File: WedgeBonds.cpp

package info (click to toggle)
rdkit 202503.1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 578; xml: 229; fortran: 183; sh: 105
file content (642 lines) | stat: -rw-r--r-- 21,851 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
//
//  Copyright (C) 2023 Greg Landrum and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/Atropisomers.h>
#include <RDGeneral/types.h>
#include <sstream>
#include <set>
#include <algorithm>
#include <RDGeneral/utils.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/RDLog.h>

#include <boost/dynamic_bitset.hpp>
#include <Geometry/point.h>
#include "Chirality.h"

#include <cstdlib>

namespace RDKit {

namespace Chirality {

const BondWedgingParameters defaultWedgingParams;

namespace {
std::tuple<unsigned int, unsigned int, unsigned int> getDoubleBondPresence(
    const ROMol &mol, const Atom &atom) {
  unsigned int hasDouble = 0;
  unsigned int hasKnownDouble = 0;
  unsigned int hasAnyDouble = 0;
  for (const auto bond : mol.atomBonds(&atom)) {
    if (bond->getBondType() == Bond::BondType::DOUBLE) {
      ++hasDouble;
      if (bond->getStereo() == Bond::BondStereo::STEREOANY) {
        ++hasAnyDouble;
      } else if (bond->getStereo() > Bond::BondStereo::STEREOANY) {
        ++hasKnownDouble;
      }
    }
  }
  return std::make_tuple(hasDouble, hasKnownDouble, hasAnyDouble);
}
}  // namespace

namespace detail {

std::pair<bool, INT_VECT> countChiralNbrs(const ROMol &mol, int noNbrs) {
  // we need ring information; make sure findSSSR has been called before
  // if not call now
  if (!mol.getRingInfo()->isSssrOrBetter()) {
    MolOps::findSSSR(mol);
  }

  INT_VECT nChiralNbrs(mol.getNumAtoms(), noNbrs);

  // start by looking for bonds that are already wedged
  for (const auto bond : mol.bonds()) {
    if (bond->getBondDir() == Bond::BEGINWEDGE ||
        bond->getBondDir() == Bond::BEGINDASH ||
        bond->getBondDir() == Bond::UNKNOWN) {
      if (bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
          bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) {
        nChiralNbrs[bond->getBeginAtomIdx()] = noNbrs + 1;
      } else if (bond->getEndAtom()->getChiralTag() ==
                     Atom::CHI_TETRAHEDRAL_CW ||
                 bond->getEndAtom()->getChiralTag() ==
                     Atom::CHI_TETRAHEDRAL_CCW) {
        nChiralNbrs[bond->getEndAtomIdx()] = noNbrs + 1;
      }
    }
  }

  // now rank atoms by the number of chiral neighbors or Hs they have:
  bool chiNbrs = false;
  for (const auto at : mol.atoms()) {
    if (nChiralNbrs[at->getIdx()] > noNbrs) {
      // std::cerr << " SKIPPING1: " << at->getIdx() << std::endl;
      continue;
    }
    auto type = at->getChiralTag();
    if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
      continue;
    }
    nChiralNbrs[at->getIdx()] = 0;
    chiNbrs = true;
    for (const auto nat : mol.atomNeighbors(at)) {
      if (nat->getAtomicNum() == 1) {
        // special case: it's an H... we weight these especially high:
        nChiralNbrs[at->getIdx()] -= 10;
        continue;
      }
      type = nat->getChiralTag();
      if (type != Atom::CHI_TETRAHEDRAL_CW &&
          type != Atom::CHI_TETRAHEDRAL_CCW) {
        continue;
      }
      nChiralNbrs[at->getIdx()] -= 1;
    }
  }
  return std::make_pair(chiNbrs, nChiralNbrs);
}

//
// Determine bond wedge state
///
Bond::BondDir determineBondWedgeState(const Bond *bond,
                                      unsigned int fromAtomIdx,
                                      const Conformer *conf) {
  PRECONDITION(bond, "no bond");
  PRECONDITION(bond->getBondType() == Bond::SINGLE,
               "bad bond order for wedging");
  const auto mol = &(bond->getOwningMol());
  PRECONDITION(mol, "no mol");

  auto res = bond->getBondDir();
  if (!conf) {
    return res;
  }

  Atom *atom;
  Atom *bondAtom;
  if (bond->getBeginAtom()->getIdx() == fromAtomIdx) {
    atom = bond->getBeginAtom();
    bondAtom = bond->getEndAtom();
  } else {
    atom = bond->getEndAtom();
    bondAtom = bond->getBeginAtom();
  }

  auto chiralType = atom->getChiralTag();
  TEST_ASSERT(chiralType == Atom::CHI_TETRAHEDRAL_CW ||
              chiralType == Atom::CHI_TETRAHEDRAL_CCW);

  // if we got this far, we really need to think about it:
  std::list<int> neighborBondIndices;
  std::list<double> neighborBondAngles;
  auto centerLoc = conf->getAtomPos(atom->getIdx());
  auto tmpPt = conf->getAtomPos(bondAtom->getIdx());
  centerLoc.z = 0.0;
  tmpPt.z = 0.0;

  RDGeom::Point3D refVect;
  try {
    refVect = centerLoc.directionVector(tmpPt);
  } catch (const std::runtime_error &) {
    // we have a problem with the reference bond;
    // it's probably that the center and the tmp atom overlap
    return res;
  }

  neighborBondIndices.push_back(bond->getIdx());
  neighborBondAngles.push_back(0.0);
  for (const auto nbrBond : mol->atomBonds(atom)) {
    const auto otherAtom = nbrBond->getOtherAtom(atom);
    if (nbrBond != bond) {
      tmpPt = conf->getAtomPos(otherAtom->getIdx());
      tmpPt.z = 0.0;
      RDGeom::Point3D tmpVect;
      try {
        tmpVect = centerLoc.directionVector(tmpPt);
      } catch (const std::runtime_error &) {
        // we have a problem with the tmp bond;
        // it's probably that the atoms overlap
        return res;
      }
      auto angle = refVect.signedAngleTo(tmpVect);
      if (angle < 0.0) {
        angle += 2. * M_PI;
      }
      auto nbrIt = neighborBondIndices.begin();
      auto angleIt = neighborBondAngles.begin();
      // find the location of this neighbor in our angle-sorted list
      // of neighbors:
      while (angleIt != neighborBondAngles.end() && angle > (*angleIt)) {
        ++angleIt;
        ++nbrIt;
      }
      neighborBondAngles.insert(angleIt, angle);
      neighborBondIndices.insert(nbrIt, nbrBond->getIdx());
    }
  }

  // at this point, neighborBondIndices contains a list of bond
  // indices from the central atom.  They are arranged starting
  // at the reference bond in CCW order (based on the current
  // depiction).

  // if we already have one bond with direction set, then we can use it to
  // decide what the direction of this one is

  // we're starting from scratch... do the work!
  int nSwaps = atom->getPerturbationOrder(neighborBondIndices);

  // in the case of three-coordinated atoms we may have to worry about
  // the location of the implicit hydrogen - Issue 209
  // Check if we have one of these situation
  //
  //      0        1 0 2
  //      *         \*/
  //  1 - C - 2      C
  //
  // here the hydrogen will be between 1 and 2 and we need to add an
  // additional swap
  if (neighborBondAngles.size() == 3) {
    // three coordinated
    auto angleIt = neighborBondAngles.begin();
    ++angleIt;  // the first is the 0 (or reference bond - we will ignore
                // that
    double angle1 = (*angleIt);
    ++angleIt;
    double angle2 = (*angleIt);
    if (angle2 - angle1 >= (M_PI - 1e-4)) {
      // we have the above situation
      nSwaps++;
    }
  }

#ifdef VERBOSE_STEREOCHEM
  BOOST_LOG(rdDebugLog) << "--------- " << nSwaps << std::endl;
  std::copy(neighborBondIndices.begin(), neighborBondIndices.end(),
            std::ostream_iterator<int>(BOOST_LOG(rdDebugLog), " "));
  BOOST_LOG(rdDebugLog) << std::endl;
  std::copy(neighborBondAngles.begin(), neighborBondAngles.end(),
            std::ostream_iterator<double>(BOOST_LOG(rdDebugLog), " "));
  BOOST_LOG(rdDebugLog) << std::endl;
#endif
  if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
    if (nSwaps % 2 == 1) {
      res = Bond::BEGINDASH;
    } else {
      res = Bond::BEGINWEDGE;
    }
  } else {
    if (nSwaps % 2 == 1) {
      res = Bond::BEGINWEDGE;
    } else {
      res = Bond::BEGINDASH;
    }
  }

  return res;
}
Bond::BondDir determineBondWedgeState(
    const Bond *bond,
    const std::map<int, std::unique_ptr<RDKit::Chirality::WedgeInfoBase>>
        &wedgeBonds,
    const Conformer *conf) {
  PRECONDITION(bond, "no bond");
  int bid = bond->getIdx();
  auto wbi = wedgeBonds.find(bid);
  if (wbi == wedgeBonds.end()) {
    return bond->getBondDir();
  }

  if (wbi->second->getType() ==
      Chirality::WedgeInfoType::WedgeInfoTypeAtropisomer) {
    return wbi->second->getDir();
  } else {
    return determineBondWedgeState(bond, wbi->second->getIdx(), conf);
  }
}

// Logic for two wedges at one atom (based on IUPAC stuff)
// - at least four neighbors
// - neighboring bonds get wedged
// - same rules for picking which one for first
// - not ring bonds (?)

// picks a bond for atom that we will wedge when we write the mol file
// returns idx of that bond.
int pickBondToWedge(
    const Atom *atom, const ROMol &mol, const INT_VECT &nChiralNbrs,
    const std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> &wedgeBonds,
    int noNbrs) {
  // here is what we are going to do
  // - at each chiral center look for a bond that is begins at the atom and
  //   is not yet picked to be wedged for a different chiral center, preferring
  //   bonds to Hs
  // - if we do not find a bond that begins at the chiral center - we will take
  //   the first bond that is not yet picked by any other chiral centers
  // we use the orders calculated above to determine which order to do the
  // wedging

  std::vector<std::pair<int, int>> nbrScores;
  for (const auto bond : mol.atomBonds(atom)) {
    // can only wedge single bonds:
    if (bond->getBondType() != Bond::SINGLE) {
      continue;
    }

    int bid = bond->getIdx();
    if (wedgeBonds.find(bid) == wedgeBonds.end()) {
      // very strong preference for Hs:
      auto *oatom = bond->getOtherAtom(atom);
      if (oatom->getAtomicNum() == 1) {
        nbrScores.emplace_back(-1000000,
                               bid);  // lower than anything else can be
        continue;
      }
      // prefer lower atomic numbers with lower degrees and no specified
      // chirality:
      int nbrScore = oatom->getAtomicNum() + 100 * oatom->getDegree() +
                     1000 * ((oatom->getChiralTag() != Atom::CHI_UNSPECIFIED));
      // prefer neighbors that are nonchiral or have as few chiral neighbors
      // as possible:
      int oIdx = oatom->getIdx();
      if (nChiralNbrs[oIdx] < noNbrs) {
        // the counts are negative, so we have to subtract them off
        nbrScore -= 100000 * nChiralNbrs[oIdx];
      }
      // prefer bonds to non-ring atoms:
      nbrScore += 10000 * mol.getRingInfo()->numAtomRings(oIdx);
      // prefer non-ring bonds;
      nbrScore += 20000 * mol.getRingInfo()->numBondRings(bid);
      // prefer bonds to atoms which don't have a double bond from them
      auto [hasDoubleBond, hasKnownDoubleBond, hasAnyDoubleBond] =
          getDoubleBondPresence(mol, *oatom);
      nbrScore += 11000 * hasDoubleBond;
      nbrScore += 12000 * hasKnownDoubleBond;
      nbrScore += 23000 * hasAnyDoubleBond;

      // if at all possible, do not go to marked attachment points
      // since they may well be removed when we write a mol block
      if (oatom->hasProp(common_properties::_fromAttachPoint)) {
        nbrScore += 500000;
      }
      // std::cerr << "    nrbScore: " << idx << " - " << oIdx << " : "
      //           << nbrScore << " nChiralNbrs: " << nChiralNbrs[oIdx]
      //           << std::endl;
      nbrScores.emplace_back(nbrScore, bid);
    }
  }
  // There's still one situation where this whole thing can fail: an unlucky
  // situation where all neighbors of all neighbors of an atom are chiral
  // and that atom ends up being the last one picked for stereochem
  // assignment. This also happens in cases where the chiral atom doesn't
  // have all of its neighbors (like when working with partially sanitized
  // fragments)
  //
  // We'll bail here by returning -1
  if (nbrScores.empty()) {
    return -1;
  }
  auto minPr = std::min_element(nbrScores.begin(), nbrScores.end());
  return minPr->second;
}

}  // namespace detail

// returns map of bondIdx -> bond begin atom for those bonds that
// need wedging.

std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> pickBondsToWedge(
    const ROMol &mol, const BondWedgingParameters *params) {
  const Conformer *conf = nullptr;
  if (mol.getNumConformers()) {
    conf = &mol.getConformer();
  }

  return pickBondsToWedge(mol, params, conf);
}

std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> pickBondsToWedge(
    const ROMol &mol, const BondWedgingParameters *params,
    const Conformer *conf) {
  if (!params) {
    params = &defaultWedgingParams;
  }
  std::vector<unsigned int> indices(mol.getNumAtoms());
  std::iota(indices.begin(), indices.end(), 0);
  static int noNbrs = 100;
  auto [chiNbrs, nChiralNbrs] = detail::countChiralNbrs(mol, noNbrs);
  if (chiNbrs) {
    std::sort(indices.begin(), indices.end(),
              [&nChiralNbrs = nChiralNbrs](auto i1, auto i2) {
                return nChiralNbrs[i1] < nChiralNbrs[i2];
              });
  }
  std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> wedgeInfo;
  for (auto idx : indices) {
    if (nChiralNbrs[idx] > noNbrs) {
      // std::cerr << " SKIPPING2: " << idx << std::endl;
      continue;  // already have a wedged bond here
    }
    auto atom = mol.getAtomWithIdx(idx);
    auto type = atom->getChiralTag();
    // the indices are ordered such that all chiral atoms come first. If
    // this has no chiral flag, we can stop the whole loop:
    if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
      break;
    }
    auto bnd1 =
        detail::pickBondToWedge(atom, mol, nChiralNbrs, wedgeInfo, noNbrs);
    if (bnd1 >= 0) {
      auto wi = std::unique_ptr<RDKit::Chirality::WedgeInfoChiral>(
          new RDKit::Chirality::WedgeInfoChiral(idx));
      wedgeInfo[bnd1] = std::move(wi);
    }
  }
  RDKit::Atropisomers::wedgeBondsFromAtropisomers(mol, conf, wedgeInfo);

  return wedgeInfo;
}

namespace {
// conditions here:
// 1. only degree four atoms (IUPAC)
// 2. no ring bonds (IUPAC)
// 3. not to chiral atoms (general IUPAC wedging rule)
void addSecondWedgeAroundAtom(ROMol &mol, Bond *refBond,
                              const Conformer *conf) {
  PRECONDITION(refBond, "no reference bond provided");
  PRECONDITION(conf, "no conformer provided");
  auto atom = refBond->getBeginAtom();
  // we only do degree four atoms (per IUPAC recommendation)
  if (atom->getDegree() < 4) {
    return;
  }
  auto aloc = conf->getAtomPos(atom->getIdx());
  aloc.z = 0.0;
  auto refVect = conf->getAtomPos(refBond->getEndAtomIdx());
  refVect.z = 0.0;
  refVect = aloc.directionVector(refVect);
  double minAngle = 10000.0;
  unsigned int bestDegree = 100;
  Bond *bondToWedge = nullptr;
  for (auto bond : mol.atomBonds(atom)) {
    if (bond == refBond || bond->getBondType() != Bond::BondType::SINGLE ||
        bond->getBondDir() != Bond::BondDir::NONE ||
        bond->getOtherAtom(atom)->getChiralTag() !=
            Atom::ChiralType::CHI_UNSPECIFIED ||
        mol.getRingInfo()->numBondRings(bond->getIdx())) {
      continue;
    }

    // FIX: There's more checking required here

    auto bVect = conf->getAtomPos(bond->getOtherAtomIdx(atom->getIdx()));
    bVect.z = 0.0;
    bVect = aloc.directionVector(bVect);
    auto angle = refVect.angleTo(bVect);
    if ((angle - minAngle) < 5 * M_PI / 180 &&
        bond->getOtherAtom(atom)->getDegree() <= bestDegree) {
      bondToWedge = bond;
      minAngle = angle;
      bestDegree = bond->getOtherAtom(atom)->getDegree();
    }
  }
  // if we got a bond and the angle is < 120 degrees (quasi-arbitrary)
  if (bondToWedge && minAngle < 2 * M_PI / 3) {
    bondToWedge->setBondDir(refBond->getBondDir() == Bond::BondDir::BEGINDASH
                                ? Bond::BondDir::BEGINWEDGE
                                : Bond::BondDir::BEGINDASH);
    if (bondToWedge->getBeginAtomIdx() != atom->getIdx()) {
      bondToWedge->setEndAtomIdx(bondToWedge->getBeginAtomIdx());
      bondToWedge->setBeginAtomIdx(atom->getIdx());
    }
  }
}
}  // namespace

void wedgeMolBonds(ROMol &mol, const Conformer *conf,
                   const BondWedgingParameters *params) {
  PRECONDITION(conf || mol.getNumConformers(), "no conformer available");
  if (!conf) {
    conf = &mol.getConformer();
  }
  if (!params) {
    params = &defaultWedgingParams;
  }
  // we need ring info
  if (!mol.getRingInfo() || !mol.getRingInfo()->isSssrOrBetter()) {
    MolOps::findSSSR(mol);
  }

  auto wedgeBonds = Chirality::pickBondsToWedge(mol, params, conf);

  // loop over the bonds we need to wedge:
  for (const auto &[wbi, wedgeInfo] : wedgeBonds) {
    if (wedgeInfo->getType() ==
        Chirality::WedgeInfoType::WedgeInfoTypeAtropisomer) {
      mol.getBondWithIdx(wbi)->setBondDir(wedgeInfo->getDir());
    } else {  // chiral atom needs wedging
      auto bond = mol.getBondWithIdx(wbi);
      auto dir =
          detail::determineBondWedgeState(bond, wedgeInfo->getIdx(), conf);
      if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
        bond->setBondDir(dir);

        // it is possible that this
        // wedging was determined by a chiral atom at the end of the
        // bond (instead of at the beginning). In this case we need to
        // reverse the begin and end atoms for the bond
        if (static_cast<unsigned int>(wedgeInfo->getIdx()) !=
            bond->getBeginAtomIdx()) {
          auto tmp = bond->getBeginAtomIdx();
          bond->setBeginAtomIdx(bond->getEndAtomIdx());
          bond->setEndAtomIdx(tmp);
        }
      }
    }
  }
  if (params->wedgeTwoBondsIfPossible) {
    // This should probably check whether the existing wedge
    // is in agreement with the chiral tag on the atom.

    for (const auto atom : mol.atoms()) {
      if (atom->getChiralTag() != Atom::CHI_TETRAHEDRAL_CW &&
          atom->getChiralTag() != Atom::CHI_TETRAHEDRAL_CCW) {
        continue;
      }
      unsigned numWedged = 0;
      Bond *wedgedBond = nullptr;
      for (const auto bond : mol.atomBonds(atom)) {
        if (bond->getBeginAtom() == atom &&
            bond->getBondType() == Bond::SINGLE &&
            (bond->getBondDir() == Bond::BEGINWEDGE ||
             bond->getBondDir() == Bond::BEGINDASH)) {
          ++numWedged;
          wedgedBond = bond;
        }
      }
      if (numWedged == 1) {
        addSecondWedgeAroundAtom(mol, wedgedBond, conf);
      }
    }
  }
}

void wedgeBond(Bond *bond, unsigned int fromAtomIdx, const Conformer *conf) {
  PRECONDITION(bond, "no bond");
  PRECONDITION(conf, "no conformer");
  PRECONDITION(&conf->getOwningMol() == &bond->getOwningMol(),
               "bond and conformer do not belong to same molecule");
  if (bond->getBondType() != Bond::SINGLE) {
    return;
  }
  Bond::BondDir dir = detail::determineBondWedgeState(bond, fromAtomIdx, conf);
  if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
    bond->setBondDir(dir);
  }
}

void reapplyMolBlockWedging(ROMol &mol, bool allBondTypes) {
  MolOps::clearDirFlags(mol, true);
  for (auto b : mol.bonds()) {
    int explicit_unknown_stereo = -1;
    if (b->getPropIfPresent<int>(common_properties::_UnknownStereo,
                                 explicit_unknown_stereo) &&
        explicit_unknown_stereo) {
      b->setBondDir(Bond::UNKNOWN);
    }
    int bond_dir = -1;
    if (b->getPropIfPresent<int>(common_properties::_MolFileBondStereo,
                                 bond_dir)) {
      if (allBondTypes || canHaveDirection(*b)) {
        if (bond_dir == 1) {
          b->setBondDir(Bond::BEGINWEDGE);
        } else if (bond_dir == 6) {
          b->setBondDir(Bond::BEGINDASH);
        }
      }
      if (b->getBondType() == Bond::DOUBLE) {
        if (bond_dir == 0 && b->getStereo() == Bond::STEREOANY) {
          b->setBondDir(Bond::NONE);
          b->setStereo(Bond::STEREONONE);
        } else if (bond_dir == 3) {
          b->setBondDir(Bond::EITHERDOUBLE);
          b->setStereo(Bond::STEREOANY);
        }
      }
    }
    int cfg = -1;
    b->getPropIfPresent<int>(common_properties::_MolFileBondCfg, cfg);
    switch (cfg) {
      case 1:
        if (allBondTypes || canHaveDirection(*b)) {
          b->setBondDir(Bond::BEGINWEDGE);
        }
        break;
      case 2:
        if (canHaveDirection(*b)) {
          b->setBondDir(Bond::UNKNOWN);
        } else if (b->getBondType() == Bond::DOUBLE) {
          b->setBondDir(Bond::EITHERDOUBLE);
          b->setStereo(Bond::STEREOANY);
        }
        break;
      case 3:
        if (allBondTypes || canHaveDirection(*b)) {
          b->setBondDir(Bond::BEGINDASH);
        }
        break;
      case 0:
      case -1:
        if (bond_dir == -1 && b->getBondType() == Bond::DOUBLE &&
            b->getStereo() == Bond::STEREOANY) {
          b->setBondDir(Bond::NONE);
          b->setStereo(Bond::STEREONONE);
        }
    }
  }
}

void clearMolBlockWedgingInfo(ROMol &mol) {
  for (auto b : mol.bonds()) {
    b->clearProp(common_properties::_MolFileBondStereo);
    b->clearProp(common_properties::_MolFileBondCfg);
  }
}

void invertMolBlockWedgingInfo(ROMol &mol) {
  for (auto b : mol.bonds()) {
    int bond_dir = -1;
    if (b->getPropIfPresent<int>(common_properties::_MolFileBondStereo,
                                 bond_dir)) {
      if (bond_dir == 1) {
        b->setProp<int>(common_properties::_MolFileBondStereo, 6);
      } else if (bond_dir == 6) {
        b->setProp<int>(common_properties::_MolFileBondStereo, 1);
      }
    }
    int cfg = -1;
    if (b->getPropIfPresent<int>(common_properties::_MolFileBondCfg, cfg)) {
      if (cfg == 1) {
        b->setProp<int>(common_properties::_MolFileBondCfg, 3);
      } else if (cfg == 3) {
        b->setProp<int>(common_properties::_MolFileBondCfg, 1);
      }
    }
  }
}

}  // namespace Chirality
}  // namespace RDKit