1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
//
// Copyright (C) 2019 Greg Landrum
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <vector>
#include <Geometry/point.h>
namespace conrec {
struct ConrecSegment {
RDGeom::Point2D p1;
RDGeom::Point2D p2;
double isoVal;
ConrecSegment(double x1, double y1, double x2, double y2, double isoVal)
: p1(x1, y1), p2(x2, y2), isoVal(isoVal) {}
ConrecSegment(const RDGeom::Point2D &p1, const RDGeom::Point2D &p2,
double isoVal)
: p1(p1), p2(p2), isoVal(isoVal) {}
};
// adapted from conrec.c by Paul Bourke:
// http://paulbourke.net/papers/conrec/conrec.c
/*
Derivation from the fortran version of CONREC by Paul Bourke
d ! matrix of data to contour
ilb,iub,jlb,jub ! index bounds of data matrix
x ! data matrix column coordinates
y ! data matrix row coordinates
nc ! number of contour levels
z ! contour levels in increasing order
*/
inline void Contour(const double *d, size_t ilb, size_t iub, size_t jlb,
size_t jub, const double *x, const double *y, size_t nc,
double *z, std::vector<ConrecSegment> &res) {
PRECONDITION(d, "no data");
PRECONDITION(x, "no data");
PRECONDITION(y, "no data");
PRECONDITION(z, "no data");
PRECONDITION(nc > 0, "no contours");
PRECONDITION(iub > ilb, "bad bounds");
PRECONDITION(jub > jlb, "bad bounds");
int m1, m2, m3, case_value;
double dmin, dmax, x1 = 0, x2 = 0, y1 = 0, y2 = 0;
int i, j, m;
size_t k;
double h[5];
int sh[5];
double xh[5], yh[5];
int im[4] = {0, 1, 1, 0}, jm[4] = {0, 0, 1, 1};
int castab[3][3][3] = {{{0, 0, 8}, {0, 2, 5}, {7, 6, 9}},
{{0, 3, 4}, {1, 3, 1}, {4, 3, 0}},
{{9, 6, 7}, {5, 2, 0}, {8, 0, 0}}};
double temp1, temp2;
size_t ny = jub - jlb + 1;
auto xsect = [&](int p1, int p2) {
return (h[p2] * xh[p1] - h[p1] * xh[p2]) / (h[p2] - h[p1]);
};
auto ysect = [&](int p1, int p2) {
return (h[p2] * yh[p1] - h[p1] * yh[p2]) / (h[p2] - h[p1]);
};
for (j = (jub - 1); j >= (int)jlb; j--) {
for (i = ilb; i <= (int)iub - 1; i++) {
temp1 = std::min(d[i * ny + j], d[i * ny + j + 1]);
temp2 = std::min(d[(i + 1) * ny + j], d[(i + 1) * ny + j + 1]);
dmin = std::min(temp1, temp2);
temp1 = std::max(d[i * ny + j], d[i * ny + j + 1]);
temp2 = std::max(d[(i + 1) * ny + j], d[(i + 1) * ny + j + 1]);
dmax = std::max(temp1, temp2);
if (dmax < z[0] || dmin > z[nc - 1]) {
continue;
}
for (k = 0; k < nc; k++) {
if (z[k] < dmin || z[k] > dmax) {
continue;
}
for (m = 4; m >= 0; m--) {
if (m > 0) {
h[m] = d[(i + im[m - 1]) * ny + j + jm[m - 1]] - z[k];
xh[m] = x[i + im[m - 1]];
yh[m] = y[j + jm[m - 1]];
} else {
h[0] = 0.25 * (h[1] + h[2] + h[3] + h[4]);
xh[0] = 0.50 * (x[i] + x[i + 1]);
yh[0] = 0.50 * (y[j] + y[j + 1]);
}
if (h[m] > 0.0) {
sh[m] = 1;
} else if (h[m] < 0.0) {
sh[m] = -1;
} else {
sh[m] = 0;
}
}
/*
Note: at this stage the relative heights of the corners and the
centre are in the h array, and the corresponding coordinates are
in the xh and yh arrays. The centre of the box is indexed by 0
and the 4 corners by 1 to 4 as shown below.
Each triangle is then indexed by the parameter m, and the 3
vertices of each triangle are indexed by parameters m1,m2,and m3.
It is assumed that the centre of the box is always vertex 2
though this isimportant only when all 3 vertices lie exactly on
the same contour level, in which case only the side of the box
is drawn.
vertex 4 +-------------------+ vertex 3
| \ / |
| \ m-3 / |
| \ / |
| \ / |
| m=2 X m=2 | the centre is vertex 0
| / \ |
| / \ |
| / m=1 \ |
| / \ |
vertex 1 +-------------------+ vertex 2
*/
/* Scan each triangle in the box */
for (m = 1; m <= 4; m++) {
m1 = m;
m2 = 0;
if (m != 4) {
m3 = m + 1;
} else {
m3 = 1;
}
if ((case_value = castab[sh[m1] + 1][sh[m2] + 1][sh[m3] + 1]) == 0) {
continue;
}
switch (case_value) {
case 1: /* Line between vertices 1 and 2 */
x1 = xh[m1];
y1 = yh[m1];
x2 = xh[m2];
y2 = yh[m2];
break;
case 2: /* Line between vertices 2 and 3 */
x1 = xh[m2];
y1 = yh[m2];
x2 = xh[m3];
y2 = yh[m3];
break;
case 3: /* Line between vertices 3 and 1 */
x1 = xh[m3];
y1 = yh[m3];
x2 = xh[m1];
y2 = yh[m1];
break;
case 4: /* Line between vertex 1 and side 2-3 */
x1 = xh[m1];
y1 = yh[m1];
x2 = xsect(m2, m3);
y2 = ysect(m2, m3);
break;
case 5: /* Line between vertex 2 and side 3-1 */
x1 = xh[m2];
y1 = yh[m2];
x2 = xsect(m3, m1);
y2 = ysect(m3, m1);
break;
case 6: /* Line between vertex 3 and side 1-2 */
x1 = xh[m3];
y1 = yh[m3];
x2 = xsect(m1, m2);
y2 = ysect(m1, m2);
break;
case 7: /* Line between sides 1-2 and 2-3 */
x1 = xsect(m1, m2);
y1 = ysect(m1, m2);
x2 = xsect(m2, m3);
y2 = ysect(m2, m3);
break;
case 8: /* Line between sides 2-3 and 3-1 */
x1 = xsect(m2, m3);
y1 = ysect(m2, m3);
x2 = xsect(m3, m1);
y2 = ysect(m3, m1);
break;
case 9: /* Line between sides 3-1 and 1-2 */
x1 = xsect(m3, m1);
y1 = ysect(m3, m1);
x2 = xsect(m1, m2);
y2 = ysect(m1, m2);
break;
default:
break;
}
/* Finally draw the line */
res.emplace_back(RDGeom::Point2D(x1, y1), RDGeom::Point2D(x2, y2),
z[k]);
} /* m */
} /* k - contour */
} /* i */
} /* j */
}
} // namespace conrec
|