1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
//
// Copyright (C) David Cosgrove 2024.
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <algorithm>
#include <fstream>
#include <iostream>
#include <list>
#include <memory>
#include <regex>
#include <thread>
#include <vector>
#include <boost/dynamic_bitset.hpp>
#include <RDGeneral/ControlCHandler.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/QueryAtom.h>
#include <GraphMol/QueryBond.h>
#include <GraphMol/ChemTransforms/ChemTransforms.h>
#include <GraphMol/ChemTransforms/MolFragmenter.h>
#include <GraphMol/SmilesParse/SmartsWrite.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/SynthonSpaceSearch/SynthonSpaceHitSet.h>
#include <GraphMol/SynthonSpaceSearch/SynthonSpace.h>
#include <GraphMol/SynthonSpaceSearch/SynthonSpaceSearch_details.h>
#include <RDGeneral/RDThreads.h>
namespace RDKit::SynthonSpaceSearch::details {
bool checkTimeOut(const TimePoint *endTime) {
if (endTime != nullptr && Clock::now() > *endTime) {
BOOST_LOG(rdWarningLog) << "Timed out.\n";
return true;
}
return false;
}
// get a vector of vectors of unsigned ints that are all combinations of
// M items chosen from N e.g. all combinations of 3 bonds from a
// molecule. A modified form of the code in the first answer from
// https://stackoverflow.com/questions/12991758/creating-all-possible-k-combinations-of-n-items-in-c
std::vector<std::vector<unsigned int>> combMFromN(const unsigned int m,
const unsigned int n) {
std::string allN(m, 1);
allN.resize(n, 0);
std::vector<std::vector<unsigned int>> combs;
do {
combs.emplace_back();
for (unsigned int i = 0; i < n; ++i) {
if (allN[i]) {
combs.back().push_back(i);
}
}
} while (std::prev_permutation(allN.begin(), allN.end()));
return combs;
}
std::vector<std::vector<unsigned int>> permMFromN(const unsigned int m,
const unsigned int n) {
std::vector<std::vector<unsigned int>> perms;
auto combs = combMFromN(m, n);
for (auto &c : combs) {
do {
perms.push_back(c);
} while (std::next_permutation(c.begin(), c.end()));
}
return perms;
}
// The fragmentation is valid if the 2 ends of each bond are in different
// fragments. This assumes there are no ring-closing reactions in the
// library, which is probably ok.
bool checkConnectorsInDifferentFrags(
const std::vector<std::unique_ptr<ROMol>> &molFrags, const int numSplits) {
// Loop over the isotope numbers of the ends of the splits
for (const auto &frag : molFrags) {
for (int j = 1; j <= numSplits; ++j) {
int dummyCount = 0;
for (const auto &atom : frag->atoms()) {
if (!atom->getAtomicNum() &&
atom->getIsotope() == static_cast<unsigned int>(j)) {
if (dummyCount) {
return false;
}
++dummyCount;
}
}
}
}
return true;
}
bool checkConnectorsInDifferentFrags(const ROMol &mol,
const VECT_INT_VECT &fragIdxs,
const int numSplits) {
int dummyAtoms[2 * MAX_CONNECTOR_NUM + 2] = {};
for (const auto &atom : mol.atoms()) {
if (!atom->getAtomicNum()) {
if (const auto dummy = atom->getIsotope(); dummy <= MAX_CONNECTOR_NUM) {
if (const int pos = 2 * dummy; dummyAtoms[pos]) {
dummyAtoms[pos + 1] = atom->getIdx() + 1;
} else {
dummyAtoms[pos] = atom->getIdx() + 1;
}
}
}
}
for (const auto &fragIdx : fragIdxs) {
for (int j = 0; j < numSplits; ++j) {
if (dummyAtoms[2 * j]) {
const int d1 = dummyAtoms[2 * j] - 1;
const int d2 = dummyAtoms[2 * j + 1] - 1;
int dummyCount = 0;
for (const auto fi : fragIdx) {
if (fi == d1 || fi == d2) {
if (dummyCount) {
return false;
}
++dummyCount;
}
}
}
}
}
return true;
}
// Traverse the bonds from aromBond and return all the ones that are aromatic.
std::vector<const Bond *> getContiguousAromaticBonds(const ROMol &mol,
const Bond *aromBond) {
std::vector<const Bond *> aromBonds(1, aromBond);
std::list<const Bond *> toDo(1, aromBond);
boost::dynamic_bitset<> done(mol.getNumBonds());
done[aromBond->getIdx()] = true;
while (!toDo.empty()) {
const auto nextBond = toDo.front();
toDo.pop_front();
for (const auto nbr :
make_iterator_range(mol.getAtomNeighbors(nextBond->getBeginAtom()))) {
if (auto bond = mol.getBondBetweenAtoms(nextBond->getBeginAtomIdx(), nbr);
!done[bond->getIdx()] && bond->getIsAromatic()) {
aromBonds.push_back(bond);
done[bond->getIdx()] = true;
toDo.push_back(bond);
}
}
for (const auto nbr :
make_iterator_range(mol.getAtomNeighbors(nextBond->getEndAtom()))) {
if (auto bond = mol.getBondBetweenAtoms(nextBond->getEndAtomIdx(), nbr);
!done[bond->getIdx()] && bond->getIsAromatic()) {
aromBonds.push_back(bond);
done[bond->getIdx()] = true;
toDo.push_back(bond);
}
}
}
return aromBonds;
}
namespace {
boost::dynamic_bitset<> flagRingBonds(const ROMol &mol) {
const auto ringInfo = mol.getRingInfo();
if (!ringInfo->isInitialized()) {
// Query molecules don't seem to have the ring info generated on creation.
MolOps::findSSSR(mol);
}
boost::dynamic_bitset<> ringBonds(mol.getNumBonds());
for (const auto &r : ringInfo->bondRings()) {
for (const auto b : r) {
ringBonds.set(b);
}
}
return ringBonds;
}
void addBondsToList(const ROMol &mol, const Atom *atom,
boost::dynamic_bitset<> &ringBonds,
boost::dynamic_bitset<> &doneAtoms,
std::list<const Atom *> &atoms,
std::vector<const Bond *> &ringBlock) {
for (const auto nbond : mol.atomBonds(atom)) {
if (ringBonds[nbond->getIdx()]) {
ringBonds.set(nbond->getIdx(), false);
ringBlock.push_back(nbond);
if (const Atom *otherAtom = nbond->getOtherAtom(atom);
!doneAtoms[otherAtom->getIdx()]) {
atoms.push_back(otherAtom);
doneAtoms.set(otherAtom->getIdx(), true);
}
}
}
}
// Get all the contiguous ring blocks, e.g. in c1ccccc1Oc1cccc2[nH]ccc12
// get the benzene and indole as separate pieces. Pass ringBonds by
// value as it gets changed and we'll be needing it again later.
std::vector<std::vector<const Bond *>> getRingBlocks(
const ROMol &mol, boost::dynamic_bitset<> ringBonds) {
std::vector<std::vector<const Bond *>> ringBlocks;
while (ringBonds.count()) {
for (const auto bond : mol.bonds()) {
if (ringBonds[bond->getIdx()]) {
ringBlocks.emplace_back(std::vector<const Bond *>{bond});
ringBonds.set(bond->getIdx(), false);
boost::dynamic_bitset<> doneAtoms(mol.getNumAtoms());
std::list<const Atom *> toDo;
addBondsToList(mol, bond->getBeginAtom(), ringBonds, doneAtoms, toDo,
ringBlocks.back());
addBondsToList(mol, bond->getEndAtom(), ringBonds, doneAtoms, toDo,
ringBlocks.back());
while (!toDo.empty()) {
const auto nextAtom = toDo.front();
toDo.pop_front();
addBondsToList(mol, nextAtom, ringBonds, doneAtoms, toDo,
ringBlocks.back());
}
std::sort(ringBlocks.back().begin(), ringBlocks.back().end(),
[](const Bond *b1, const Bond *b2) -> bool {
return b1->getIdx() < b2->getIdx();
});
}
}
}
return ringBlocks;
}
bool bondPairFragmentsBlock(
const size_t bondi, const size_t bondj, const unsigned int numAtoms,
const std::vector<const Bond *> &ringBlock,
std::vector<boost::dynamic_bitset<>> &ringAdjTable) {
const Bond *bi = ringBlock[bondi];
const Bond *bj = ringBlock[bondj];
// Temporarily break the 2 bonds
ringAdjTable[bi->getBeginAtomIdx()][bi->getEndAtomIdx()] = false;
ringAdjTable[bi->getEndAtomIdx()][bi->getBeginAtomIdx()] = false;
ringAdjTable[bj->getBeginAtomIdx()][bj->getEndAtomIdx()] = false;
ringAdjTable[bj->getEndAtomIdx()][bj->getBeginAtomIdx()] = false;
std::list<size_t> atoms(1, ringBlock[bondi]->getBeginAtomIdx());
std::list<size_t> toDo(1, ringBlock[bondi]->getBeginAtomIdx());
boost::dynamic_bitset<> doneAtom(ringAdjTable.size());
doneAtom[ringBlock[bondi]->getBeginAtomIdx()] = true;
while (!toDo.empty()) {
const auto nextAtom = toDo.front();
toDo.pop_front();
const auto &theseConns = ringAdjTable[nextAtom];
for (size_t i = 0; i < ringAdjTable.size(); i++) {
if (theseConns[i] && !doneAtom[i]) {
doneAtom[i] = true;
toDo.push_back(i);
atoms.push_back(i);
}
}
}
ringAdjTable[bi->getBeginAtomIdx()][bi->getEndAtomIdx()] = true;
ringAdjTable[bi->getEndAtomIdx()][bi->getBeginAtomIdx()] = true;
ringAdjTable[bj->getBeginAtomIdx()][bj->getEndAtomIdx()] = true;
ringAdjTable[bj->getEndAtomIdx()][bj->getBeginAtomIdx()] = true;
return atoms.size() < numAtoms;
}
void makeRingAtomAdjTable(const ROMol &mol,
const boost::dynamic_bitset<> &ringBonds,
std::vector<boost::dynamic_bitset<>> &ringAdjTable) {
ringAdjTable = std::vector<boost::dynamic_bitset<>>(
mol.getNumAtoms(), boost::dynamic_bitset<>(mol.getNumAtoms()));
for (const auto bond : mol.bonds()) {
if (ringBonds[bond->getIdx()]) {
ringAdjTable[bond->getBeginAtomIdx()][bond->getEndAtomIdx()] = true;
ringAdjTable[bond->getEndAtomIdx()][bond->getBeginAtomIdx()] = true;
}
}
}
// Take out any pairs of ring bonds that don't fragment the molecule. These
// will be in fused ring systems where one of the bonds is in 1 sub-ring,
// one is in the other.
void findBondPairsThatFragment(
const ROMol &mol, const boost::dynamic_bitset<> &ringBonds,
const std::vector<std::vector<const Bond *>> &ringBlocks,
std::vector<std::pair<unsigned int, unsigned int>> &ringBondPairs) {
std::vector<boost::dynamic_bitset<>> ringAdjTable;
makeRingAtomAdjTable(mol, ringBonds, ringAdjTable);
// If all the atoms in the bond are 2 connected, it's a simple ring so
// nothing to do.
for (const auto &ringBlock : ringBlocks) {
bool ok = true;
boost::dynamic_bitset<> blockAtoms(mol.getNumAtoms());
for (const auto bond : ringBlock) {
blockAtoms[bond->getBeginAtomIdx()] = true;
blockAtoms[bond->getEndAtomIdx()] = true;
if (ringAdjTable[bond->getBeginAtomIdx()].count() > 2 ||
ringAdjTable[bond->getEndAtomIdx()].count() > 2) {
ok = false;
}
}
if (ok) {
for (size_t i = 0; i < ringBlock.size() - 1; ++i) {
for (size_t j = i + 1; j < ringBlock.size(); ++j) {
ringBondPairs.emplace_back(
std::make_pair(ringBlock[i]->getIdx(), ringBlock[j]->getIdx()));
}
}
} else {
// Need to check if each pair makes 2 fragments before adding.
const unsigned int numAtoms = blockAtoms.count();
for (size_t i = 0; i < ringBlock.size() - 1; ++i) {
for (size_t j = i + 1; j < ringBlock.size(); ++j) {
if (bondPairFragmentsBlock(i, j, numAtoms, ringBlock, ringAdjTable)) {
ringBondPairs.emplace_back(
std::make_pair(ringBlock[i]->getIdx(), ringBlock[j]->getIdx()));
}
}
}
}
}
}
void makeFragmentsForMol(
const ROMol &mol, const std::vector<std::vector<unsigned int>> &splitBonds,
size_t splitBondNum,
const std::vector<std::pair<unsigned int, unsigned int>> &dummyLabels,
const unsigned int maxNumFrags, const boost::dynamic_bitset<> &ringBonds,
std::vector<std::pair<std::string, std::unique_ptr<ROMol>>> &fragments) {
// first, see how many fragments we're going to get. The ring bonds
// are paired so they will split the same ring.
int numRingBonds = 0;
int numNonRingBonds = 0;
for (const auto sb : splitBonds[splitBondNum]) {
if (ringBonds[sb]) {
numRingBonds++;
} else {
numNonRingBonds++;
}
}
if (const unsigned int numFragsPoss = 1 + numNonRingBonds + numRingBonds / 2;
numFragsPoss > maxNumFrags) {
return;
}
auto fragMol = MolFragmenter::fragmentOnBonds(mol, splitBonds[splitBondNum],
true, &dummyLabels);
const std::string fragSmi(MolToSmiles(*fragMol));
fragments[splitBondNum] =
std::pair<std::string, std::unique_ptr<ROMol>>(fragSmi, fragMol);
}
void doPartInitialFragmentation(
const ROMol &mol, const std::vector<std::vector<unsigned int>> &splitBonds,
const unsigned int maxNumFrags, const boost::dynamic_bitset<> &ringBonds,
const TimePoint *endTime, std::atomic<std::int64_t> &mostRecentRingBond,
std::int64_t lastRingBond,
const std::vector<std::pair<unsigned int, unsigned int>> &dummyLabels,
std::vector<std::pair<std::string, std::unique_ptr<ROMol>>> &tmpFrags) {
int numTries = 100;
bool timedOut = false;
while (true) {
std::int64_t thisRB = ++mostRecentRingBond;
// std::cout << "ring bond " << thisRB << " of " << lastRingBond << " and "
// << tmpFrags.size() << std::endl;
if (thisRB > lastRingBond) {
break;
}
makeFragmentsForMol(mol, splitBonds, thisRB, dummyLabels, maxNumFrags,
ringBonds, tmpFrags);
--numTries;
if (!numTries) {
numTries = 100;
timedOut = checkTimeOut(endTime);
if (timedOut) {
break;
}
}
}
}
void doInitialFragmentation(
const ROMol &mol, const std::vector<std::vector<unsigned int>> &splitBonds,
const unsigned int maxNumFrags, const boost::dynamic_bitset<> &ringBonds,
[[maybe_unused]] const int numThreads, const TimePoint *endTime,
bool &timedOut,
std::vector<std::pair<std::string, std::unique_ptr<ROMol>>> &tmpFrags) {
std::vector<std::pair<unsigned int, unsigned int>> dummyLabels;
for (unsigned int i = 1; i <= MAX_CONNECTOR_NUM; ++i) {
dummyLabels.emplace_back(i, i);
}
// Now do the splits. Symmetrical molecules can give rise to the same
// fragment set in different ways so keep track of what we've had to
// avoid duplicates.
std::int64_t lastRingBond = splitBonds.size() - 1;
std::atomic<std::int64_t> mostRecentRingBond = -1;
#if RDK_BUILD_THREADSAFE_SSS
if (const auto numThreadsToUse = getNumThreadsToUse(numThreads);
numThreads > 1) {
std::vector<std::thread> threads;
for (unsigned int i = 0U;
i <
std::min(static_cast<std::int64_t>(numThreadsToUse), lastRingBond + 1);
++i) {
threads.push_back(std::thread(doPartInitialFragmentation, std::ref(mol),
std::ref(splitBonds), maxNumFrags,
std::ref(ringBonds), endTime,
std::ref(mostRecentRingBond), lastRingBond,
std::ref(dummyLabels), std::ref(tmpFrags)));
}
for (auto &t : threads) {
t.join();
}
} else {
doPartInitialFragmentation(mol, splitBonds, maxNumFrags, ringBonds, endTime,
std::ref(mostRecentRingBond), lastRingBond,
dummyLabels, tmpFrags);
}
#else
doPartInitialFragmentation(mol, splitBonds, maxNumFrags, ringBonds, endTime,
std::ref(mostRecentRingBond), lastRingBond,
dummyLabels, tmpFrags);
#endif
timedOut = details::checkTimeOut(endTime);
}
void doPartFinalFragmentation(
const std::vector<std::pair<std::string, std::unique_ptr<ROMol>>> &tmpFrags,
unsigned int maxNumFrags, const TimePoint *endTime,
std::atomic<std::int64_t> &mostRecentFrag, std::int64_t lastFrag,
std::vector<std::vector<std::unique_ptr<ROMol>>> &fragments) {
int numTries = 100;
bool timedOut = false;
while (true) {
std::int64_t thisFrag = ++mostRecentFrag;
// std::cout << "frag " << thisFrag << " of " << lastFrag << " and "
// << tmpFrags.size() << std::endl;
if (thisFrag > lastFrag) {
break;
}
if (std::vector<std::unique_ptr<ROMol>> molFrags;
MolOps::getMolFrags(*tmpFrags[thisFrag].second, molFrags, false) <=
maxNumFrags) {
// The first fragment was made from the whole query and is already in
// fragments.
fragments[thisFrag + 1] = std::move(molFrags);
}
--numTries;
if (!numTries) {
numTries = 100;
timedOut = checkTimeOut(endTime);
if (timedOut) {
break;
}
}
}
}
void doFinalFragmentation(
const std::vector<std::pair<std::string, std::unique_ptr<ROMol>>> &tmpFrags,
unsigned int maxNumFrags, [[maybe_unused]] int numThreads,
const TimePoint *endTime, bool &timedOut,
std::vector<std::vector<std::unique_ptr<ROMol>>> &fragments) {
std::int64_t lastFrag = tmpFrags.size() - 1;
std::atomic<std::int64_t> mostRecentFrag = -1;
#if RDK_BUILD_THREADSAFE_SSS
if (const auto numThreadsToUse = getNumThreadsToUse(numThreads);
numThreads > 1) {
std::vector<std::thread> threads;
for (unsigned int i = 0U;
i < std::min(static_cast<std::int64_t>(numThreadsToUse), lastFrag + 1);
++i) {
threads.push_back(std::thread(
doPartFinalFragmentation, std::ref(tmpFrags), maxNumFrags, endTime,
std::ref(mostRecentFrag), lastFrag, std::ref(fragments)));
}
for (auto &t : threads) {
t.join();
}
} else {
doPartFinalFragmentation(tmpFrags, maxNumFrags, endTime, mostRecentFrag,
lastFrag, fragments);
}
#else
doPartFinalFragmentation(tmpFrags, maxNumFrags, endTime, mostRecentFrag,
lastFrag, fragments);
#endif
timedOut = details::checkTimeOut(endTime);
}
// Build all combinations of maxBondSplits sets of bondPairs into splitBonds,
// removing any duplicate bonds.
void buildSplitBonds(
const std::vector<std::pair<unsigned int, unsigned int>> &bondPairs,
const unsigned int maxBondSplits,
std::vector<std::vector<unsigned int>> &splitBonds) {
std::vector<unsigned int> nextSplits;
splitBonds.reserve(maxBondSplits * maxBondSplits * bondPairs.size());
for (unsigned int i = 1; i < maxBondSplits; ++i) {
auto combs = combMFromN(i, static_cast<int>(bondPairs.size()));
for (const auto &comb : combs) {
nextSplits.clear();
for (const auto c : comb) {
nextSplits.push_back(bondPairs[c].first);
nextSplits.push_back(bondPairs[c].second);
}
std::sort(nextSplits.begin(), nextSplits.end());
nextSplits.erase(std::unique(nextSplits.begin(), nextSplits.end()),
nextSplits.end());
// Each split will need a connector num, so any split set that will
// produce one higher than the SynthonSpace has been set up for is
// a bust. Splitting 3 rings each once will produce 4 fragments
// and 6 broken bonds, for example.
if (nextSplits.size() > MAX_CONNECTOR_NUM) {
continue;
}
nextSplits.shrink_to_fit();
splitBonds.push_back(nextSplits);
}
}
std::sort(splitBonds.begin(), splitBonds.end());
splitBonds.erase(std::unique(splitBonds.begin(), splitBonds.end()),
splitBonds.end());
}
} // namespace
std::vector<std::vector<std::unique_ptr<ROMol>>> splitMolecule(
const ROMol &query, unsigned int maxNumFrags,
const std::uint64_t maxNumFragSets, const TimePoint *endTime,
const int numThreads, bool &timedOut) {
if (maxNumFrags < 1) {
maxNumFrags = 1;
}
maxNumFrags = std::min({maxNumFrags, MAX_CONNECTOR_NUM, query.getNumBonds()});
auto ringBonds = flagRingBonds(query);
// Now get all contiguous ring blocks
const auto ringBlocks = getRingBlocks(query, ringBonds);
// Collect all the bond pairs that can fragment the molecule.
std::vector<std::pair<unsigned int, unsigned int>> bondPairs;
findBondPairsThatFragment(query, ringBonds, ringBlocks, bondPairs);
// And all the non-ring bonds, which clearly can all make 2 fragments
// when broken. Put them in as pairs of the same value, for ease of
// processing below.
for (const auto b : query.bonds()) {
if (!ringBonds[b->getIdx()]) {
bondPairs.push_back({b->getIdx(), b->getIdx()});
}
}
std::vector<std::vector<unsigned int>> splitBonds;
buildSplitBonds(bondPairs, maxNumFrags, splitBonds);
std::vector<std::pair<std::string, std::unique_ptr<ROMol>>> tmpFrags(
splitBonds.size());
// First split leaves the fragments in the same molecule, and returns
// the SMILES for it.
doInitialFragmentation(query, splitBonds, maxNumFrags, ringBonds, numThreads,
endTime, timedOut, tmpFrags);
std::vector<std::vector<std::unique_ptr<ROMol>>> fragments;
if (timedOut || ControlCHandler::getGotSignal()) {
return fragments;
}
// Keep unique SMILES onlyu
std::sort(tmpFrags.begin(), tmpFrags.end(),
[](const auto &lhs, const auto &rhs) -> bool {
return lhs.first < rhs.first;
});
tmpFrags.erase(std::unique(tmpFrags.begin(), tmpFrags.end(),
[](const auto &lhs, const auto &rhs) -> bool {
return lhs.first == rhs.first;
}),
tmpFrags.end());
if (tmpFrags.size() > maxNumFragSets) {
tmpFrags.erase(tmpFrags.begin() + maxNumFragSets, tmpFrags.end());
}
// Keep the molecule itself (i.e. 0 splits). It will probably produce
// lots of hits but it is necessary if, for example, the query is a match
// for a single synthon set.
fragments.resize(tmpFrags.size() + 1);
fragments.emplace_back();
fragments.back().emplace_back(new ROMol(query));
// And now split the molecules into the final fragments.
doFinalFragmentation(tmpFrags, maxNumFrags, numThreads, endTime, timedOut,
fragments);
fragments.erase(
std::remove_if(fragments.begin(), fragments.end(),
[](const auto &fs) -> bool { return fs.empty(); }),
fragments.end());
return fragments;
}
int countConnections(const ROMol &mol) {
int res = 0;
for (const auto atom : mol.atoms()) {
if (!atom->getAtomicNum() && atom->getIsotope() >= 1 &&
atom->getIsotope() <= MAX_CONNECTOR_NUM) {
++res;
}
}
return res;
}
std::vector<boost::dynamic_bitset<>> getConnectorPatterns(
const std::vector<std::unique_ptr<ROMol>> &mols) {
std::vector<boost::dynamic_bitset<>> connPatterns(
mols.size(), boost::dynamic_bitset<>(MAX_CONNECTOR_NUM + 1));
for (size_t i = 0; i < mols.size(); i++) {
for (const auto &a : mols[i]->atoms()) {
if (!a->getAtomicNum() && a->getIsotope() <= MAX_CONNECTOR_NUM) {
connPatterns[i].set(a->getIsotope());
}
}
}
return connPatterns;
}
boost::dynamic_bitset<> getConnectorPattern(
const std::vector<std::unique_ptr<ROMol>> &fragSet) {
boost::dynamic_bitset<> conns(MAX_CONNECTOR_NUM + 1);
const auto connPatterns = getConnectorPatterns(fragSet);
for (const auto &cp : connPatterns) {
conns |= cp;
}
return conns;
}
namespace {
std::vector<int> bitsToInts(const boost::dynamic_bitset<> &bits) {
std::vector<int> ints;
for (size_t i = 0; i < bits.size(); ++i) {
if (bits[i]) {
ints.push_back(static_cast<int>(i));
}
}
return ints;
}
} // namespace
std::vector<std::vector<std::vector<std::pair<Atom *, unsigned int>>>>
getConnectorPermutations(const std::vector<std::unique_ptr<ROMol>> &molFrags,
const boost::dynamic_bitset<> &fragConns,
const boost::dynamic_bitset<> &reactionConns) {
const auto numFragConns = fragConns.count();
auto rConns = bitsToInts(reactionConns);
const auto perms = permMFromN(numFragConns, reactionConns.count());
std::vector<std::vector<std::vector<std::pair<Atom *, unsigned int>>>>
fragConnPerms;
fragConnPerms.reserve(perms.size());
for (const auto &perm : perms) {
fragConnPerms.emplace_back();
// Copy the fragments and set the isotope numbers according to this
// permutation.
for (const auto &f : molFrags) {
fragConnPerms.back().emplace_back();
boost::dynamic_bitset<> atomDone(f->getNumAtoms());
for (const auto atom : f->atoms()) {
if (!atom->getAtomicNum()) {
for (size_t i = 0; i < perm.size(); ++i) {
if (!atomDone[atom->getIdx()] && atom->getIsotope() == i + 1) {
fragConnPerms.back().back().emplace_back(atom, perm[i] + 1);
atomDone[atom->getIdx()] = true;
}
}
}
}
}
}
return fragConnPerms;
}
std::vector<std::vector<boost::dynamic_bitset<>>> getConnectorPermutations(
const std::vector<boost::dynamic_bitset<>> &fragConnPatts,
const boost::dynamic_bitset<> &reactionConns) {
boost::dynamic_bitset<> conns(MAX_CONNECTOR_NUM + 1);
for (auto &fragConnPatt : fragConnPatts) {
conns |= fragConnPatt;
}
const auto numFragConns = conns.count();
auto rConns = bitsToInts(reactionConns);
const auto perms = permMFromN(numFragConns, reactionConns.count());
std::vector<std::vector<boost::dynamic_bitset<>>> retBitsets;
for (const auto &perm : perms) {
retBitsets.emplace_back();
for (const auto &fragConnPatt : fragConnPatts) {
boost::dynamic_bitset<> bs(MAX_CONNECTOR_NUM + 1);
for (size_t i = 0; i < perm.size(); ++i) {
if (fragConnPatt[i + 1]) {
bs.set(perm[i] + 1);
}
}
retBitsets.back().push_back(bs);
}
}
return retBitsets;
}
void expandBitSet(std::vector<boost::dynamic_bitset<>> &bitSets) {
const bool someSet = std::any_of(
bitSets.begin(), bitSets.end(),
[](const boost::dynamic_bitset<> &bs) -> bool { return bs.any(); });
if (someSet) {
for (auto &bs : bitSets) {
if (!bs.count()) {
bs.set();
}
}
}
}
void bitSetsToVectors(const std::vector<boost::dynamic_bitset<>> &bitSets,
std::vector<std::vector<size_t>> &outVecs) {
outVecs.resize(bitSets.size());
for (size_t i = 0; i < bitSets.size(); ++i) {
outVecs[i].reserve(bitSets[i].count());
for (size_t j = 0; j < bitSets[i].size(); j++) {
if (bitSets[i][j]) {
outVecs[i].push_back(j);
}
}
}
}
bool removeQueryAtoms(RWMol &mol) {
bool didSomething = false;
for (const Atom *atom : mol.atoms()) {
if ((atom->getAtomicNum() || !atom->getIsotope()) && atom->hasQuery() &&
atom->getQuery()->getDescription() != "AtomType") {
std::unique_ptr<QueryAtom> qat;
if (atom->getAtomicNum()) {
qat.reset(new QueryAtom(atom->getAtomicNum()));
} else {
qat.reset(new QueryAtom());
qat->setQuery(makeAAtomQuery());
}
mol.replaceAtom(atom->getIdx(), qat.get());
didSomething = true;
}
}
return didSomething;
}
std::unique_ptr<ROMol> buildConnRegion(const ROMol &mol) {
boost::dynamic_bitset<> inFrag(mol.getNumAtoms());
for (const auto a : mol.atoms()) {
if (!a->getAtomicNum() && a->getIsotope()) {
inFrag[a->getIdx()] = true;
for (const auto &n1 : mol.atomNeighbors(a)) {
inFrag[n1->getIdx()] = true;
for (const auto &n2 : mol.atomNeighbors(n1)) {
inFrag[n2->getIdx()] = true;
for (const auto &n3 : mol.atomNeighbors(n2)) {
inFrag[n3->getIdx()] = true;
}
}
}
}
}
if (!inFrag.count()) {
return std::unique_ptr<RWMol>();
}
std::unique_ptr<RWMol> molCp(new RWMol(mol));
molCp->beginBatchEdit();
for (const auto aCp : molCp->atoms()) {
if (!inFrag[aCp->getIdx()]) {
molCp->removeAtom(aCp);
} else {
if (!aCp->getAtomicNum()) {
if (aCp->getIsotope()) {
aCp->setIsotope(1);
if (aCp->hasQuery()) {
aCp->expandQuery(makeAtomIsotopeQuery(1), Queries::COMPOSITE_OR);
}
}
}
}
}
molCp->commitBatchEdit();
return molCp;
}
std::string buildProductName(const std::string &reactionId,
const std::vector<std::string> &fragIds) {
std::string prodName = "";
for (const auto &fragId : fragIds) {
if (prodName != "") {
prodName += ";";
}
prodName += fragId;
}
prodName += ";" + reactionId;
return prodName;
}
std::string buildProductName(
const RDKit::SynthonSpaceSearch::SynthonSpaceHitSet *hitset,
const std::vector<size_t> &fragNums) {
std::string prodName = "";
for (size_t i = 0; i < fragNums.size(); ++i) {
if (prodName != "") {
prodName += ";";
}
prodName += hitset->synthonsToUse[i][fragNums[i]].first;
}
prodName += ";" + hitset->d_reaction->getId();
return prodName;
}
std::unique_ptr<ROMol> buildProduct(
const std::vector<const ROMol *> &synthons) {
MolzipParams mzparams;
mzparams.label = MolzipLabel::Isotope;
auto prodMol = std::make_unique<ROMol>(*synthons.front());
for (size_t i = 1; i < synthons.size(); ++i) {
prodMol.reset(combineMols(*prodMol, *synthons[i]));
}
prodMol = molzip(*prodMol, mzparams);
MolOps::sanitizeMol(*dynamic_cast<RWMol *>(prodMol.get()));
return prodMol;
}
std::map<std::string, std::vector<ROMol *>> mapFragsBySmiles(
std::vector<std::vector<std::unique_ptr<ROMol>>> &fragSets,
bool &cancelled) {
std::map<std::string, std::vector<ROMol *>> fragSmiToFrag;
for (auto &fragSet : fragSets) {
for (auto &frag : fragSet) {
if (ControlCHandler::getGotSignal()) {
cancelled = true;
return fragSmiToFrag;
}
// For the fingerprints, ring info is required.
unsigned int otf;
sanitizeMol(*static_cast<RWMol *>(frag.get()), otf,
MolOps::SANITIZE_SYMMRINGS);
std::string fragSmi = MolToSmiles(*frag);
if (auto it = fragSmiToFrag.find(fragSmi); it == fragSmiToFrag.end()) {
fragSmiToFrag.emplace(fragSmi, std::vector<ROMol *>(1, frag.get()));
} else {
it->second.emplace_back(frag.get());
}
}
}
return fragSmiToFrag;
}
} // namespace RDKit::SynthonSpaceSearch::details
|