File: Validate.cpp

package info (click to toggle)
rdkit 202503.1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 578; xml: 229; fortran: 183; sh: 105
file content (1012 lines) | stat: -rw-r--r-- 34,278 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
//
//  Copyright (C) 2018 Susan H. Leung
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "Validate.h"
#include "Fragment.h"
#include <GraphMol/RDKitBase.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/QueryOps.h>
#include <GraphMol/MolStandardize/FragmentCatalog/FragmentCatalogParams.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/PeriodicTable.h>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <utility>
#include <vector>

#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>

namespace RDKit {
class RWMol;
class ROMol;

namespace MolStandardize {

std::vector<ValidationErrorInfo> CompositeValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;
  for (const auto &method : validations) {
    auto partial = method->validate(mol, reportAllFailures);
    if (!partial.empty()) {
      std::copy(partial.begin(), partial.end(), std::back_inserter(errors));
      if (!reportAllFailures) {
        break;
      }
    }
  }
  return errors;
}

std::vector<ValidationErrorInfo> RDKitValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  ROMol molCopy = mol;
  std::vector<ValidationErrorInfo> errors;

  unsigned int na = mol.getNumAtoms();

  if (!na && !allowEmptyMolecules) {
    errors.emplace_back("ERROR: [NoAtomValidation] Molecule has no atoms");
  }

  // loop over atoms
  for (size_t i = 0; i < na; ++i) {
    if (!reportAllFailures) {
      if (errors.size() >= 1) {
        break;
      }
    }
    Atom *atom = molCopy.getAtomWithIdx(i);
    try {
      atom->calcExplicitValence();
    } catch (const MolSanitizeException &e) {
      errors.push_back("INFO: [ValenceValidation] " + std::string(e.what()));
    }
  }
  return errors;
}

std::vector<ValidationErrorInfo> NoAtomValidation::validate(
    const ROMol &mol, bool /*reportAllFailures*/) const {
  std::vector<ValidationErrorInfo> errors;
  unsigned int na = mol.getNumAtoms();
  if (!na) {
    errors.emplace_back("ERROR: [NoAtomValidation] Molecule has no atoms");
  }
  return errors;
}

std::vector<ValidationErrorInfo> FragmentValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;
  // REVIEW: reportAllFailures is not being used here. is that correct?
  RDUNUSED_PARAM(reportAllFailures);
  std::shared_ptr<FragmentCatalogParams> fparams(new FragmentCatalogParams(""));
  FragmentCatalog fcat(fparams.get());

  const std::vector<std::shared_ptr<ROMol>> &fgrps = fparams->getFuncGroups();
  INT_VECT mapping;
  VECT_INT_VECT atom_mapping;
  std::vector<ROMOL_SPTR> frags =
      MolOps::getMolFrags(mol, true, &mapping, &atom_mapping);

  for (auto &fgrp : fgrps) {
    std::string fname;
    fgrp->getProp(common_properties::_Name, fname);
    std::vector<RDKit::MatchVectType> res;
    unsigned int matches = SubstructMatch(mol, *fgrp, res);
    //		std::cout << fname << " matches " << matches << std::endl;
    if (matches != 0 && frags.size() != 0) {
      VECT_INT_VECT substructmap;  // store idxs of frag from substructmatch
      for (const auto &match : res) {
        std::vector<int> vec;
        for (const auto &pair : match) {
          vec.push_back(pair.second);
        }
        substructmap.push_back(vec);
      }

      // to stop the same fragment being reported many times if present
      // multiple times in molecule
      bool fpresent = false;

      for (auto &molfragidx : atom_mapping) {
        std::sort(molfragidx.begin(), molfragidx.end());
        for (auto &substructidx : substructmap) {
          std::sort(substructidx.begin(), substructidx.end());
          //					// help to debug...
          //					std::cout << "molfragidx: "  <<
          // std::endl; 					for (const auto
          // &i : molfragidx)
          // {
          // std::cout << i; }; std::cout
          // << std::endl; std::cout <<
          //"substructidx: "  << std::endl;
          // for (const auto &i : substructidx) { std::cout << i; };
          // std::cout <<
          // std::endl;
          //					//
          if ((molfragidx == substructidx) && !fpresent) {
            std::string msg = fname + " is present";
            errors.push_back("INFO: [FragmentValidation] " + msg);
            fpresent = true;
          }
        }
      }
    }
  }
  return errors;
}

std::vector<ValidationErrorInfo> NeutralValidation::validate(
    const ROMol &mol, bool /*reportAllFailures*/) const {
  std::vector<ValidationErrorInfo> errors;
  int charge = RDKit::MolOps::getFormalCharge(mol);
  if (charge != 0) {
    std::string charge_str;
    if (charge > 0) {
      charge_str = "+" + std::to_string(charge);
    } else {
      charge_str = std::to_string(charge);
    }
    std::string msg = "Not an overall neutral system (" + charge_str + ')';
    errors.push_back("INFO: [NeutralValidation] " + msg);
  }
  return errors;
}

std::vector<ValidationErrorInfo> IsotopeValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;
  for (auto atom : mol.atoms()) {
    unsigned int isotope = atom->getIsotope();
    if (isotope == 0) {
      continue;
    }

    std::string symbol = atom->getSymbol();
    unsigned int atomicNum = atom->getAtomicNum();
    if (atomicNum && strict) {
      PeriodicTable *periodicTable = PeriodicTable::getTable();
      double mass = periodicTable->getMassForIsotope(atomicNum, isotope);
      if (mass == 0.0) {
        errors.push_back(
            "ERROR: [IsotopeValidation] The molecule contains an unknown isotope: " +
            std::to_string(isotope) + symbol);
      }
    } else {
      errors.push_back("INFO: [IsotopeValidation] Molecule contains isotope " +
                       std::to_string(isotope) + symbol);
    }

    if (!errors.empty() && !reportAllFailures) {
      break;
    }
  }
  return errors;
}

// constructor
MolVSValidation::MolVSValidation()
    : CompositeValidation({std::make_shared<NoAtomValidation>(),
                           std::make_shared<FragmentValidation>(),
                           std::make_shared<NeutralValidation>(),
                           std::make_shared<IsotopeValidation>()}) {}

// overloaded constructor
MolVSValidation::MolVSValidation(
    const std::vector<std::shared_ptr<ValidationMethod>> &validations)
    : CompositeValidation(validations) {}

std::vector<ValidationErrorInfo> AllowedAtomsValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;
  unsigned int na = mol.getNumAtoms();

  for (size_t i = 0; i < na; ++i) {
    if (!reportAllFailures) {
      if (errors.size() >= 1) {
        break;
      }
    }
    const Atom *qatom = mol.getAtomWithIdx(i);
    bool match = false;
    // checks to see qatom matches one of list of allowedAtoms
    for (const auto &allowedAtom : this->d_allowedList) {
      if (allowedAtom->Match(qatom)) {
        match = true;
        break;
      }
    }
    // if no match, append to list of errors.
    if (!match) {
      std::string symbol = qatom->getSymbol();
      errors.push_back("INFO: [AllowedAtomsValidation] Atom " + symbol +
                       " is not in allowedAtoms list");
    }
  }
  return errors;
}

std::vector<ValidationErrorInfo> DisallowedAtomsValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;
  unsigned int na = mol.getNumAtoms();

  for (size_t i = 0; i < na; ++i) {
    if (!reportAllFailures) {
      if (errors.size() >= 1) {
        break;
      }
    }
    const Atom *qatom = mol.getAtomWithIdx(i);
    bool match = false;
    // checks to see qatom matches one of list of allowedAtoms
    for (const auto &disallowedAtom : this->d_disallowedList) {
      if (disallowedAtom->Match(qatom)) {
        match = true;
      }
    }
    // if no match, append to list of errors.
    if (match) {
      std::string symbol = qatom->getSymbol();
      errors.push_back("INFO: [DisallowedAtomsValidation] Atom " + symbol +
                       " is in disallowedAtoms list");
    }
  }
  return errors;
}

std::vector<ValidationErrorInfo> DisallowedRadicalValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;

  for (auto atom : mol.atoms()) {
    unsigned int numRadicalElectrons = atom->getNumRadicalElectrons();
    if (numRadicalElectrons == 0) {
      continue;
    }
    unsigned int atomicNum = atom->getAtomicNum();
    unsigned int degree = atom->getDegree();
    if ((atomicNum == 7 || atomicNum == 8) && numRadicalElectrons == 1 &&
        degree == 1) {
      unsigned int neighborAtomicNum = 0;
      Bond::BondType bondType = Bond::BondType::UNSPECIFIED;
      for (auto neighbor : mol.atomNeighbors(atom)) {
        // only one iteration is performed, because degree == 1
        neighborAtomicNum = neighbor->getAtomicNum();
        bondType = mol.getBondBetweenAtoms(atom->getIdx(), neighbor->getIdx())
                       ->getBondType();
      }
      if (atomicNum == 7 && neighborAtomicNum == 8 &&
          bondType == Bond::BondType::DOUBLE) {
        // nitric oxide
        continue;
      }
      if (atomicNum == 8 && neighborAtomicNum == 7 &&
          bondType == Bond::BondType::SINGLE) {
        // aminoxyl
        continue;
      }
    }
    errors.push_back(
        "ERROR: [DisallowedRadicalValidation] The radical at atom " +
        std::to_string(atom->getIdx()) + " is not allowed");
    if (!reportAllFailures) {
      break;
    }
  }
  return errors;
}

std::vector<ValidationErrorInfo> FeaturesValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;

  // Optionally disallow query and dummy atoms, and aliases
  for (auto atom : mol.atoms()) {
    if (!allowQueries && atom->hasQuery()) {
      errors.push_back("ERROR: [FeaturesValidation] Query atom " +
                       std::to_string(atom->getIdx()) + " is not allowed");
      if (!reportAllFailures) {
        return errors;
      }
    } else if (!allowDummies && isAtomDummy(atom)) {
      errors.push_back("ERROR: [FeaturesValidation] Dummy atom " +
                       std::to_string(atom->getIdx()) + " is not allowed");
      if (!reportAllFailures) {
        return errors;
      }
    }

    if (!allowAtomAliases && atom->hasProp(common_properties::molFileAlias)) {
      errors.push_back(
          "ERROR: [FeaturesValidation] Atom " + std::to_string(atom->getIdx()) +
          " with alias '" +
          atom->getProp<std::string>(common_properties::molFileAlias) +
          "' is not allowed");
      if (!reportAllFailures) {
        return errors;
      }
    }
  }

  // Optionally disallow query, aromatic or dative bonds
  for (auto bond : mol.bonds()) {
    if (!allowQueries && bond->hasQuery()) {
      errors.push_back("ERROR: [FeaturesValidation] Query bond " +
                       std::to_string(bond->getIdx()) + " is not allowed");
      if (!reportAllFailures) {
        return errors;
      }
    }
    if (!allowAromaticBondType &&
        bond->getBondType() == Bond::BondType::AROMATIC) {
      errors.push_back("ERROR: [FeaturesValidation] Bond " +
                       std::to_string(bond->getIdx()) +
                       " of aromatic type is not allowed");
      if (!reportAllFailures) {
        return errors;
      }
    }
    if (!allowDativeBondType && bond->getBondType() == Bond::BondType::DATIVE) {
      errors.push_back("ERROR: [FeaturesValidation] Bond " +
                       std::to_string(bond->getIdx()) +
                       " of dative type is not allowed");
      if (!reportAllFailures) {
        return errors;
      }
    }
  }

  // Optionally disallow using the enahanced stereochemistry
  if (!allowEnhancedStereo && mol.getStereoGroups().size()) {
    errors.emplace_back(
        "ERROR: [FeaturesValidation] Enhanced stereochemistry features are not allowed");
  }

  return errors;
}

std::vector<ValidationErrorInfo> Is2DValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;

  if (!mol.getNumConformers()) {
    errors.emplace_back(
        "ERROR: [Is2DValidation] The molecule has no coordinates");
    return errors;
  }

  const auto &conf = mol.getConformer();

  if (conf.is3D()) {
    errors.emplace_back(
        "ERROR: [Is2DValidation] The molecule includes non-null Z coordinates");
    return errors;
  }

  // conf.is3D() is assigned by the mol format parser based on the input
  // mol block designation, but also taking into account the presence of
  // non-null Z coordinates or stereobonds.
  //
  // the following test is in this sense probably redundant, but it's still
  // implemented in case molecules are built by other means.

  double max_absz{};
  for (const auto &p : conf.getPositions()) {
    max_absz = std::max(std::abs(p.z), max_absz);
  }

  if (max_absz > threshold) {
    errors.emplace_back(
        "ERROR: [Is2DValidation] The molecule includes non-null Z coordinates");
    if (!reportAllFailures) {
      return errors;
    }
  }

  if (conf.getNumAtoms() < 2) {
    // there is nothing else to check here, if there is at most one atom.
    return errors;
  }

  // verify that the atoms are not all in the same position (this often happens
  // because no coordinates were assigned and all atoms appear to be placed in
  // the origin)

  double min_x = std::numeric_limits<double>::max();
  double max_x = std::numeric_limits<double>::min();
  double min_y = std::numeric_limits<double>::max();
  double max_y = std::numeric_limits<double>::min();
  for (const auto &p : conf.getPositions()) {
    min_x = std::min(p.x, min_x);
    max_x = std::max(p.x, max_x);
    min_y = std::min(p.y, min_y);
    max_y = std::max(p.y, max_y);
  }
  auto delta_x = max_x - min_x;
  auto delta_y = max_y - min_y;
  auto max_delta = std::max(delta_x, delta_y);

  if (max_delta < threshold) {
    errors.emplace_back(
        "ERROR: [Is2DValidation] All atoms have the same (x,y) coordinates");
    if (!reportAllFailures) {
      return errors;
    }
  }

  return errors;
}

double Layout2DValidation::squaredMedianBondLength(const ROMol &mol,
                                                   const Conformer &conf) {
  // Compute the squared value of the median bond length, but exclude the bonds
  // of null length.
  double median = 0.0;
  unsigned int numBonds = mol.getNumBonds();
  if (numBonds) {
    std::vector<double> values;
    values.reserve(numBonds);
    for (const auto &bond : mol.bonds()) {
      const auto &p1 = conf.getAtomPos(bond->getBeginAtomIdx());
      const auto &p2 = conf.getAtomPos(bond->getEndAtomIdx());
      auto value = (p1 - p2).lengthSq();
      if (value > 0.) {
        values.push_back(value);
      }
    }
    if (!values.empty()) {
      std::sort(values.begin(), values.end());
      numBonds = values.size();
      if (numBonds % 2) {
        median = values[numBonds / 2];
      } else {
        median = 0.5 * (values[numBonds / 2 - 1] + values[numBonds / 2]);
      }
    }
  }
  return median;
}

std::vector<ValidationErrorInfo> Layout2DValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;

  if (!mol.getNumConformers()) {
    errors.emplace_back(
        "ERROR: [Layout2DValidation] The molecule has no coordinates");
    return errors;
  }

  const auto &conf = mol.getConformer();
  unsigned int natoms = conf.getNumAtoms();

  if (natoms < 2) {
    // there is nothing to check here, if there is only one atom.
    return errors;
  }

  // compute threshold values for the squared atom-atom or atom-bond
  // distance and for the maximum bond length using the median squared
  // bond length as reference.
  auto reference = squaredMedianBondLength(mol, conf);
  if (reference < minMedianBondLength * minMedianBondLength) {
    errors.emplace_back(
        "ERROR: [Layout2DValidation] The median bond length is smaller than the configured limit");
    if (!reportAllFailures) {
      return errors;
    }
  }

  // check for atoms clashing w/ other atoms
  auto atomClashThreshold = clashLimit * clashLimit * reference;
  for (unsigned int i = 0; i < natoms - 1; ++i) {
    const auto &pi = conf.getAtomPos(i);
    for (unsigned int j = i + 1; j < natoms; ++j) {
      const auto &pj = conf.getAtomPos(j);
      auto d2 = (pi - pj).lengthSq();
      if (d2 < atomClashThreshold) {
        errors.push_back("ERROR: [Layout2DValidation] Atom " +
                         std::to_string(i) + " is too close to atom " +
                         std::to_string(j));
        if (!reportAllFailures) {
          return errors;
        }
      }
    }
  }

  // make sure we have the required rings info available
  if (allowLongBondsInRings || allowAtomBondClashExemption) {
    if (!mol.getRingInfo()->isInitialized()) {
      RDKit::MolOps::fastFindRings(mol);
    }
  }

  for (auto bond : mol.bonds()) {
    unsigned int i = bond->getBeginAtomIdx();
    const auto &pi = conf.getAtomPos(i);
    unsigned int j = bond->getEndAtomIdx();
    const auto &pj = conf.getAtomPos(j);

    auto ll = (pi - pj).lengthSq();

    // check for exceedingly long bonds
    auto bondLengthThreshold = bondLengthLimit * bondLengthLimit * reference;
    if (!allowLongBondsInRings ||
        mol.getRingInfo()->numBondRings(bond->getIdx()) == 0) {
      if (ll > bondLengthThreshold) {
        errors.push_back("ERROR: [Layout2DValidation] The length of bond " +
                         std::to_string(bond->getIdx()) + " between atoms " +
                         std::to_string(i) + " and " + std::to_string(j) +
                         " exceeds a configured limit");
        if (!reportAllFailures) {
          return errors;
        }
      }
    }

    if (allowAtomBondClashExemption) {
      // is this bond exempted from atom-bond collision detection?
      if ((ll > 5. * 5. * reference) &&
          mol.getRingInfo()->numBondRings(bond->getIdx()) != 0) {
        continue;
      }
    }

    // check for atoms clashing with this bond
    for (unsigned int k = 0; k < natoms; ++k) {
      if (k == i || k == j) {
        continue;
      }
      const auto &pk = conf.getAtomPos(k);
      /*
               k
              /
            r/
            /
           /
          i---------------j
                  b
       */
      auto vik = pk - pi;
      auto vij = pj - pi;
      auto rr = vik.lengthSq();
      auto bb = vij.lengthSq();
      auto rb = vik.dotProduct(vij);
      static constexpr double EPS{
          1.e-7};  // prevent dividing by zero in extreme cases
      auto kb = (rr * bb - rb * rb) / (bb + EPS);
      if (rb >= 0. &&             /* cos alpha > 0 */
          rb <= bb &&             /* projection of r onto b does not exceed b */
          kb < atomClashThreshold /* distance from bond < limit */
      ) {
        errors.push_back("ERROR: [Layout2DValidation] Atom " +
                         std::to_string(k) + " too close to bond " +
                         std::to_string(bond->getIdx()));
        if (!reportAllFailures) {
          return errors;
        }
      }
    }
  }

  return errors;
}

namespace {
bool hasStereoBond(const ROMol &mol, const Atom *atom) {
  for (auto bond : mol.atomBonds(atom)) {
    if (atom != bond->getBeginAtom()) {
      continue;
    }
    auto bondDir = bond->getBondDir();
    if (bondDir == Bond::BondDir::BEGINDASH ||
        bondDir == Bond::BondDir::BEGINWEDGE ||
        bondDir == Bond::BondDir::UNKNOWN) {
      return true;
    }
  }
  return false;
}

struct BondInfo {
  const Bond *bond = nullptr;
  Bond::BondDir bondDir = Bond::BondDir::NONE;
  double angle = 0.;
};

struct BondDirCount {
  unsigned int wedge = 0;
  unsigned int dash = 0;
  unsigned int unknown = 0;
  unsigned int other = 0;
};

struct NeighborsInfo {
  NeighborsInfo(const ROMol &mol, const Atom *atom);
  std::vector<BondInfo> bonds;
  BondDirCount dirCount;
};

NeighborsInfo::NeighborsInfo(const ROMol &mol, const Atom *atom) {
  for (auto bond : mol.atomBonds(atom)) {
    BondInfo info;
    info.bond = bond;
    if (bond->getBeginAtom() == atom) {
      // do not consider the bond direction
      // settings of bonds that begin from
      // neighboring atoms
      info.bondDir = bond->getBondDir();
    }
    bonds.push_back(info);
  }

  for (const auto &info : bonds) {
    Bond::BondDir dir = info.bondDir;
    switch (dir) {
      case Bond::BondDir::BEGINDASH:
        ++dirCount.dash;
        break;
      case Bond::BondDir::BEGINWEDGE:
        ++dirCount.wedge;
        break;
      case Bond::BondDir::UNKNOWN:
        ++dirCount.unknown;
        break;
      case Bond::BondDir::NONE:
        // ok, bonds with unspecified direction
        // are fine to ignore
      case Bond::ENDUPRIGHT:
      case Bond::ENDDOWNRIGHT:
        // also ignore direction settings that
        // may describe the configuration of an
        // adjacent double bond
        break;
      default:
        ++dirCount.other;
    }
  }

  const auto &conf = mol.getConformer();
  const auto &p = conf.getAtomPos(atom->getIdx());
  const auto bond0 = bonds[0].bond;
  const auto atom0 = bond0->getOtherAtom(atom);
  const auto v0 = conf.getAtomPos(atom0->getIdx()) - p;

  // sort the neighbors based on the angle they form
  // with the first one
  auto degree = bonds.size();
  for (unsigned int n = 1; n < degree; ++n) {
    const auto bondn = bonds[n].bond;
    const auto atomn = bondn->getOtherAtom(atom);
    const auto vn = conf.getAtomPos(atomn->getIdx()) - p;
    bonds[n].angle = v0.signedAngleTo(vn);
  }

  std::sort(
      bonds.begin() + 1, bonds.end(),
      [](const BondInfo &a, const BondInfo &b) { return a.angle < b.angle; });
}

void check3CoordinatedStereo(const ROMol &mol, const Atom *atom,
                             const NeighborsInfo &neighborsInfo,
                             bool /*reportAllFailures*/,
                             std::vector<ValidationErrorInfo> &errors) {
  auto numStereoBonds =
      neighborsInfo.dirCount.dash + neighborsInfo.dirCount.wedge;

  if (numStereoBonds == 1) {
    // identify the stereo bond
    unsigned int i;
    for (i = 0; i < 3; ++i) {
      Bond::BondDir bondDir = neighborsInfo.bonds[i].bondDir;
      if (bondDir == Bond::BondDir::BEGINDASH ||
          bondDir == Bond::BondDir::BEGINWEDGE) {
        break;
      }
    }
    // check for the colinearity of the stereocenter and the other two ligands.
    const auto &conf = mol.getConformer();
    const auto &p = conf.getAtomPos(atom->getIdx());
    const auto atoma =
        neighborsInfo.bonds[(i + 1) % 3].bond->getOtherAtom(atom);
    const auto va = conf.getAtomPos(atoma->getIdx()) - p;
    const auto atomb =
        neighborsInfo.bonds[(i + 2) % 3].bond->getOtherAtom(atom);
    const auto vb = conf.getAtomPos(atomb->getIdx()) - p;

    auto angle = va.angleTo(vb);

    static constexpr auto ANGLE_EPSILON = (M_PI * 5. / 180.);  // 5 degrees
    if (angle < ANGLE_EPSILON || (M_PI - angle) < ANGLE_EPSILON) {
      errors.push_back(
          "ERROR: [StereoValidation] Colinearity of non-stereo bonds at atom " +
          std::to_string(atom->getIdx()));
    }
  } else {
    // configurations with multiple stereo bonds may be formally ambiguous or
    // unambiguos depending on their wedged/dashed direction and relative
    // orientation on the plane. those cases that are formally unambiguous are
    // still most often discouraged or also classified as not acceptable by
    // IUPAC guidelines due to lack of clarity.

    // The AvalonTools' struchk implementation simply doesn't allow multiple
    // stereo bonds on stereo centers with 3 explicit ligands. The validations
    // criteria for this sub-case could be in principle refined, but for now the
    // same policy is implemented.
    errors.push_back("ERROR: [StereoValidation] Atom " +
                     std::to_string(atom->getIdx()) +
                     " has 3 explicit substituents and multiple stereo bonds");
  }
}

void check4CoordinatedStereo(const ROMol &mol, const Atom *atom,
                             const NeighborsInfo &neighborsInfo,
                             bool reportAllFailures,
                             std::vector<ValidationErrorInfo> &errors) {
  if (neighborsInfo.dirCount.dash > 2 || neighborsInfo.dirCount.wedge > 2) {
    // this condition would anyway trigger an "adjacent bonds with like
    // orientation" alert, but this test could be clearer / more explicit.
    errors.push_back("ERROR: [StereoValidation] Atom " +
                     std::to_string(atom->getIdx()) +
                     " has too many stereo bonds with like orientation");
    if (!reportAllFailures) {
      return;
    }
  }

  for (unsigned int i = 0; i < 2; ++i) {
    if ((neighborsInfo.bonds[i].bondDir == Bond::BondDir::BEGINDASH &&
         neighborsInfo.bonds[i + 2].bondDir == Bond::BondDir::BEGINWEDGE) ||
        (neighborsInfo.bonds[i].bondDir == Bond::BondDir::BEGINWEDGE &&
         neighborsInfo.bonds[i + 2].bondDir == Bond::BondDir::BEGINDASH)) {
      errors.push_back(
          "ERROR: [StereoValidation] Atom " + std::to_string(atom->getIdx()) +
          " has opposing stereo bonds with different up/down orientation");
      if (!reportAllFailures) {
        return;
      }
    }
  }

  for (unsigned int i = 0; i < 4; ++i) {
    if ((neighborsInfo.bonds[i].bondDir == Bond::BondDir::BEGINDASH &&
         neighborsInfo.bonds[(i + 1) % 4].bondDir ==
             Bond::BondDir::BEGINDASH) ||
        (neighborsInfo.bonds[i].bondDir == Bond::BondDir::BEGINWEDGE &&
         neighborsInfo.bonds[(i + 1) % 4].bondDir ==
             Bond::BondDir::BEGINWEDGE)) {
      errors.push_back("ERROR: [StereoValidation] Atom " +
                       std::to_string(atom->getIdx()) +
                       " has adjacent stereo bonds with like orientation");
      if (!reportAllFailures) {
        return;
      }
      // it doesn't make sense to output this alert multiple times for the same
      // atom we therefore exit the loop also when reportAllFailures is not set.
      break;
    }
  }

  if (neighborsInfo.dirCount.dash + neighborsInfo.dirCount.wedge == 1) {
    // there is only one wedged/dashed bond. check for 'umbrellas' and
    // other geometric violations. we need the conformation here.
    const auto &conf = mol.getConformer();

    // identify the bond index for the stereo bond with specified direction.
    for (unsigned int i = 0; i < 4; ++i) {
      Bond::BondDir bondDir = neighborsInfo.bonds[i].bondDir;
      if (bondDir == Bond::BondDir::BEGINDASH ||
          bondDir == Bond::BondDir::BEGINWEDGE) {
        // count how many of the other bonds lie on the opposite half-plane,
        // i.e. form an angle > pi/4 with the stereo bond.
        unsigned int opposed = 0;
        const auto &p = conf.getAtomPos(atom->getIdx());
        const auto bondi = neighborsInfo.bonds[i].bond;
        const auto atomi = bondi->getOtherAtom(atom);
        const auto vi = conf.getAtomPos(atomi->getIdx()) - p;
        for (unsigned int j = 0; j < 4; ++j) {
          if (j == i) {
            continue;
          }
          const auto bondj = neighborsInfo.bonds[j].bond;
          const auto atomj = bondj->getOtherAtom(atom);
          const auto vj = conf.getAtomPos(atomj->getIdx()) - p;
          if (vi.angleTo(vj) > 95. * M_PI / 180.) {
            ++opposed;
          }
        }
        if (opposed == 3) {
          errors.push_back(
              "ERROR: [StereoValidation] Atom " +
              std::to_string(atom->getIdx()) +
              " has a potentially ambiguous representation: all non-stereo bonds" +
              " opposite to the only stereo bond");
        }
        if (!reportAllFailures) {
          return;
        }
        // there is only one stereo bond, which means we can exit the
        // outer loop on the first execution of this block.
        break;
      }
    }

    // check for collinearity violations and/or cases where the
    // the middle non-stereo bond is badly positioned (i.e., too short
    // compared to the other two on its sides).
    for (unsigned int i = 0; i < 4; i++) {
      Bond::BondDir bondDir = neighborsInfo.bonds[i].bondDir;
      if (bondDir == Bond::BondDir::BEGINDASH ||
          bondDir == Bond::BondDir::BEGINWEDGE) {
        auto j = (i + 1) % 4;
        auto k = (i + 2) % 4;
        auto l = (i + 3) % 4;
        const auto atomj = neighborsInfo.bonds[j].bond->getOtherAtom(atom);
        const auto atomk = neighborsInfo.bonds[k].bond->getOtherAtom(atom);
        const auto atoml = neighborsInfo.bonds[l].bond->getOtherAtom(atom);
        const auto &pj = conf.getAtomPos(atomj->getIdx());
        const auto &pk = conf.getAtomPos(atomk->getIdx());
        const auto &pl = conf.getAtomPos(atoml->getIdx());
        const auto v1 = pj - pk;
        const auto v2 = pl - pk;
        auto angle = v1.signedAngleTo(v2);
        if (angle < 185. * M_PI / 180.) {
          errors.push_back(
              "ERROR: [StereoValidation] Colinearity or triangle rule violation of "
              "non-stereo bonds at atom " +
              std::to_string(atom->getIdx()) /* +
" due to angle formed by ("  +
std::to_string(atomj->getIdx()+1) + "," +
std::to_string(atomk->getIdx()+1) + "," +
std::to_string(atoml->getIdx()+1) + ")" */
          );
          if (!reportAllFailures) {
            return;
          }
        }
        // there is only one stereo bond, which means we can exit the
        // outer loop on the first execution of this block.
        break;
      }
    }
  }
}

void checkStereo(const ROMol &mol, const Atom *atom, bool reportAllFailures,
                 std::vector<ValidationErrorInfo> &errors) {
  NeighborsInfo neighborsInfo(mol, atom);

  if (neighborsInfo.dirCount.other) {
    errors.push_back(
        "ERROR: [StereoValidation] one or more bonds incident to atom " +
        std::to_string(atom->getIdx()) + " have unexpected direction settings");
    // this is an unlikely condition and it would make little sense to
    // continue the analysis also when reportAllFailures were set.
    return;
  }

  if (neighborsInfo.dirCount.unknown) {
    if (neighborsInfo.dirCount.dash || neighborsInfo.dirCount.wedge) {
      errors.push_back("ERROR: [StereoValidation] Atom " +
                       std::to_string(atom->getIdx()) +
                       " has both unknown and wedged/dashed stereo bonds.");
    }
    // else: if the only stereo bonds have either/unknown direction,
    // we can return here.
    return;
  }

  for (const auto &bondInfo : neighborsInfo.bonds) {
    bool isStereo = bondInfo.bondDir == Bond::BondDir::BEGINDASH ||
                    bondInfo.bondDir == Bond::BondDir::BEGINWEDGE ||
                    bondInfo.bondDir == Bond::BondDir::UNKNOWN;
    if (isStereo && !canHaveDirection(*bondInfo.bond)) {
      errors.push_back("ERROR: [StereoValidation] Bond " +
                       std::to_string(bondInfo.bond->getIdx()) +
                       " has assigned stereo type, but unexpected bond order.");
      if (!reportAllFailures) {
        return;
      }
    }
  }

  // The validation is currently limited to some specific categories of
  // stereocenters
  bool multipleBondFound{}, possibleAllene{};
  for (auto bond : mol.atomBonds(atom)) {
    auto bondType = bond->getBondType();
    if (bondType != Bond::BondType::SINGLE) {
      multipleBondFound = true;
      const Atom *otherAtom = bond->getOtherAtom(atom);
      if (otherAtom->getDegree() == 2) {
        int doubleBondCount{};
        for (auto otherBond : mol.atomBonds(otherAtom)) {
          if (otherBond->getBondType() == Bond::BondType::DOUBLE) {
            ++doubleBondCount;
          }
        }
        if (doubleBondCount == 2) {
          possibleAllene = true;
        }
      }
    }
  }
  auto atomicNum = atom->getAtomicNum();
  if (possibleAllene || (multipleBondFound && atomicNum == 15)) {
    // Allenes and P compounds are not validated at this time.
    return;
  }
  if (multipleBondFound && atomicNum != 16) {
    // A stereo bond was found at an unsaturated atom. This condition used to
    // trigger as error in STRUCHK, but there are valid use cases for it (e.g.,
    // wavy bonds incident to double bonds of undefined/unknown configuration,
    // and atropisomers).
    //
    // Validation of these use cases is not currently implemented.
    return;
  }

  switch (atom->getDegree()) {
    case 1:
    case 2:
      errors.push_back(
          "ERROR: [StereoValidation] Atom " + std::to_string(atom->getIdx()) +
          " has stereo bonds, but less than 3 explicit substituents.");
      break;
    case 3:
      check3CoordinatedStereo(mol, atom, neighborsInfo, reportAllFailures,
                              errors);
      break;
    case 4:
      check4CoordinatedStereo(mol, atom, neighborsInfo, reportAllFailures,
                              errors);
      break;
    default:;
  }
}
}  // namespace

std::vector<ValidationErrorInfo> StereoValidation::validate(
    const ROMol &mol, bool reportAllFailures) const {
  std::vector<ValidationErrorInfo> errors;

  for (auto atom : mol.atoms()) {
    if (hasStereoBond(mol, atom)) {
      checkStereo(mol, atom, reportAllFailures, errors);
    }
    if (!errors.empty() && !reportAllFailures) {
      break;
    }
  }

  return errors;
}

std::vector<ValidationErrorInfo> validateSmiles(const std::string &smiles) {
  RWMOL_SPTR mol(SmilesToMol(smiles));
  if (!mol) {
    std::string message =
        "SMILES Parse Error: syntax error for input: " + smiles;
    throw ValueErrorException(message);
  }

  MolVSValidation vm;
  std::vector<ValidationErrorInfo> errors = vm.validate(*mol, true);

  return errors;
}

}  // namespace MolStandardize
}  // namespace RDKit