1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# Copyright (c) 2023 David Cosgrove and other RDKit contributors
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of Novartis Institutes for BioMedical Research Inc.
# nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# These tests are just to check that the Python wrappers are working
# ok. The bulk of the tests are in the C++ code.
import os
import unittest
from pathlib import Path
from rdkit import Chem
from rdkit.Chem import rdRascalMCES
class TestCase(unittest.TestCase):
def setUp(self):
pass
def test1(self):
mol1 = Chem.MolFromSmiles("c1ccccc1Cl")
mol2 = Chem.MolFromSmiles("c1ccccc1F")
opts = rdRascalMCES.RascalOptions()
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertEqual(len(results), 1)
self.assertEqual(results[0].smartsString, 'c1:c:c:c:c:c:1')
self.assertEqual(len(results[0].bondMatches()), 6)
self.assertEqual(len(results[0].atomMatches()), 6)
def test2(self):
# Test single largest fragment extraction from results
ad1 = Chem.MolFromSmiles("CN(C)c1ccc(CC(=O)NCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1 CHEMBL153934")
ad2 = Chem.MolFromSmiles("N(C)c1ccc(CC(=O)NCCCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1 CHEMBL157336")
opts = rdRascalMCES.RascalOptions()
results = rdRascalMCES.FindMCES(ad1, ad2, opts)
self.assertEqual(len(results), 1)
self.assertEqual(results[0].smartsString,
'N(-C)-c1:c:c:c(-CC(=O)-NCCCCCCCCCC):c:c:1.NC12CC3CC(-C1)-CC(-C2)-C3')
results[0].largestFragmentOnly()
self.assertEqual(results[0].smartsString, 'N(-C)-c1:c:c:c(-CC(=O)-NCCCCCCCCCC):c:c:1')
def test3(self):
# Test not specifying options
mol1 = Chem.MolFromSmiles("c1ccccc1Cl")
mol2 = Chem.MolFromSmiles("c1ccccc1F")
results = rdRascalMCES.FindMCES(mol1, mol2)
self.assertEqual(len(results), 1)
self.assertEqual(results[0].smartsString, 'c1:c:c:c:c:c:1')
self.assertEqual(len(results[0].bondMatches()), 6)
self.assertEqual(len(results[0].atomMatches()), 6)
def test4(self):
# Test setting non-default option
mol1 = Chem.MolFromSmiles('Oc1cccc2C(=O)C=CC(=O)c12')
mol2 = Chem.MolFromSmiles('O1C(=O)C=Cc2cc(OC)c(O)cc12')
results = rdRascalMCES.FindMCES(mol1, mol2)
self.assertEqual(len(results), 0)
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.5
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertEqual(len(results), 1)
def test5(self):
# Test setting non-default option singleLargestFrag
ad1 = Chem.MolFromSmiles("CN(C)c1ccc(CC(=O)NCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1 CHEMBL153934")
ad2 = Chem.MolFromSmiles("N(C)c1ccc(CC(=O)NCCCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1 CHEMBL157336")
opts = rdRascalMCES.RascalOptions()
opts.singleLargestFrag = True
results = rdRascalMCES.FindMCES(ad1, ad2, opts)
self.assertEqual(len(results), 1)
self.assertEqual(results[0].smartsString, 'CCCCCCCCCCNC12CC3CC(-C1)-CC(-C2)-C3')
def test6(self):
# Test the threshold and examine the tier1 and tier2 similarities.
ad1 = Chem.MolFromSmiles("CN(C)c1ccc(CC(=O)NCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1 CHEMBL153934")
ad2 = Chem.MolFromSmiles("N(C)c1ccc(CC(=O)NCCCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1 CHEMBL157336")
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.95
results = rdRascalMCES.FindMCES(ad1, ad2, opts)
self.assertEqual(len(results), 0)
opts.returnEmptyMCES = True
results = rdRascalMCES.FindMCES(ad1, ad2, opts)
self.assertEqual(len(results), 1)
def testRascalCluster(self):
cdk2_file = Path(os.environ['RDBASE']) / 'Contrib' / 'Fastcluster' / 'cdk2.smi'
suppl = Chem.SmilesMolSupplier(str(cdk2_file), '\t', 1, 0, False)
mols = [mol for mol in suppl]
clusters = rdRascalMCES.RascalCluster(mols)
self.assertEqual(len(clusters), 8)
expClusters = [7, 7, 6, 2, 2, 2, 2, 20]
for clus, expClusSize in zip(clusters, expClusters):
self.assertEqual(expClusSize, len(clus))
clusOpts = rdRascalMCES.RascalClusterOptions()
clusOpts.similarityCutoff = 0.6
clusters = rdRascalMCES.RascalCluster(mols, clusOpts)
expClusters = [9, 8, 6, 2, 2, 2, 2, 2, 2, 2, 11]
for clus, expClusSize in zip(clusters, expClusters):
self.assertEqual(expClusSize, len(clus))
def testRascalButinaCluster(self):
cdk2_file = Path(os.environ['RDBASE']) / 'Contrib' / 'Fastcluster' / 'cdk2.smi'
suppl = Chem.SmilesMolSupplier(str(cdk2_file), '\t', 1, 0, False)
mols = [mol for mol in suppl]
clusters = rdRascalMCES.RascalButinaCluster(mols)
self.assertEqual(len(clusters), 29)
expClusters = [
6, 6, 6, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
]
for clus, expClusSize in zip(clusters, expClusters):
self.assertEqual(expClusSize, len(clus))
def testMaxBondMatchPairs(self):
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.0
opts.returnEmptyMCES = True
opts.singleLargestFrag = True
opts.allBestMCESs = True
opts.completeAromaticRings = False
opts.timeout = -1
too_long_1 = Chem.MolFromSmiles('CCCC=CCCCC=CCCCCCCCCCCCCCCCCCCCCC1CNCCC1')
too_long_2 = Chem.MolFromSmiles('CCCC=CCCCCC=CCCCCCCCCCCCCCCCCCCCC1CNCCC1')
results = rdRascalMCES.FindMCES(too_long_1, too_long_2, opts)
self.assertEqual(len(results[0].bondMatches()), 0)
opts.maxBondMatchPairs = 1200
results = rdRascalMCES.FindMCES(too_long_1, too_long_2, opts)
self.assertEqual(len(results[0].bondMatches()), 26)
def testExactConnectionsMatch(self):
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.5
opts.allBestMCESs = True
mol1 = Chem.MolFromSmiles('c1ccccc1C1CCC(C(C)C)C1')
mol2 = Chem.MolFromSmiles('c1ccccc1C(C)C')
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertEqual(results[0].numFragments, 1)
self.assertEqual(results[0].smartsString, 'c1:c:c:c:c:c:1-C(-C)-C')
opts.exactConnectionsMatch = True
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertEqual(results[0].numFragments, 2)
self.assertEqual(results[0].smartsString,
'[#6&a&D2]1:[#6&a&D2]:[#6&a&D2]:[#6&a&D2]:[#6&a&D2]:[#6&a&D3]:1.[#6&A&D3](-[#6&A&D1])-[#6&A&D1]')
def testEquivalentAtoms(self):
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.5
opts.equivalentAtoms = "[F,Cl,Br,I]"
mol1 = Chem.MolFromSmiles('c1ccccc1F')
mol2 = Chem.MolFromSmiles('c1ccccc1Br')
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertEqual(results[0].numFragments, 1)
self.assertEqual(results[0].smartsString, 'c1:c:c:c:c:c:1-[F,Cl,Br,I]')
def testEquivalentBonds(self):
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.5
opts.ignoreBondOrders = True
mol1 = Chem.MolFromSmiles('CC=CC')
mol2 = Chem.MolFromSmiles('CCCC')
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertEqual(results[0].numFragments, 1)
self.assertEqual(results[0].smartsString, 'C~C~C~C')
def testExactAtomTypeMatch(self):
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.1
opts.ignoreAtomAromaticity = False
mol1 = Chem.MolFromSmiles('c1ccccc1NCC')
mol2 = Chem.MolFromSmiles('C1CCCCC1NCC')
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertEqual(results[0].numFragments, 1)
self.assertEqual(results[0].smartsString, 'NCC')
def testMinCliqueSize(self):
opts = rdRascalMCES.RascalOptions()
opts.similarityThreshold = 0.1
opts.minCliqueSize = 17
mol1 = Chem.MolFromSmiles('CC12CCC3C(C1CCC2O)CCC4=CC(=O)CCC34C')
mol2 = Chem.MolFromSmiles('CC12CCC3C(C1CCC2O)CCC4=C3C=CC(=C4)O')
results = rdRascalMCES.FindMCES(mol1, mol2, opts)
self.assertFalse(results)
if __name__ == "__main__":
unittest.main()
|