File: testCharge.cpp

package info (click to toggle)
rdkit 202503.1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 578; xml: 229; fortran: 183; sh: 105
file content (489 lines) | stat: -rw-r--r-- 18,199 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
//
//  Copyright (C) 2018 Susan H. Leung
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <RDGeneral/test.h>
#include "MolStandardize.h"
#include <GraphMol/MolStandardize/AcidBaseCatalog/AcidBaseCatalogParams.h>
#include <GraphMol/MolStandardize/AcidBaseCatalog/AcidBaseCatalogUtils.h>
#include "Charge.h"
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/FileParsers/FileParsers.h>

using namespace RDKit;
using namespace MolStandardize;

void testReionizer() {
  BOOST_LOG(rdDebugLog) << "-----------------------\n test reionizer"
                        << std::endl;

  std::string smi1, smi2, smi3, smi4, smi5, smi6, smi7;

  Reionizer reionizer;

  // Test table salt.
  smi1 = "[Na].[Cl]";
  std::shared_ptr<ROMol> m1(SmilesToMol(smi1));
  ROMOL_SPTR reionized(reionizer.reionize(*m1));
  TEST_ASSERT(MolToSmiles(*reionized) == "[Cl-].[Na+]");

  // Test forced charge correction maintaining overall neutral charge.
  smi2 = "[Na].O=C(O)c1ccccc1";
  std::shared_ptr<ROMol> m2(SmilesToMol(smi2));
  ROMOL_SPTR reionized2(reionizer.reionize(*m2));
  TEST_ASSERT(MolToSmiles(*reionized2) == "O=C([O-])c1ccccc1.[Na+]");

  // Test reionizer moves proton to weaker acid.
  smi3 = "C1=C(C=CC(=C1)[S]([O-])=O)[S](O)(=O)=O";
  std::shared_ptr<ROMol> m3(SmilesToMol(smi3));
  ROMOL_SPTR reionized3(reionizer.reionize(*m3));
  TEST_ASSERT(MolToSmiles(*reionized3) == "O=S(O)c1ccc(S(=O)(=O)[O-])cc1");

  // Test reionizer moves proton to weaker acid.
  smi5 = "C1=C(C=CC(=C1)[S]([O-])=O)[S](O)(=O)=O";
  std::shared_ptr<ROMol> m5(SmilesToMol(smi5));
  ROMOL_SPTR reionized5(reionizer.reionize(*m5));
  TEST_ASSERT(MolToSmiles(*reionized3) == "O=S(O)c1ccc(S(=O)(=O)[O-])cc1");

  // Test charged carbon doesn't get recognised as alpha-carbon-hydrogen-keto.
  smi6 = "CCOC(=O)C(=O)[CH-]C#N";
  std::shared_ptr<ROMol> m6(SmilesToMol(smi6));
  ROMOL_SPTR reionized6(reionizer.reionize(*m6));
  TEST_ASSERT(MolToSmiles(*reionized6) == "CCOC(=O)C(=O)[CH-]C#N");

  // TODO... can't make this work. Python SanitizeMol looks to correct...
  // what is different with MolOps::sanitizeMol?
  smi7 = "C[N+]1=C[CH-]N(C(=N)N)/C1=C/[N+](=O)[O-]";
  std::shared_ptr<ROMol> m7(SmilesToMol(smi7));
  ROMOL_SPTR reionized7(reionizer.reionize(*m7));
  TEST_ASSERT(MolToSmiles(*reionized7) ==
              "C[N+]1=CCN(C(=N)N)/C1=[C-]/[N+](=O)[O-]");
  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}

void testChargeParent() {
  BOOST_LOG(rdDebugLog) << "-----------------------\n test charge parent"
                        << std::endl;
  MolStandardize::CleanupParameters params;
  // initialize CleanupParameters with preferOrganic=true
  MolStandardize::CleanupParameters params_preferorg;
  params_preferorg.preferOrganic = true;

  // Test neutralization of ionized acids and bases.
  auto m1 = "C(C(=O)[O-])(Cc1n[n-]nn1)(C[NH3+])(C[N+](=O)[O-])"_smiles;
  std::unique_ptr<RWMol> res1(MolStandardize::chargeParent(*m1, params));
  TEST_ASSERT(MolToSmiles(*res1) == "NCC(Cc1nn[nH]n1)(C[N+](=O)[O-])C(=O)O");

  // Test preservation of zwitterion.
  auto m2 = "n(C)1cc[n+]2cccc([O-])c12"_smiles;
  std::unique_ptr<RWMol> res2(MolStandardize::chargeParent(*m2, params));
  TEST_ASSERT(MolToSmiles(*res2) == "Cn1cc[n+]2cccc([O-])c12");

  // Choline should be left with a positive charge.
  auto m3 = "C[N+](C)(C)CCO"_smiles;
  std::unique_ptr<RWMol> res3(MolStandardize::chargeParent(*m3, params));
  TEST_ASSERT(MolToSmiles(*res3) == "C[N+](C)(C)CCO");

  // Hydrogen should be removed to give deanol as a charge parent.
  auto m4 = "C[NH+](C)CCO"_smiles;
  std::unique_ptr<RWMol> res4(MolStandardize::chargeParent(*m4, params));
  TEST_ASSERT(MolToSmiles(*res4) == "CN(C)CCO");

  // Sodium benzoate to benzoic acid.
  auto m5 = "[Na+].O=C([O-])c1ccccc1"_smiles;
  std::unique_ptr<RWMol> res5(MolStandardize::chargeParent(*m5, params));
  TEST_ASSERT(MolToSmiles(*res5) == "O=C(O)c1ccccc1");

  // Benzoate ion to benzoic acid.
  auto m6 = "O=C([O-])c1ccccc1"_smiles;
  std::unique_ptr<RWMol> res6(MolStandardize::chargeParent(*m6, params));
  TEST_ASSERT(MolToSmiles(*res6) == "O=C(O)c1ccccc1");

  // Charges in histidine should be neutralized.
  auto m7 = "[NH3+]C(Cc1cnc[nH]1)C(=O)[O-]"_smiles;
  std::unique_ptr<RWMol> res7(MolStandardize::chargeParent(*m7, params));
  TEST_ASSERT(MolToSmiles(*res7) == "NC(Cc1cnc[nH]1)C(=O)O");

  //
  auto m8 = "C[NH+](C)(C).[Cl-]"_smiles;
  std::unique_ptr<RWMol> res8(MolStandardize::chargeParent(*m8, params));
  TEST_ASSERT(MolToSmiles(*res8) == "CN(C)C");

  // No organic fragments.
  auto m9 = "[N+](=O)([O-])[O-]"_smiles;
  std::unique_ptr<RWMol> res9(MolStandardize::chargeParent(*m9, params));
  TEST_ASSERT(MolToSmiles(*res9) == "O=[N+]([O-])O");

  // TODO switch prefer_organic=true
  // No organic fragments.
  auto m10 = "[N+](=O)([O-])[O-]"_smiles;
  std::unique_ptr<RWMol> res10(
      MolStandardize::chargeParent(*m10, params_preferorg));
  TEST_ASSERT(MolToSmiles(*res10) == "O=[N+]([O-])O");

  // Larger inorganic fragment should be chosen.
  auto m11 = "[N+](=O)([O-])[O-].[CH2]"_smiles;
  std::unique_ptr<RWMol> res11(MolStandardize::chargeParent(*m11, params));
  TEST_ASSERT(MolToSmiles(*res11) == "O=[N+]([O-])O");

  // TODO prefer_organic=true
  // Smaller organic fragment should be chosen over larger inorganic fragment.
  auto m12 = "[N+](=O)([O-])[O-].[CH2]"_smiles;
  std::unique_ptr<RWMol> res12(
      MolStandardize::chargeParent(*m12, params_preferorg));
  TEST_ASSERT(MolToSmiles(*res12) == "[CH2]");

  // do not completely neutralize zwitterions
  auto m13 = "C[S+](=O)([O-])NC"_smiles;
  std::unique_ptr<RWMol> res13(MolStandardize::chargeParent(*m13, params));
  TEST_ASSERT(MolToSmiles(*res13) == "CN[S+](C)(=O)[O-]");

  // standalone metal ion
  auto m14 = "[Cu+2]"_smiles;
  std::unique_ptr<RWMol> res14(MolStandardize::chargeParent(*m14));
  TEST_ASSERT(MolToSmiles(*res14) == "[Cu+2]");

  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}

void testGithub2144() {
  BOOST_LOG(rdDebugLog) << "-----------------------\n Testing github #2144: "
                           "Error when calling ChargeParent twice"
                        << std::endl;

  {
    // Test neutralization of ionized acids and bases.
    auto m1 = "c1ccccn1"_smiles;
    TEST_ASSERT(m1);
    std::unique_ptr<RWMol> res1(MolStandardize::chargeParent(*m1));
    TEST_ASSERT(res1);
    TEST_ASSERT(MolToSmiles(*res1) == MolToSmiles(*m1));

    std::unique_ptr<RWMol> res2(MolStandardize::chargeParent(*res1));
    TEST_ASSERT(res2);
    TEST_ASSERT(MolToSmiles(*res2) == MolToSmiles(*m1));
  }
  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}

void testGithub2346() {
  BOOST_LOG(rdDebugLog) << "-----------------------\n Testing github #2346: "
                           "uncharger behaves differently on molecules "
                           "constructed from mol blocks and SMILES"
                        << std::endl;

  {
    auto m1 = "[NH3+]CC[O-]"_smiles;
    TEST_ASSERT(m1);
    MolStandardize::Uncharger uncharger;

    std::unique_ptr<ROMol> res1(uncharger.uncharge(*m1));
    TEST_ASSERT(res1);
    TEST_ASSERT(res1->getAtomWithIdx(0)->getFormalCharge() == 0);
    TEST_ASSERT(res1->getAtomWithIdx(1)->getFormalCharge() == 0);

    std::unique_ptr<ROMol> m2(MolBlockToMol(MolToMolBlock(*m1)));
    TEST_ASSERT(m2);
    std::unique_ptr<ROMol> res2(uncharger.uncharge(*m2));
    TEST_ASSERT(res2);
    TEST_ASSERT(res2->getAtomWithIdx(0)->getFormalCharge() == 0);
    TEST_ASSERT(res2->getAtomWithIdx(1)->getFormalCharge() == 0);
  }
  {
    auto m1 = "[O-]C(=O)C([O-])C(=O)[O-]"_smiles;
    TEST_ASSERT(m1);
    MolStandardize::Uncharger uncharger;

    std::unique_ptr<ROMol> res1(uncharger.uncharge(*m1));
    TEST_ASSERT(res1);
    for (auto &atom : res1->atoms()) {
      TEST_ASSERT(atom->getFormalCharge() == 0);
    }

    std::unique_ptr<ROMol> m2(MolBlockToMol(MolToMolBlock(*m1)));
    TEST_ASSERT(m2);
    std::unique_ptr<ROMol> res2(uncharger.uncharge(*m2));
    TEST_ASSERT(res2);
    for (auto &atom : res2->atoms()) {
      TEST_ASSERT(atom->getFormalCharge() == 0);
    }
  }

  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}

void testChargedAromatics() {
  BOOST_LOG(rdDebugLog)
      << "-----------------------\n Testing charged aromatics: "
         "need to sanitize after using uncharger"
      << std::endl;

  {
    auto cyclopentadienyl = "[cH-]1cccc1"_smiles;
    TEST_ASSERT(cyclopentadienyl);
    MolStandardize::Uncharger uncharger;

    std::unique_ptr<ROMol> res(uncharger.uncharge(*cyclopentadienyl));
    TEST_ASSERT(res.get());
    TEST_ASSERT(MolToSmiles(*res) == "c1cccc1");
    MolOps::sanitizeMol(*static_cast<RWMol *>(res.get()));
    TEST_ASSERT(MolToSmiles(*res) == "C1=CCC=C1");
  }
  {
    auto tropylium = "[cH+]1cccccc1"_smiles;
    TEST_ASSERT(tropylium);
    MolStandardize::Uncharger uncharger;

    std::unique_ptr<ROMol> res(uncharger.uncharge(*tropylium));
    TEST_ASSERT(res.get());
    TEST_ASSERT(MolToSmiles(*res) == "c1cccccc1");
    MolOps::sanitizeMol(*static_cast<RWMol *>(res.get()));
    TEST_ASSERT(MolToSmiles(*res) == "C1=CC=CCC=C1");
  }
  {
    auto azolium = "[NH2+]1C=CC=C1"_smiles;
    TEST_ASSERT(azolium);
    MolStandardize::Uncharger uncharger;

    std::unique_ptr<ROMol> res(uncharger.uncharge(*azolium));
    TEST_ASSERT(res.get());
    TEST_ASSERT(MolToSmiles(*res) == "C1=CNC=C1");
    MolOps::sanitizeMol(*static_cast<RWMol *>(res.get()));
    TEST_ASSERT(MolToSmiles(*res) == "c1cc[nH]c1");
  }

  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}

void testUnchargerProtonationOnly() {
  BOOST_LOG(rdDebugLog)
      << "-----------------------\n Testing removal of formal charges limited to "
         "changing the protonation state (disable the addition/removal of H-)"
      << std::endl;
  {
    // Uncharger options
    bool canonicalOrdering{false};
    bool force;
    bool protonationOnly{true};
    // simple test verifying that for protic compounds the behavior
    // doesn't change if the protonationOnly option is set
    auto m1 = "C[N+](C)(C)CC[O-]"_smiles;
    TEST_ASSERT(m1);
    // with force=false the zwitterion should stay unmodified
    force = false;
    MolStandardize::Uncharger uncharger1(canonicalOrdering, force,
                                         protonationOnly);
    std::unique_ptr<ROMol> res1(uncharger1.uncharge(*m1));
    TEST_ASSERT(res1.get());
    TEST_ASSERT(MolToSmiles(*res1) == "C[N+](C)(C)CC[O-]");
    // with force=true the oxygen should be neutralized
    force = true;
    MolStandardize::Uncharger uncharger2(canonicalOrdering, force,
                                         protonationOnly);
    std::unique_ptr<ROMol> res2(uncharger2.uncharge(*m1));
    TEST_ASSERT(res2.get());
    TEST_ASSERT(MolToSmiles(*res2) == "C[N+](C)(C)CCO");
  }
  {
    // Uncharger options
    bool canonicalOrdering{false};
    bool force{true};
    bool protonationOnly{true};

    auto tropylium = "[cH+]1cccccc1"_smiles;
    TEST_ASSERT(tropylium);
    // try uncharging as much as possible, but only allow
    // protonating/deprotonating.
    MolStandardize::Uncharger uncharger(canonicalOrdering, force,
                                        protonationOnly);
    // tropylium should stay unmodified
    std::unique_ptr<ROMol> res(uncharger.uncharge(*tropylium));
    TEST_ASSERT(res.get());
    TEST_ASSERT(MolToSmiles(*res) == "c1ccc[cH+]cc1");
  }
  {
    // Uncharger options
    bool canonicalOrdering{false};
    bool force{true};
    bool protonationOnly{true};

    auto boronhydride = "[BH4-]"_smiles;
    TEST_ASSERT(boronhydride);
    // try uncharging as much as possible, but only allow
    // protonating/deprotonating.
    MolStandardize::Uncharger uncharger(canonicalOrdering, force,
                                        protonationOnly);
    // boronhydride should stay unmodified
    std::unique_ptr<ROMol> res(uncharger.uncharge(*boronhydride));
    TEST_ASSERT(res.get());
    TEST_ASSERT(MolToSmiles(*res) == "[BH4-]");
  }
  {
    // Uncharger options
    bool canonicalOrdering{false};
    bool force;
    bool protonationOnly{true};

    // Test the neutralization of a zwitterion, where the positive charge is a
    // carbocation and not possible to remove when protonationOnly is enabled
    auto m = "[CH2+]c1ccc([O-])cc1"_smiles;
    TEST_ASSERT(m);

    // with force=false the zwitterion should stay unmodified
    force = false;
    MolStandardize::Uncharger uncharger1(canonicalOrdering, force,
                                         protonationOnly);
    std::unique_ptr<ROMol> res1(uncharger1.uncharge(*m));
    TEST_ASSERT(res1.get());
    TEST_ASSERT(MolToSmiles(*res1) == "[CH2+]c1ccc([O-])cc1");
    // with force=true the oxygen should be neutralized
    force = true;
    MolStandardize::Uncharger uncharger2(canonicalOrdering, force,
                                         protonationOnly);
    std::unique_ptr<ROMol> res2(uncharger2.uncharge(*m));
    TEST_ASSERT(res2.get());
    TEST_ASSERT(MolToSmiles(*res2) == "[CH2+]c1ccc(O)cc1");
  }
  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}

void testInorganicAcids() {
  BOOST_LOG(rdDebugLog) << "-----------------------\n Testing inorganic acids"
                        << std::endl;
  MolStandardize::Uncharger uncharger;
  std::vector<std::string> halogens{"Cl", "Br", "I"};
  std::unique_ptr<ROMol> res;
  for (const auto &halogen : halogens) {
    std::unique_ptr<ROMol> hypohalite(SmilesToMol("[" + halogen + "][O-]"));
    TEST_ASSERT(hypohalite);
    res.reset(uncharger.uncharge(*hypohalite));
    TEST_ASSERT(MolToSmiles(*res) == "O" + halogen);
    std::unique_ptr<ROMol> halite(SmilesToMol("[" + halogen + "](=O)[O-]"));
    TEST_ASSERT(halite);
    res.reset(uncharger.uncharge(*halite));
    TEST_ASSERT(MolToSmiles(*res) == "[O-][" + halogen + "+]O");
    std::unique_ptr<ROMol> halate(SmilesToMol("[" + halogen + "](=O)(=O)[O-]"));
    TEST_ASSERT(halate);
    res.reset(uncharger.uncharge(*halate));
    TEST_ASSERT(MolToSmiles(*res) == "[O-][" + halogen + "+2]([O-])O");
    std::unique_ptr<ROMol> perhalate(
        SmilesToMol("[" + halogen + "](=O)(=O)(=O)[O-]"));
    TEST_ASSERT(perhalate);
    res.reset(uncharger.uncharge(*perhalate));
    TEST_ASSERT(MolToSmiles(*res) == "[O-][" + halogen + "+3]([O-])([O-])O");
    // also test uncharging the already neutralized acid
    std::unique_ptr<ROMol> perhalic_acid(
        SmilesToMol("[" + halogen + "](=O)(=O)(=O)O"));
    TEST_ASSERT(perhalic_acid);
    res.reset(uncharger.uncharge(*perhalic_acid));
    TEST_ASSERT(MolToSmiles(*res) == "[O-][" + halogen + "+3]([O-])([O-])O");
  }
  {
    auto hyponitrite = "[O-]N=N[O-]"_smiles;
    TEST_ASSERT(hyponitrite);
    res.reset(uncharger.uncharge(*hyponitrite));
    TEST_ASSERT(MolToSmiles(*res) == "ON=NO");
  }
  {
    auto nitrite = "N(=O)[O-]"_smiles;
    TEST_ASSERT(nitrite);
    res.reset(uncharger.uncharge(*nitrite));
    TEST_ASSERT(MolToSmiles(*res) == "O=NO");
  }
  {
    auto nitrate = "N(=O)(=O)[O-]"_smiles;
    TEST_ASSERT(nitrate);
    res.reset(uncharger.uncharge(*nitrate));
    TEST_ASSERT(MolToSmiles(*res) == "O=[N+]([O-])O");
  }
  {
    auto hyposulfite = "S([O-])[O-]"_smiles;
    TEST_ASSERT(hyposulfite);
    res.reset(uncharger.uncharge(*hyposulfite));
    TEST_ASSERT(MolToSmiles(*res) == "OSO");
  }
  {
    auto sulfite = "S(=O)([O-])[O-]"_smiles;
    TEST_ASSERT(sulfite);
    res.reset(uncharger.uncharge(*sulfite));
    TEST_ASSERT(MolToSmiles(*res) == "O=S(O)O");
  }
  {
    auto sulfate = "S(=O)(=O)([O-])[O-]"_smiles;
    TEST_ASSERT(sulfate);
    res.reset(uncharger.uncharge(*sulfate));
    TEST_ASSERT(MolToSmiles(*res) == "O=S(=O)(O)O");
  }
  {
    auto persulfate = "S(=O)(=O)([O-])OOS(=O)(=O)[O-]"_smiles;
    TEST_ASSERT(persulfate);
    res.reset(uncharger.uncharge(*persulfate));
    TEST_ASSERT(MolToSmiles(*res) == "O=S(=O)(O)OOS(=O)(=O)O");
  }
  {
    auto hypophosphite = "P(=O)[O-]"_smiles;
    TEST_ASSERT(hypophosphite);
    res.reset(uncharger.uncharge(*hypophosphite));
    TEST_ASSERT(MolToSmiles(*res) == "O=PO");
  }
  {
    auto phosphite = "P(=O)([O-])[O-]"_smiles;
    TEST_ASSERT(phosphite);
    res.reset(uncharger.uncharge(*phosphite));
    TEST_ASSERT(MolToSmiles(*res) == "O=[PH](O)O");
  }
  {
    auto phosphate = "P(=O)([O-])([O-])[O-]"_smiles;
    TEST_ASSERT(phosphate);
    res.reset(uncharger.uncharge(*phosphate));
    TEST_ASSERT(MolToSmiles(*res) == "O=P(O)(O)O");
  }
  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}

void testReionizerParams() {
  BOOST_LOG(rdDebugLog)
      << "-----------------------\n Testing reionizer parameters" << std::endl;
  {  // defaults
    Reionizer reionizer;
    auto m1 = "c1cc([O-])cc(C(=O)O)c1"_smiles;
    std::unique_ptr<ROMol> reionized1{reionizer.reionize(*m1)};
    TEST_ASSERT(MolToSmiles(*reionized1) == "O=C([O-])c1cccc(O)c1");

    auto m2 = "C1=C(C=CC(=C1)[S]([O-])=O)[S](O)(=O)=O"_smiles;
    std::unique_ptr<ROMol> reionized2{reionizer.reionize(*m2)};
    TEST_ASSERT(MolToSmiles(*reionized2) == "O=S(O)c1ccc(S(=O)(=O)[O-])cc1");
  }
  {  // parameters via tuple
    std::vector<std::tuple<std::string, std::string, std::string>> params{
        {"-CO2H", "C(=O)[OH]", "C(=O)[O-]"}, {"phenol", "c[OH]", "c[O-]"}};
    Reionizer reionizer(params);
    auto m1 = "c1cc([O-])cc(C(=O)O)c1"_smiles;
    std::unique_ptr<ROMol> reionized1{reionizer.reionize(*m1)};
    TEST_ASSERT(MolToSmiles(*reionized1) == "O=C([O-])c1cccc(O)c1");

    auto m2 = "C1=C(C=CC(=C1)[S]([O-])=O)[S](O)(=O)=O"_smiles;
    std::unique_ptr<ROMol> reionized2{reionizer.reionize(*m2)};
    TEST_ASSERT(MolToSmiles(*reionized2) == "O=S([O-])c1ccc(S(=O)(=O)O)cc1");
  }
  BOOST_LOG(rdDebugLog) << "Finished" << std::endl;
}
int main() {
  RDLog::InitLogs();
  boost::logging::disable_logs("rdApp.info");
  testReionizer();
  testChargeParent();
  testGithub2144();
  testGithub2346();
  testChargedAromatics();
  testUnchargerProtonationOnly();
  testInorganicAcids();
  testReionizerParams();
  return 0;
}