File: Pipeline.cpp

package info (click to toggle)
rdkit 202503.1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 578; xml: 229; fortran: 183; sh: 105
file content (583 lines) | stat: -rw-r--r-- 20,099 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
//
//  Copyright (C) 2023 Novartis Biomedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <cmath>
#include <regex>
#include <sstream>
#include "Pipeline.h"
#include "Validate.h"
#include "Metal.h"
#include "Normalize.h"
#include "Charge.h"
#include "Fragment.h"
#include <RDGeneral/FileParseException.h>
#include <GraphMol/FileParsers/FileParsers.h>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/Chirality.h>

namespace RDKit {
namespace MolStandardize {

void PipelineResult::append(PipelineStatus newStatus, const std::string &info) {
  status = static_cast<PipelineStatus>(status | newStatus);
  log.push_back({newStatus, info});
}

PipelineResult Pipeline::run(const std::string &molblock) const {
  PipelineResult result;
  result.status = NO_EVENT;
  result.inputMolData = molblock;

  // parse the molblock into an RWMol instance
  result.stage = static_cast<uint32_t>(PipelineStage::PARSING_INPUT);
  RWMOL_SPTR mol = parse(molblock, result, options);
  if (!mol || ((result.status & PIPELINE_ERROR) != NO_EVENT &&
               !options.reportAllFailures)) {
    return result;
  }

  RWMOL_SPTR_PAIR output;

  // we try sanitization and validation on a copy, because we want to preserve
  // the original input molecule for later
  RWMOL_SPTR molCopy{new RWMol(*mol)};
  for (const auto &[stage, operation] : validationSteps) {
    result.stage = stage;
    molCopy = operation(molCopy, result, options);
    if (!molCopy || ((result.status & PIPELINE_ERROR) != NO_EVENT &&
                     !options.reportAllFailures)) {
      return result;
    }
  }

  for (const auto &[stage, operation] : standardizationSteps) {
    result.stage = stage;
    mol = operation(mol, result, options);
    if (!mol || ((result.status & PIPELINE_ERROR) != NO_EVENT &&
                 !options.reportAllFailures)) {
      return result;
    }
  }
  if (makeParent) {
    result.stage = static_cast<uint32_t>(PipelineStage::MAKE_PARENT);
    output = makeParent(mol, result, options);
    if (!output.first || !output.second ||
        ((result.status & PIPELINE_ERROR) != NO_EVENT &&
         !options.reportAllFailures)) {
      return result;
    }
  } else {
    output = {mol, mol};
  }

  // serialize as MolBlocks
  result.stage = static_cast<uint32_t>(PipelineStage::SERIALIZING_OUTPUT);
  serialize(output, result, options);
  if ((result.status & PIPELINE_ERROR) != NO_EVENT &&
      !options.reportAllFailures) {
    return result;
  }

  result.stage = static_cast<uint32_t>(PipelineStage::COMPLETED);

  return result;
}

namespace Operations {
RWMOL_SPTR parse(const std::string &molblock, PipelineResult &result,
                 const PipelineOptions &options) {
  v2::FileParsers::MolFileParserParams params;
  // we don't want to sanitize the molecule at this stage
  params.sanitize = false;
  // Hs wouldn't be anyway removed if the mol is not sanitized
  params.removeHs = false;
  // strict parsing is configurable via the pipeline options
  params.strictParsing = options.strictParsing;

  RWMOL_SPTR mol{};

  try {
    mol.reset(v2::FileParsers::MolFromMolBlock(molblock, params).release());
  } catch (FileParseException &e) {
    result.append(INPUT_ERROR, e.what());
  }

  if (!mol) {
    result.append(INPUT_ERROR,
                  "Could not instantiate a valid molecule from input");
  }

  return mol;
}

void serialize(RWMOL_SPTR_PAIR output, PipelineResult &result,
               const PipelineOptions &options) {
  const ROMol &outputMol = *output.first;
  const ROMol &parentMol = *output.second;

  try {
    if (!options.outputV2000) {
      result.outputMolData = MolToV3KMolBlock(outputMol);
      result.parentMolData = MolToV3KMolBlock(parentMol);
    } else {
      try {
        result.outputMolData = MolToV2KMolBlock(outputMol);
        result.parentMolData = MolToV2KMolBlock(parentMol);
      } catch (ValueErrorException &e) {
        result.append(OUTPUT_ERROR,
                      "Can't write molecule to V2000 output format: " +
                          std::string(e.what()));
      }
    }
  } catch (const std::exception &e) {
    result.append(OUTPUT_ERROR, "Can't write molecule to output format: " +
                                    std::string(e.what()));
  } catch (...) {
    result.append(
        OUTPUT_ERROR,
        "An unexpected error occurred while serializing the output structures.");
  }
}
RWMOL_SPTR prepareForValidation(RWMOL_SPTR mol, PipelineResult &result,
                                const PipelineOptions &) {
  // Prepare the mol for validation.

  try {
    // The general intention is about validating the original input, and
    // therefore limit the sanitization to the minimum, but it's not very useful
    // to record a valence validation error for issues like a badly drawn nitro
    // group that would be later fixed during by the normalization step.
    //
    // Some sanitization also needs to be performed in order to assign the
    // stereochemistry (which needs to happen prior to reapplying the wedging,
    // see below), and we need to find radicals, in order to support the
    // corresponding validation criterion.
    constexpr unsigned int sanitizeOps =
        (MolOps::SANITIZE_CLEANUP | MolOps::SANITIZE_SYMMRINGS |
         MolOps::SANITIZE_CLEANUP_ORGANOMETALLICS |
         MolOps::SANITIZE_FINDRADICALS);
    unsigned int failedOp = 0;
    MolOps::sanitizeMol(*mol, failedOp, sanitizeOps);

    // We want to restore the original MolBlock wedging, but this step may in
    // some cases overwrite the ENDDOWNRIGHT/ENDUPRIGHT info that describes the
    // configuration of double bonds adjacent to stereocenters. We therefore
    // first assign the stereochemistry, and then restore the wedging.
    constexpr bool cleanIt = true;
    constexpr bool force = true;
    constexpr bool flagPossible = true;
    MolOps::assignStereochemistry(*mol, cleanIt, force, flagPossible);
    Chirality::reapplyMolBlockWedging(*mol);
  } catch (MolSanitizeException &) {
    result.append(
        PREPARE_FOR_VALIDATION_ERROR,
        "An error occurred while preparing the molecule for validation.");
  }

  return mol;
}

namespace {
// The error messages from the ValidationMethod classes include some metadata
// in a string prefix that are not particularly useful within the context of
// this Pipeline. The function below removes that prefix.
static const std::regex prefix("^(ERROR|INFO): \\[.+\\] ");
std::string removeErrorPrefix(const std::string &message) {
  return std::regex_replace(message, prefix, "");
}
}  // namespace

RWMOL_SPTR validate(RWMOL_SPTR mol, PipelineResult &result,
                    const PipelineOptions &options) {
  auto applyValidation = [&mol, &result, &options](
                             const ValidationMethod &v,
                             PipelineStatus status) -> bool {
    auto errors = v.validate(*mol, options.reportAllFailures);
    for (const auto &error : errors) {
      result.append(status, removeErrorPrefix(error));
    }
    return errors.empty();
  };

  // check for undesired features in the input molecule (e.g., query
  // atoms/bonds)
  FeaturesValidation featuresValidation(options.allowEnhancedStereo,
                                        options.allowAromaticBondType,
                                        options.allowDativeBondType);
  if (!applyValidation(featuresValidation, FEATURES_VALIDATION_ERROR) &&
      !options.reportAllFailures) {
    return mol;
  }

  // check the number of atoms and valence status
  RDKitValidation rdkitValidation(options.allowEmptyMolecules);
  if (!applyValidation(rdkitValidation, BASIC_VALIDATION_ERROR) &&
      !options.reportAllFailures) {
    return mol;
  }

  // disallow radicals
  DisallowedRadicalValidation radicalValidation;
  if (!applyValidation(radicalValidation, BASIC_VALIDATION_ERROR) &&
      !options.reportAllFailures) {
    return mol;
  }

  // validate the isotopic numbers (if any are specified)
  IsotopeValidation isotopeValidation(true);
  if (!applyValidation(isotopeValidation, BASIC_VALIDATION_ERROR) &&
      !options.reportAllFailures) {
    return mol;
  }

  // verify that the input is a 2D structure
  Is2DValidation is2DValidation(options.is2DZeroThreshold);
  if (!applyValidation(is2DValidation, IS2D_VALIDATION_ERROR) &&
      !options.reportAllFailures) {
    return mol;
  }

  // validate the 2D layout (check for clashing atoms and abnormally long bonds)
  Layout2DValidation layout2DValidation(
      options.atomClashLimit, options.bondLengthLimit,
      options.allowLongBondsInRings, options.allowAtomBondClashExemption,
      options.minMedianBondLength);
  if (!applyValidation(layout2DValidation, LAYOUT2D_VALIDATION_ERROR) &&
      !options.reportAllFailures) {
    return mol;
  }

  // verify that the specified stereochemistry is formally correct
  StereoValidation stereoValidation;
  if (!applyValidation(stereoValidation, STEREO_VALIDATION_ERROR) &&
      !options.reportAllFailures) {
    return mol;
  }

  return mol;
}

RWMOL_SPTR prepareForStandardization(RWMOL_SPTR mol, PipelineResult &result,
                                     const PipelineOptions &) {
  // Prepare the mol for standardization.

  try {
    MolOps::sanitizeMol(*mol);
  } catch (MolSanitizeException &) {
    result.append(
        PREPARE_FOR_STANDARDIZATION_ERROR,
        "An error occurred while preparing the molecule for standardization.");
  }

  return mol;
}

RWMOL_SPTR standardize(RWMOL_SPTR mol, PipelineResult &result,
                       const PipelineOptions &options) {
  auto smiles = MolToSmiles(*mol);
  auto reference = smiles;

  // bonding to metals
  try {
    MetalDisconnectorOptions mdOpts;
    MetalDisconnector metalDisconnector(mdOpts);
    std::unique_ptr<ROMol> metalNof{SmartsToMol(options.metalNof)};
    metalDisconnector.setMetalNof(*metalNof);
    std::unique_ptr<ROMol> metalNon{SmartsToMol(options.metalNon)};
    metalDisconnector.setMetalNon(*metalNon);
    metalDisconnector.disconnectInPlace(*mol);
  } catch (...) {
    result.append(
        METAL_STANDARDIZATION_ERROR,
        "An error occurred while processing the bonding of metal species.");
    return mol;
  }

  smiles = MolToSmiles(*mol);
  if (smiles != reference) {
    result.append(METALS_DISCONNECTED,
                  "One or more metal atoms were disconnected.");
  }
  reference = smiles;

  // functional groups
  try {
    std::unique_ptr<Normalizer> normalizer{};
    if (options.normalizerData.empty()) {
      normalizer.reset(new Normalizer);
    } else {
      std::istringstream sstr(options.normalizerData);
      normalizer.reset(new Normalizer(sstr, options.normalizerMaxRestarts));
    }
    // normalizeInPlace() may return an ill-formed molecule if
    // the sanitization of a transformed structure failed
    // => use normalize() instead (also see GitHub #7189)
    mol.reset(static_cast<RWMol *>(normalizer->normalize(*mol)));
    mol->updatePropertyCache(false);
  } catch (...) {
    result.append(
        NORMALIZER_STANDARDIZATION_ERROR,
        "An error occurred while normalizing the representation of some functional groups");
    return mol;
  }

  smiles = MolToSmiles(*mol);
  if (smiles != reference) {
    result.append(NORMALIZATION_APPLIED,
                  "The representation of some functional groups was adjusted.");
  }
  reference = smiles;

  // keep the largest fragment
  try {
    LargestFragmentChooser fragmentChooser;
    fragmentChooser.chooseInPlace(*mol);
  } catch (...) {
    result.append(
        FRAGMENT_STANDARDIZATION_ERROR,
        "An error occurred while removing the disconnected fragments");
    return mol;
  }

  smiles = MolToSmiles(*mol);
  if (smiles != reference) {
    result.append(
        FRAGMENTS_REMOVED,
        "One or more disconnected fragments (e.g., counterions) were removed.");
  }

  // The stereochemistry is not assigned until after we are done modifying the
  // molecular graph:
  constexpr bool cleanIt = true;
  constexpr bool force = true;
  constexpr bool flagPossible = true;
  MolOps::assignStereochemistry(*mol, cleanIt, force, flagPossible);

  return mol;
}

RWMOL_SPTR reapplyWedging(RWMOL_SPTR mol, PipelineResult &result,
                          const PipelineOptions &) {
  // in general, we want to restore the bond wedging from the input molblock,
  // but we prefer to not use any wavy bonds, because of their ambiguity
  // in some configurations.

  // we therefore proceed in two steps, we first reapply the molblock wedging
  // and then revert the changes related to double bonds with undefined/unknown
  // stereochemistry and change single bonds with "unknown" direction into plain
  // single bonds.

  // in order to do so, we need to keep track of the current bond configuration
  // settings.
  using BondInfo = std::tuple<Bond::BondType, Bond::BondDir, Bond::BondStereo>;
  std::map<unsigned int, BondInfo> oldBonds;
  for (auto bond : mol->bonds()) {
    oldBonds[bond->getIdx()] = {bond->getBondType(), bond->getBondDir(),
                                bond->getStereo()};
  }

  // 1) restore the original wedging from the input MolBlock
  Chirality::reapplyMolBlockWedging(*mol);

  // 2) revert the changes related to double bonds with stereo type "either":
  //    restore the STEREOANY direction of double bonds that have a substituent
  //    with direction UNKNOWN and are now STEREONONE
  for (auto bond : mol->bonds()) {
    if (bond->getBondType() != Bond::DOUBLE) {
      continue;
    }
    Bond::BondStereo oldStereo = std::get<2>(oldBonds[bond->getIdx()]);
    Bond::BondStereo newStereo = bond->getStereo();
    bool hasAdjacentWavy{false};
    for (auto atom : {bond->getBeginAtom(), bond->getEndAtom()}) {
      for (auto adjacentBond : mol->atomBonds(atom)) {
        if (adjacentBond == bond) {
          continue;
        }
        if (adjacentBond->getBondDir() == Bond::UNKNOWN) {
          hasAdjacentWavy = true;
        }
      }
    }
    if (hasAdjacentWavy && oldStereo == Bond::STEREOANY &&
        newStereo == Bond::STEREONONE) {
      bond->setStereo(Bond::STEREOANY);
      result.append(
          NORMALIZATION_APPLIED,
          "Double bond " + std::to_string(bond->getIdx()) +
              " was assigned an undefined/unknown stereochemical configuration");
    }
  }

  // 3) set the bond direction to NONE for bonds with direction UNKNOWN
  for (auto bond : mol->bonds()) {
    if (bond->getBondDir() != Bond::UNKNOWN) {
      continue;
    }
    bond->setBondDir(Bond::NONE);
    result.append(NORMALIZATION_APPLIED, "The \"wavy\" style of bond " +
                                             std::to_string(bond->getIdx()) +
                                             " was removed");
  }

  return mol;
}

RWMOL_SPTR cleanup2D(RWMOL_SPTR mol, PipelineResult & /*result*/,
                     const PipelineOptions &options) {
  // scale the atoms coordinates
  // and make sure that z coords are set to 0 (some z coords may be non-null
  // albeit smaller than the validation threshold - these noisy coords may in
  // some cases also interfere with the perception of stereochemistry by some
  // tools e.g., inchi)
  if (options.scaledMedianBondLength > 0. && mol->getNumConformers()) {
    auto &conf = mol->getConformer();
    double medianBondLength =
        sqrt(Layout2DValidation::squaredMedianBondLength(*mol, conf));
    if (medianBondLength > options.minMedianBondLength) {
      double scaleFactor = options.scaledMedianBondLength / medianBondLength;
      unsigned int natoms = conf.getNumAtoms();
      for (unsigned int i = 0; i < natoms; ++i) {
        auto pos = conf.getAtomPos(i) * scaleFactor;
        pos.z = 0.;
        conf.setAtomPos(i, pos);
      }
    }
  }

  return mol;
}

namespace {
void replaceDativeBonds(RWMOL_SPTR mol) {
  bool modified{false};
  for (auto bond : mol->bonds()) {
    if (bond->getBondType() != Bond::BondType::DATIVE) {
      continue;
    }
    auto donor = bond->getBeginAtom();
    donor->setFormalCharge(donor->getFormalCharge() + 1);
    auto acceptor = bond->getEndAtom();
    acceptor->setFormalCharge(acceptor->getFormalCharge() - 1);
    bond->setBondType(Bond::BondType::SINGLE);
    modified = true;
  }
  if (modified) {
    mol->updatePropertyCache(false);
  }
}

void removeHsAtProtonatedSites(RWMOL_SPTR mol) {
  boost::dynamic_bitset<> protons{mol->getNumAtoms(), 0};
  for (auto atom : mol->atoms()) {
    if (atom->getAtomicNum() != 1 || atom->getDegree() != 1) {
      continue;
    }
    for (auto neighbor : mol->atomNeighbors(atom)) {
      if (neighbor->getFormalCharge() > 0) {
        protons.set(atom->getIdx());
      }
    }
  }
  if (protons.any()) {
    for (int idx = mol->getNumAtoms() - 1; idx >= 0; --idx) {
      if (!protons[idx]) {
        continue;
      }
      auto atom = mol->getAtomWithIdx(idx);
      for (auto bond : mol->atomBonds(atom)) {
        auto neighbor = bond->getOtherAtom(atom);
        neighbor->setNumExplicitHs(neighbor->getNumExplicitHs() + 1);
        break;  // there are no other bonds anyways
      }
      mol->removeAtom(atom);
    }
    mol->updatePropertyCache(false);
  }
}
}  // namespace

RWMOL_SPTR_PAIR makeParent(RWMOL_SPTR mol, PipelineResult &result,
                           const PipelineOptions &) {
  auto reference = MolToSmiles(*mol);

  RWMOL_SPTR parent{new RWMol(*mol)};

  // A "parent" structure is constructed here, in order to provide a
  // representation of the original input that may be more suitable for
  // identification purposes even though it may not reflect the most stable
  // physical state or nicest representation for the compound.
  //
  // The two steps that are currently implemented for this procedure consist in
  // normalizing the overall charge status and replacing any explicit dative
  // bonds.
  //
  // If the input was submitted in an unsuitable protonation status, the
  // neutralized parent structure may become the actual output from the
  // standardization.

  // overall charge status
  try {
    // The Uncharger implementation wouldn't identify the positively
    // charged sites with adjacent explicit Hs correctly (it's a quite
    // unlikely configuration, but potentially possible considering that
    // the pipeline operates on unsanitized input).
    //
    // If present, these Hs are therefore removed from the molecular graph
    // prior to neutralization.
    removeHsAtProtonatedSites(parent);

    static const bool canonicalOrdering = false;
    static const bool force = true;
    static const bool protonationOnly = true;
    Uncharger uncharger(canonicalOrdering, force, protonationOnly);
    uncharger.unchargeInPlace(*parent);
  } catch (...) {
    result.append(
        CHARGE_STANDARDIZATION_ERROR,
        "An error occurred while normalizing the compound's charge status");
    return {{}, {}};
  }

  // Check if `mol` was submitted in a suitable ionization state
  int parentCharge{};
  for (auto atom : parent->atoms()) {
    parentCharge += atom->getFormalCharge();
  }

  int molCharge{};
  for (auto atom : mol->atoms()) {
    molCharge += atom->getFormalCharge();
  }

  // If mol is neutral or in a protonation state that partially or fully
  // balances the non-neutralizable charged sites in the parent structure,
  // then mol is accepted. Otherwise, it is replaced by its parent.
  if ((molCharge > 0 && molCharge > parentCharge) ||
      (molCharge < 0 && molCharge < parentCharge)) {
    mol = parent;
  }

  auto smiles = MolToSmiles(*mol);
  if (smiles != reference) {
    result.append(PROTONATION_CHANGED, "The protonation state was adjusted.");
  }
  reference = smiles;

  // normalize the dative bonds
  replaceDativeBonds(parent);

  return {mol, parent};
}
}  // namespace Operations

}  // namespace MolStandardize
}  // namespace RDKit