtomIdx(bond->getEndAtomIdx());
          bond->setEndAtomIdx(tmp);
        }
      }
    }
  }
}

std::tuple<unsigned int, unsigned int, unsigned int> getDoubleBondPresence(
    const ROMol &mol, const Atom &atom) {
  unsigned int hasDouble = 0;
  unsigned int hasKnownDouble = 0;
  unsigned int hasAnyDouble = 0;
  for (const auto &nbri : boost::make_iterator_range(mol.getAtomBonds(&atom))) {
    const auto bond = mol[nbri];
    if (bond->getBondType() == Bond::BondType::DOUBLE) {
      ++hasDouble;
      if (bond->getStereo() == Bond::BondStereo::STEREOANY) {
        ++hasAnyDouble;
      } else if (bond->getStereo() > Bond::BondStereo::STEREOANY) {
        ++hasKnownDouble;
      }
    }
  }
  return std::make_tuple(hasDouble, hasKnownDouble, hasAnyDouble);
}

std::pair<bool, INT_VECT> countChiralNbrs(const ROMol &mol, int noNbrs) {
  // we need ring information; make sure findSSSR has been called before
  // if not call now
  if (!mol.getRingInfo()->isInitialized()) {
    MolOps::findSSSR(mol);
  }

  INT_VECT nChiralNbrs(mol.getNumAtoms(), noNbrs);

  // start by looking for bonds that are already wedged
  for (const auto bond : mol.bonds()) {
    if (bond->getBondDir() == Bond::BEGINWEDGE ||
        bond->getBondDir() == Bond::BEGINDASH ||
        bond->getBondDir() == Bond::UNKNOWN) {
      if (bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
          bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) {
        nChiralNbrs[bond->getBeginAtomIdx()] = noNbrs + 1;
      } else if (bond->getEndAtom()->getChiralTag() ==
                     Atom::CHI_TETRAHEDRAL_CW ||
                 bond->getEndAtom()->getChiralTag() ==
                     Atom::CHI_TETRAHEDRAL_CCW) {
        nChiralNbrs[bond->getEndAtomIdx()] = noNbrs + 1;
      }
    }
  }

  // now rank atoms by the number of chiral neighbors or Hs they have:
  bool chiNbrs = false;
  for (const auto at : mol.atoms()) {
    if (nChiralNbrs[at->getIdx()] > noNbrs) {
      // std::cerr << " SKIPPING1: " << at->getIdx() << std::endl;
      continue;
    }
    Atom::ChiralType type = at->getChiralTag();
    if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
      continue;
    }
    nChiralNbrs[at->getIdx()] = 0;
    chiNbrs = true;
    for (const auto nat : mol.atomNeighbors(at)) {
      if (nat->getAtomicNum() == 1) {
        // special case: it's an H... we weight these especially high:
        nChiralNbrs[at->getIdx()] -= 10;
        continue;
      }
      type = nat->getChiralTag();
      if (type != Atom::CHI_TETRAHEDRAL_CW &&
          type != Atom::CHI_TETRAHEDRAL_CCW) {
        continue;
      }
      nChiralNbrs[at->getIdx()] -= 1;
    }
  }
  return std::pair<bool, INT_VECT>(chiNbrs, nChiralNbrs);
}

// picks a bond for atom that we will wedge when we write the mol file
// returns idx of that bond.
int pickBondToWedge(const Atom *atom, const ROMol &mol,
                    const INT_VECT &nChiralNbrs, const INT_MAP_INT &resSoFar,
                    int noNbrs) {
  // here is what we are going to do
  // - at each chiral center look for a bond that is begins at the atom and
  //   is not yet picked to be wedged for a different chiral center, preferring
  //   bonds to Hs
  // - if we do not find a bond that begins at the chiral center - we will take
  //   the first bond that is not yet picked by any other chiral centers
  // we use the orders calculated above to determine which order to do the
  // wedging
  RDKit::ROMol::OBOND_ITER_PAIR atomBonds = mol.getAtomBonds(atom);
  std::vector<std::pair<int, int>> nbrScores;
  while (atomBonds.first != atomBonds.second) {
    const Bond *bond = mol[*atomBonds.first];
    ++atomBonds.first;

    // can only wedge single bonds:
    if (bond->getBondType() != Bond::SINGLE) {
      continue;
    }

    int bid = bond->getIdx();
    if (resSoFar.find(bid) == resSoFar.end()) {
      // very strong preference for Hs:
      if (bond->getOtherAtom(atom)->getAtomicNum() == 1) {
        nbrScores.emplace_back(-1000000,
                               bid);  // lower than anything else can be
        continue;
      }
      // prefer lower atomic numbers with lower degrees and no specified
      // chirality:
      const Atom *oatom = bond->getOtherAtom(atom);
      int nbrScore = oatom->getAtomicNum() + 100 * oatom->getDegree() +
                     1000 * ((oatom->getChiralTag() != Atom::CHI_UNSPECIFIED));
      // prefer neighbors that are nonchiral or have as few chiral neighbors
      // as possible:
      int oIdx = oatom->getIdx();
      if (nChiralNbrs[oIdx] < noNbrs) {
        // the counts are negative, so we have to subtract them off
        nbrScore -= 100000 * nChiralNbrs[oIdx];
      }
      // prefer bonds to non-ring atoms:
      nbrScore += 10000 * mol.getRingInfo()->numAtomRings(oIdx);
      // prefer non-ring bonds;
      nbrScore += 20000 * mol.getRingInfo()->numBondRings(bid);
      // prefer bonds to atoms which don't have a double bond from them
      unsigned int hasDoubleBond;       // is a double bond there?
      unsigned int hasKnownDoubleBond;  // is specified stereo there?
      unsigned int hasAnyDoubleBond;    // is STEREOANY there?
      std::tie(hasDoubleBond, hasKnownDoubleBond, hasAnyDoubleBond) =
          getDoubleBondPresence(mol, *oatom);
      nbrScore += 11000 * hasDoubleBond;
      nbrScore += 12000 * hasKnownDoubleBond;
      nbrScore += 23000 * hasAnyDoubleBond;

      // std::cerr << "    nrbScore: " << idx << " - " << oIdx << " : "
      //           << nbrScore << " nChiralNbrs: " << nChiralNbrs[oIdx]
      //           << std::endl;
      nbrScores.emplace_back(nbrScore, bid);
    }
  }
  // There's still one situation where this whole thing can fail: an unlucky
  // situation where all neighbors of all neighbors of an atom are chiral and
  // that atom ends up being the last one picked for stereochem assignment.
  //
  // We'll catch that as an error here and hope that it's as unlikely to occur
  // as it seems like it is. (I'm going into this knowing that it's bound to
  // happen; I'll kick myself and do the hard solution at that point.)
  CHECK_INVARIANT(nbrScores.size(), "no eligible neighbors for chiral center");
  std::sort(nbrScores.begin(), nbrScores.end(), Rankers::pairLess);
  return nbrScores[0].second;
}

INT_MAP_INT pickBondsToWedge(const ROMol &mol) {
  // returns map of bondIdx -> bond begin atom for those bonds that
  // need wedging.
  std::vector<unsigned int> indices(mol.getNumAtoms());
  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    indices[i] = i;
  }
  static int noNbrs = 100;
  std::pair<bool, INT_VECT> retVal = countChiralNbrs(mol, noNbrs);
  bool chiNbrs = retVal.first;
  INT_VECT nChiralNbrs = retVal.second;
  if (chiNbrs) {
    std::sort(indices.begin(), indices.end(), [&](auto i1, auto i2) {
      return nChiralNbrs[i1] < nChiralNbrs[i2];
    });
  }
#if 0
  std::cerr << "  nbrs: ";
  std::copy(nChiralNbrs.begin(), nChiralNbrs.end(),
            std::ostream_iterator<int>(std::cerr, " "));
  std::cerr << std::endl;
  std::cerr << "  order: ";
  std::copy(indices.begin(), indices.end(),
            std::ostream_iterator<int>(std::cerr, " "));
  std::cerr << std::endl;
#endif
  INT_MAP_INT res;
  for (auto idx : indices) {
    if (nChiralNbrs[idx] > noNbrs) {
      // std::cerr << " SKIPPING2: " << idx << std::endl;
      continue;  // already have a wedged bond here
    }
    const Atom *atom = mol.getAtomWithIdx(idx);
    Atom::ChiralType type = atom->getChiralTag();
    // the indices are ordered such that all chiral atoms come first. If
    // this has no chiral flag, we can stop the whole loop:
    if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
      break;
    }
    int bnd = pickBondToWedge(atom, mol, nChiralNbrs, res, noNbrs);
    res[bnd] = idx;
  }
  return res;
}

std::vector<Bond *> getBondNeighbors(ROMol &mol, const Bond &bond) {
  std::vector<Bond *> res;
  for (auto nbri :
       boost::make_iterator_range(mol.getAtomBonds(bond.getBeginAtom()))) {
    auto nbrBond = mol[nbri];
    if (nbrBond == &bond) {
      continue;
    }
    res.push_back(nbrBond);
  }
  for (auto nbri :
       boost::make_iterator_range(mol.getAtomBonds(bond.getEndAtom()))) {
    auto nbrBond = mol[nbri];
    if (nbrBond == &bond) {
      continue;
    }
    res.push_back(nbrBond);
  }
  return res;
}

const Atom *getNonsharedAtom(const Bond &bond1, const Bond &bond2) {
  if (bond1.getBeginAtomIdx() == bond2.getBeginAtomIdx() ||
      bond1.getBeginAtomIdx() == bond2.getEndAtomIdx()) {
    return bond1.getEndAtom();
  } else if (bond1.getEndAtomIdx() == bond2.getBeginAtomIdx() ||
             bond1.getEndAtomIdx() == bond2.getEndAtomIdx()) {
    return bond1.getBeginAtom();
  }
  POSTCONDITION(0, "bonds don't share an atom");
}

const unsigned StereoBondThresholds::DBL_BOND_NO_STEREO;
const unsigned StereoBondThresholds::DBL_BOND_SPECIFIED_STEREO;
const unsigned StereoBondThresholds::CHIRAL_ATOM;
const unsigned StereoBondThresholds::DIRECTION_SET;

// a note on the way the StereoBondThresholds are used:
//  the penalties are all 1/10th of the corresponding threshold, so
//  the penalty for being connected to a chiral atom is
//  StereoBondThresholds::CHIRAL_ATOM/10
//  This allows us to just add up the penalties for a particular
//  single bond and still use one set of thresholds - an individual
//  single bond will never have any particular penalty term applied
//  more than a couple of times
//
void addWavyBondsForStereoAny(ROMol &mol, bool clearDoubleBondFlags,
                              unsigned addWhenImpossible) {
  std::vector<int> singleBondScores(mol.getNumBonds(), 0);
  // used to store the double bond neighbors, if any, of each single bond
  std::map<unsigned, std::vector<unsigned>> singleBondNeighbors;
  boost::dynamic_bitset<> doubleBondsToSet(mol.getNumBonds());
  // mark single bonds adjacent to double bonds
  for (const auto dblBond : mol.bonds()) {
    if (dblBond->getBondType() != Bond::BondType::DOUBLE) {
      continue;
    }
    if (dblBond->getStereo() == Bond::BondStereo::STEREOANY) {
      doubleBondsToSet.set(dblBond->getIdx());
    }
    for (auto singleBond : getBondNeighbors(mol, *dblBond)) {
      if (singleBond->getBondType() != Bond::BondType::SINGLE) {
        continue;
      }
      // NOTE: we could make this canonical by initializing scores to the
      // canonical atom ranks
      int score = singleBondScores[singleBond->getIdx()];
      ++score;

      // penalty for having a direction already set
      if (singleBond->getBondDir() != Bond::BondDir::NONE) {
        score += StereoBondThresholds::DIRECTION_SET / 10;
      }

      // penalties from the double bond itself:

      // penalize being adjacent to a double bond with empty stereo:
      if (dblBond->getStereo() == Bond::BondStereo::STEREONONE) {
        score += StereoBondThresholds::DBL_BOND_NO_STEREO / 10;
      } else if (dblBond->getStereo() > Bond::BondStereo::STEREOANY) {
        // penalize being adjacent to a double bond with specified stereo:
        score += StereoBondThresholds::DBL_BOND_SPECIFIED_STEREO / 10;
      }

      // atom-related penalties
      auto otherAtom = getNonsharedAtom(*singleBond, *dblBond);
      // favor atoms with smaller numbers of neighbors:
      score += 10 * otherAtom->getDegree();
      // penalty for being adjacent to an atom with specified stereo
      if (otherAtom->getChiralTag() != Atom::ChiralType::CHI_UNSPECIFIED &&
          otherAtom->getChiralTag() != Atom::ChiralType::CHI_OTHER) {
        score += StereoBondThresholds::CHIRAL_ATOM / 10;
      }
      singleBondScores[singleBond->getIdx()] = score;
      if (dblBond->getStereo() == Bond::BondStereo::STEREOANY) {
        singleBondNeighbors[singleBond->getIdx()].push_back(dblBond->getIdx());
      }
    }
  }
  std::vector<std::tuple<int, unsigned int, size_t>> sortedScores;
  for (size_t i = 0; i < mol.getNumBonds(); ++i) {
    auto score = singleBondScores[i];
    if (!score) {
      continue;
    }
    sortedScores.push_back(
        std::make_tuple(-1 * singleBondNeighbors[i].size(), score, i));
  }
  std::sort(sortedScores.begin(), sortedScores.end());
  for (const auto &tpl : sortedScores) {
    // FIX: check if dir is already set
    for (auto dblBondIdx : singleBondNeighbors[std::get<2>(tpl)]) {
      if (doubleBondsToSet[dblBondIdx]) {
        if (addWhenImpossible) {
          if (std::get<1>(tpl) > addWhenImpossible) {
            continue;
          }
        } else if (std::get<1>(tpl) >
                   StereoBondThresholds::DBL_BOND_NO_STEREO) {
          BOOST_LOG(rdWarningLog)
              << "Setting wavy bond flag on bond " << std::get<2>(tpl)
              << " which may make other stereo info ambiguous" << std::endl;
        }
        mol.getBondWithIdx(std::get<2>(tpl))
            ->setBondDir(Bond::BondDir::UNKNOWN);
        if (clearDoubleBondFlags) {
          auto dblBond = mol.getBondWithIdx(dblBondIdx);
          if (dblBond->getBondDir() == Bond::BondDir::EITHERDOUBLE) {
            dblBond->setBondDir(Bond::BondDir::NONE);
          }
          dblBond->setStereo(Bond::BondStereo::STEREONONE);
        }
        doubleBondsToSet.reset(dblBondIdx);
      }
    }
  }
  if (addWhenImpossible) {
    if (doubleBondsToSet.count()) {
      std::stringstream sstr;
      sstr << " unable to set wavy bonds for double bonds:";
      for (size_t i = 0; i < mol.getNumBonds(); ++i) {
        if (doubleBondsToSet[i]) {
          sstr << " " << i;
        }
      }
      BOOST_LOG(rdWarningLog) << sstr.str() << std::endl;
    }
  }
}
//
// Determine bond wedge state
///
Bond::BondDir DetermineBondWedgeState(const Bond *bond,
                                      unsigned int fromAtomIdx,
                                      const Conformer *conf) {
  PRECONDITION(bond, "no bond");
  PRECONDITION(bond->getBondType() == Bond::SINGLE,
               "bad bond order for wedging");
  const ROMol *mol = &(bond->getOwningMol());
  PRECONDITION(mol, "no mol");

  Bond::BondDir res = bond->getBondDir();
  if (!conf) {
    return res;
  }

  Atom *atom, *bondAtom;  // = bond->getBeginAtom();
  if (bond->getBeginAtom()->getIdx() == fromAtomIdx) {
    atom = bond->getBeginAtom();
    bondAtom = bond->getEndAtom();
  } else {
    atom = bond->getEndAtom();
    bondAtom = bond->getBeginAtom();
  }

  Atom::ChiralType chiralType = atom->getChiralTag();
  CHECK_INVARIANT(chiralType == Atom::CHI_TETRAHEDRAL_CW ||
                      chiralType == Atom::CHI_TETRAHEDRAL_CCW,
                  "");

  // if we got this far, we really need to think about it:
  INT_LIST neighborBondIndices;
  DOUBLE_LIST neighborBondAngles;
  RDGeom::Point3D centerLoc, tmpPt;
  centerLoc = conf->getAtomPos(atom->getIdx());
  tmpPt = conf->getAtomPos(bondAtom->getIdx());
  centerLoc.z = 0.0;
  tmpPt.z = 0.0;
  RDGeom::Point3D refVect = centerLoc.directionVector(tmpPt);

  neighborBondIndices.push_back(bond->getIdx());
  neighborBondAngles.push_back(0.0);

  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = mol->getAtomBonds(atom);
  while (beg != end) {
    const Bond *nbrBond = (*mol)[*beg];
    Atom *otherAtom = nbrBond->getOtherAtom(atom);
    if (nbrBond != bond) {
      tmpPt = conf->getAtomPos(otherAtom->getIdx());
      tmpPt.z = 0.0;
      RDGeom::Point3D tmpVect = centerLoc.directionVector(tmpPt);
      double angle = refVect.signedAngleTo(tmpVect);
      if (angle < 0.0) {
        angle += 2. * M_PI;
      }
      auto nbrIt = neighborBondIndices.begin();
      auto angleIt = neighborBondAngles.begin();
      // find the location of this neighbor in our angle-sorted list
      // of neighbors:
      while (angleIt != neighborBondAngles.end() && angle > (*angleIt)) {
        ++angleIt;
        ++nbrIt;
      }
      neighborBondAngles.insert(angleIt, angle);
      neighborBondIndices.insert(nbrIt, nbrBond->getIdx());
    }
    ++beg;
  }

  // at this point, neighborBondIndices contains a list of bond
  // indices from the central atom.  They are arranged starting
  // at the reference bond in CCW order (based on the current
  // depiction).
  int nSwaps = atom->getPerturbationOrder(neighborBondIndices);

  // in the case of three-coordinated atoms we may have to worry about
  // the location of the implicit hydrogen - Issue 209
  // Check if we have one of these situation
  //
  //      0        1 0 2
  //      *         \*/
  //  1 - C - 2      C
  //
  // here the hydrogen will be between 1 and 2 and we need to add an additional
  // swap
  if (neighborBondAngles.size() == 3) {
    // three coordinated
    auto angleIt = neighborBondAngles.begin();
    ++angleIt;  // the first is the 0 (or reference bond - we will ignoire that
    double angle1 = (*angleIt);
    ++angleIt;
    double angle2 = (*angleIt);
    if (angle2 - angle1 >= (M_PI - 1e-4)) {
      // we have the above situation
      nSwaps++;
    }
  }

#ifdef VERBOSE_STEREOCHEM
  BOOST_LOG(rdDebugLog) << "--------- " << nSwaps << std::endl;
  std::copy(neighborBondIndices.begin(), neighborBondIndices.end(),
            std::ostream_iterator<int>(BOOST_LOG(rdDebugLog), " "));
  BOOST_LOG(rdDebugLog) << std::endl;
  std::copy(neighborBondAngles.begin(), neighborBondAngles.end(),
            std::ostream_iterator<double>(BOOST_LOG(rdDebugLog), " "));
  BOOST_LOG(rdDebugLog) << std::endl;
#endif
  if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
    if (nSwaps % 2 == 1) {  // ^ reverse) {
      res = Bond::BEGINDASH;
    } else {
      res = Bond::BEGINWEDGE;
    }
  } else {
    if (nSwaps % 2 == 1) {  // ^ reverse) {
      res = Bond::BEGINWEDGE;
    } else {
      res = Bond::BEGINDASH;
    }
  }

  return res;
}
Bond::BondDir DetermineBondWedgeState(const Bond *bond,
                                      const INT_MAP_INT &wedgeBonds,
                                      const Conformer *conf) {
  PRECONDITION(bond, "no bond");
  int bid = bond->getIdx();
  auto wbi = wedgeBonds.find(bid);
  if (wbi == wedgeBonds.end()) {
    return bond->getBondDir();
  }

  unsigned int waid = wbi->second;
  return DetermineBondWedgeState(bond, waid, conf);
}

// handles stereochem markers set by the Mol file parser and
// converts them to the RD standard:
void DetectAtomStereoChemistry(RWMol &mol, const Conformer *conf) {
  PRECONDITION(conf, "no conformer");
  PRECONDITION(&(conf->getOwningMol()) == &mol,
               "conformer does not belong to molecule");
  MolOps::assignChiralTypesFromBondDirs(mol, conf->getId(), true);
}

void ClearSingleBondDirFlags(ROMol &mol) {
  MolOps::clearSingleBondDirFlags(mol);
}

void DetectBondStereoChemistry(ROMol &mol, const Conformer *conf) {
  PRECONDITION(conf, "no conformer");
  PRECONDITION(&(conf->getOwningMol()) == &mol,
               "conformer does not belong to molecule");
  MolOps::detectBondStereochemistry(mol, conf->getId());
}

void reapplyMolBlockWedging(ROMol &mol) {
  MolOps::clearSingleBondDirFlags(mol);
  for (auto b : mol.bonds()) {
    int explicit_unknown_stereo = -1;
    if (b->getPropIfPresent<int>(common_properties::_UnknownStereo,
                                 explicit_unknown_stereo) &&
        explicit_unknown_stereo) {
      b->setBondDir(Bond::UNKNOWN);
    }
    int bond_dir = -1;
    if (b->getPropIfPresent<int>(common_properties::_MolFileBondStereo,
                                 bond_dir)) {
      if (bond_dir == 1) {
        b->setBondDir(Bond::BEGINWEDGE);
      } else if (bond_dir == 6) {
        b->setBondDir(Bond::BEGINDASH);
      }
    }
    int cfg = -1;
    if (b->getPropIfPresent<int>(common_properties::_MolFileBondCfg, cfg)) {
      switch (cfg) {
        case 1:
          b->setBondDir(Bond::BEGINWEDGE);
          break;
        case 2:
          if (b->getBondType() == Bond::SINGLE) {
            b->setBondDir(Bond::UNKNOWN);
          } else if (b->getBondType() == Bond::DOUBLE) {
            b->setBondDir(Bond::EITHERDOUBLE);
            b->setStereo(Bond::STEREOANY);
          }
          break;
        case 3:
          b->setBondDir(Bond::BEGINDASH);
          break;
      }
    }
  }
}

void markUnspecifiedStereoAsUnknown(ROMol &mol, int confId) {
  INT_MAP_INT wedgeBonds = pickBondsToWedge(mol);
  const auto conf = mol.getConformer(confId);
  for (auto b : mol.bonds()) {
    if (b->getBondType() == Bond::DOUBLE) {
      int dirCode;
      bool reverse;
      GetMolFileBondStereoInfo(b, wedgeBonds, &conf, dirCode, reverse);
      if (dirCode == 3) {
        b->setStereo(Bond::STEREOANY);
      }
    }
  }
  static int noNbrs = 100;
  auto si = Chirality::findPotentialStereo(mol);
  if (si.size()) {
    std::pair<bool, INT_VECT> retVal = countChiralNbrs(mol, noNbrs);
    INT_VECT nChiralNbrs = retVal.second;
    for (auto i : si) {
      if (i.type == Chirality::StereoType::Atom_Tetrahedral &&
          i.specified == Chirality::StereoSpecified::Unspecified) {
        i.specified = Chirality::StereoSpecified::Unknown;
        auto atom = mol.getAtomWithIdx(i.centeredOn);
        INT_MAP_INT resSoFar;
        int bndIdx = pickBondToWedge(atom, mol, nChiralNbrs, resSoFar, noNbrs);
        auto bond = mol.getBondWithIdx(bndIdx);
        bond->setBondDir(Bond::UNKNOWN);
      }
    }
  }
}

}  // namespace RDKit