File: SynthonSpaceRascalSearcher.cpp

package info (click to toggle)
rdkit 202503.1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 578; xml: 229; fortran: 183; sh: 105
file content (190 lines) | stat: -rw-r--r-- 7,499 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//
// Copyright (C) David Cosgrove 2024.
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <DataStructs/BitOps.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/RascalMCES/RascalMCES.h>
#include <GraphMol/SynthonSpaceSearch/SynthonSpaceSearch_details.h>
#include <GraphMol/SynthonSpaceSearch/SynthonSpaceRascalSearcher.h>

namespace RDKit::SynthonSpaceSearch {
SynthonSpaceRascalSearcher::SynthonSpaceRascalSearcher(
    const ROMol &query, const RascalMCES::RascalOptions &rascalOptions,
    const SynthonSpaceSearchParams &params, SynthonSpace &space)
    : SynthonSpaceSearcher(query, params, space),
      d_rascalOptions(rascalOptions),
      d_rascalFragOptions(rascalOptions) {
  d_rascalFragOptions.similarityThreshold -= params.fragSimilarityAdjuster;
}

namespace {
std::vector<std::vector<size_t>> getHitSynthons(
    const std::vector<std::unique_ptr<ROMol>> &fragSet,
    const RascalMCES::RascalOptions &rascalOptions, const SynthonSet &reaction,
    const std::vector<unsigned int> &synthonOrder) {
  std::vector<boost::dynamic_bitset<>> synthonsToUse;
  std::vector<std::vector<size_t>> retSynthons;

  synthonsToUse.reserve(reaction.getSynthons().size());
  for (const auto &synthonSet : reaction.getSynthons()) {
    synthonsToUse.emplace_back(synthonSet.size());
  }
  for (size_t i = 0; i < synthonOrder.size(); i++) {
    const auto &synthons = reaction.getSynthons()[synthonOrder[i]];
    bool fragMatched = false;
    for (size_t j = 0; j < synthons.size(); j++) {
      const auto rascalResults = RascalMCES::rascalMCES(
          *fragSet[i], *synthons[j].second->getSearchMol(), rascalOptions);
      if (!rascalResults.empty()) {
        synthonsToUse[synthonOrder[i]][j] = true;
        fragMatched = true;
      }
    }
    if (!fragMatched) {
      return retSynthons;
    }
  }
  // Fill in any synthons where they all didn't match.
  details::expandBitSet(synthonsToUse);
  details::bitSetsToVectors(synthonsToUse, retSynthons);

  // Now sort the selected synthons into ascending order of number of
  // atoms, since smaller molecules are likely to be of more interest.
  for (size_t i = 0; i < retSynthons.size(); ++i) {
    const auto &synthonsi = reaction.getSynthons()[i];
    std::sort(retSynthons[i].begin(), retSynthons[i].end(),
              [&](const size_t a, const size_t b) {
                return synthonsi[a].second->getOrigMol()->getNumAtoms() <
                       synthonsi[b].second->getOrigMol()->getNumAtoms();
              });
  }
  return retSynthons;
}
}  // namespace

void SynthonSpaceRascalSearcher::extraSearchSetup(
    std::vector<std::vector<std::unique_ptr<ROMol>>> &fragSets) {
  for (const auto &fragSet : fragSets) {
    for (const auto &frag : fragSet) {
      unsigned int otf;
      sanitizeMol(*static_cast<RWMol *>(frag.get()), otf,
                  MolOps::SANITIZE_SYMMRINGS);
    }
  }
}

std::vector<std::unique_ptr<SynthonSpaceHitSet>>
SynthonSpaceRascalSearcher::searchFragSet(
    const std::vector<std::unique_ptr<ROMol>> &fragSet,
    const SynthonSet &reaction) const {
  std::vector<std::unique_ptr<SynthonSpaceHitSet>> results;

  // It can't be a hit if the number of fragments is more than the number
  // of synthon sets because some of the molecule won't be matched in any
  // of the potential products.  It can be less, in which case the unused
  // synthon set will be used completely, possibly resulting in a large
  // number of hits.
  if (fragSet.size() > reaction.getSynthons().size()) {
    return results;
  }

  const auto connPatterns = details::getConnectorPatterns(fragSet);
  boost::dynamic_bitset<> conns(MAX_CONNECTOR_NUM + 1);
  for (auto &connPattern : connPatterns) {
    conns |= connPattern;
  }

  auto synthConnPatts = reaction.getSynthonConnectorPatterns();

  // Get all the possible permutations of connector numbers compatible with
  // the number of synthon sets in this reaction.  So if the
  // fragmented molecule is C[1*].N[2*] and there are 3 synthon sets
  // we also try C[2*].N[1*], C[2*].N[3*] and C[3*].N[2*] because
  // that might be how they're labelled in the reaction database.
  const auto connCombConnPatterns =
      details::getConnectorPermutations(connPatterns, reaction.getConnectors());

  // Need to try all combinations of synthon orders.
  auto synthonOrders =
      details::permMFromN(fragSet.size(), reaction.getSynthons().size());
  for (const auto &synthonOrder : synthonOrders) {
    for (auto &connCombPatt : connCombConnPatterns) {
      // Make sure that for this connector combination, the synthons in this
      // order have something similar.  All query fragment connectors must
      // match something in the corresponding synthon.  The synthon can
      // have unused connectors.
      bool skip = false;
      for (size_t i = 0; i < connCombPatt.size(); ++i) {
        if ((connCombPatt[i] & synthConnPatts[synthonOrder[i]]).count() <
            connCombPatt[i].count()) {
          skip = true;
          break;
        }
      }
      if (skip) {
        continue;
      }

      // Rascal ignores isotope numbers, which makes things easier.
      auto theseSynthons =
          getHitSynthons(fragSet, d_rascalFragOptions, reaction, synthonOrder);
      if (!theseSynthons.empty()) {
        std::unique_ptr<SynthonSpaceHitSet> hs(
            new SynthonSpaceFPHitSet(reaction, theseSynthons, fragSet));
        if (hs->numHits) {
          results.push_back(std::move(hs));
        }
      }
    }
  }
  return results;
}

bool SynthonSpaceRascalSearcher::quickVerify(
    const SynthonSpaceHitSet *hitset,
    const std::vector<size_t> &synthNums) const {
  // If the query is an exact substructure of the product, then that's an upper
  // bound on the Johnson similarity.  Check that that is not below the
  // threshold.
  int qbit = getQuery().getNumAtoms() + getQuery().getNumBonds();
  int numAtoms = 0, numBonds = 0;
  for (size_t i = 0; i < synthNums.size(); i++) {
    const auto &smol = hitset->synthonsToUse[i][synthNums[i]].second;
    // Adjust for connector points that aren't in the final product.
    numAtoms += smol->getNumAtoms() -
                hitset->d_reaction->getSynthonConnectorPatterns()[i].count();
    numBonds += smol->getNumBonds() -
                hitset->d_reaction->getSynthonConnectorPatterns()[i].count();
  }
  // The Johnson similarity is
  // (commonNatoms + commonNbonds)**2 /
  // ((Natoms1 + Nbonds1) * (Natoms2 + Natoms2))
  // and in this case the common atoms are the whole query, so the square
  // cancels out.
  double bestSim =
      static_cast<double>(qbit) / static_cast<double>(numAtoms + numBonds);
  return bestSim >= d_rascalOptions.similarityThreshold;
}

bool SynthonSpaceRascalSearcher::verifyHit(const ROMol &hit) const {
  auto res = RascalMCES::rascalMCES(hit, getQuery(), d_rascalOptions);
  // Rascal reports all matches that proceed to full MCES elucidation,
  // even if the final similarity value ends up below the threshold.
  // We only want those over the threshold.
  if (!res.empty() &&
      res.front().getSimilarity() >= d_rascalOptions.similarityThreshold) {
    hit.setProp<double>("Similarity", res.front().getSimilarity());
    return true;
  }
  return false;
}

}  // namespace RDKit::SynthonSpaceSearch