1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
//
// Copyright (C) 2023 Greg Landrum and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/Atropisomers.h>
#include <RDGeneral/types.h>
#include <sstream>
#include <set>
#include <algorithm>
#include <RDGeneral/utils.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/RDLog.h>
#include <boost/dynamic_bitset.hpp>
#include <Geometry/point.h>
#include "Chirality.h"
#include <cstdlib>
namespace RDKit {
namespace Chirality {
const BondWedgingParameters defaultWedgingParams;
namespace {
std::tuple<unsigned int, unsigned int, unsigned int> getDoubleBondPresence(
const ROMol &mol, const Atom &atom) {
unsigned int hasDouble = 0;
unsigned int hasKnownDouble = 0;
unsigned int hasAnyDouble = 0;
for (const auto bond : mol.atomBonds(&atom)) {
if (bond->getBondType() == Bond::BondType::DOUBLE) {
++hasDouble;
if (bond->getStereo() == Bond::BondStereo::STEREOANY) {
++hasAnyDouble;
} else if (bond->getStereo() > Bond::BondStereo::STEREOANY) {
++hasKnownDouble;
}
}
}
return std::make_tuple(hasDouble, hasKnownDouble, hasAnyDouble);
}
} // namespace
namespace detail {
std::pair<bool, INT_VECT> countChiralNbrs(const ROMol &mol, int noNbrs) {
// we need ring information; make sure findSSSR has been called before
// if not call now
if (!mol.getRingInfo()->isSssrOrBetter()) {
MolOps::findSSSR(mol);
}
INT_VECT nChiralNbrs(mol.getNumAtoms(), noNbrs);
// start by looking for bonds that are already wedged
for (const auto bond : mol.bonds()) {
if (bond->getBondDir() == Bond::BEGINWEDGE ||
bond->getBondDir() == Bond::BEGINDASH ||
bond->getBondDir() == Bond::UNKNOWN) {
if (bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) {
nChiralNbrs[bond->getBeginAtomIdx()] = noNbrs + 1;
} else if (bond->getEndAtom()->getChiralTag() ==
Atom::CHI_TETRAHEDRAL_CW ||
bond->getEndAtom()->getChiralTag() ==
Atom::CHI_TETRAHEDRAL_CCW) {
nChiralNbrs[bond->getEndAtomIdx()] = noNbrs + 1;
}
}
}
// now rank atoms by the number of chiral neighbors or Hs they have:
bool chiNbrs = false;
for (const auto at : mol.atoms()) {
if (nChiralNbrs[at->getIdx()] > noNbrs) {
// std::cerr << " SKIPPING1: " << at->getIdx() << std::endl;
continue;
}
auto type = at->getChiralTag();
if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
continue;
}
nChiralNbrs[at->getIdx()] = 0;
chiNbrs = true;
for (const auto nat : mol.atomNeighbors(at)) {
if (nat->getAtomicNum() == 1) {
// special case: it's an H... we weight these especially high:
nChiralNbrs[at->getIdx()] -= 10;
continue;
}
type = nat->getChiralTag();
if (type != Atom::CHI_TETRAHEDRAL_CW &&
type != Atom::CHI_TETRAHEDRAL_CCW) {
continue;
}
nChiralNbrs[at->getIdx()] -= 1;
}
}
return std::make_pair(chiNbrs, nChiralNbrs);
}
//
// Determine bond wedge state
///
Bond::BondDir determineBondWedgeState(const Bond *bond,
unsigned int fromAtomIdx,
const Conformer *conf) {
PRECONDITION(bond, "no bond");
PRECONDITION(bond->getBondType() == Bond::SINGLE,
"bad bond order for wedging");
const auto mol = &(bond->getOwningMol());
PRECONDITION(mol, "no mol");
auto res = bond->getBondDir();
if (!conf) {
return res;
}
Atom *atom;
Atom *bondAtom;
if (bond->getBeginAtom()->getIdx() == fromAtomIdx) {
atom = bond->getBeginAtom();
bondAtom = bond->getEndAtom();
} else {
atom = bond->getEndAtom();
bondAtom = bond->getBeginAtom();
}
auto chiralType = atom->getChiralTag();
TEST_ASSERT(chiralType == Atom::CHI_TETRAHEDRAL_CW ||
chiralType == Atom::CHI_TETRAHEDRAL_CCW);
// if we got this far, we really need to think about it:
std::list<int> neighborBondIndices;
std::list<double> neighborBondAngles;
auto centerLoc = conf->getAtomPos(atom->getIdx());
auto tmpPt = conf->getAtomPos(bondAtom->getIdx());
centerLoc.z = 0.0;
tmpPt.z = 0.0;
RDGeom::Point3D refVect;
try {
refVect = centerLoc.directionVector(tmpPt);
} catch (const std::runtime_error &) {
// we have a problem with the reference bond;
// it's probably that the center and the tmp atom overlap
return res;
}
neighborBondIndices.push_back(bond->getIdx());
neighborBondAngles.push_back(0.0);
for (const auto nbrBond : mol->atomBonds(atom)) {
const auto otherAtom = nbrBond->getOtherAtom(atom);
if (nbrBond != bond) {
tmpPt = conf->getAtomPos(otherAtom->getIdx());
tmpPt.z = 0.0;
RDGeom::Point3D tmpVect;
try {
tmpVect = centerLoc.directionVector(tmpPt);
} catch (const std::runtime_error &) {
// we have a problem with the tmp bond;
// it's probably that the atoms overlap
return res;
}
auto angle = refVect.signedAngleTo(tmpVect);
if (angle < 0.0) {
angle += 2. * M_PI;
}
auto nbrIt = neighborBondIndices.begin();
auto angleIt = neighborBondAngles.begin();
// find the location of this neighbor in our angle-sorted list
// of neighbors:
while (angleIt != neighborBondAngles.end() && angle > (*angleIt)) {
++angleIt;
++nbrIt;
}
neighborBondAngles.insert(angleIt, angle);
neighborBondIndices.insert(nbrIt, nbrBond->getIdx());
}
}
// at this point, neighborBondIndices contains a list of bond
// indices from the central atom. They are arranged starting
// at the reference bond in CCW order (based on the current
// depiction).
// if we already have one bond with direction set, then we can use it to
// decide what the direction of this one is
// we're starting from scratch... do the work!
int nSwaps = atom->getPerturbationOrder(neighborBondIndices);
// in the case of three-coordinated atoms we may have to worry about
// the location of the implicit hydrogen - Issue 209
// Check if we have one of these situation
//
// 0 1 0 2
// * \*/
// 1 - C - 2 C
//
// here the hydrogen will be between 1 and 2 and we need to add an
// additional swap
if (neighborBondAngles.size() == 3) {
// three coordinated
auto angleIt = neighborBondAngles.begin();
++angleIt; // the first is the 0 (or reference bond - we will ignore
// that
double angle1 = (*angleIt);
++angleIt;
double angle2 = (*angleIt);
if (angle2 - angle1 >= (M_PI - 1e-4)) {
// we have the above situation
nSwaps++;
}
}
#ifdef VERBOSE_STEREOCHEM
BOOST_LOG(rdDebugLog) << "--------- " << nSwaps << std::endl;
std::copy(neighborBondIndices.begin(), neighborBondIndices.end(),
std::ostream_iterator<int>(BOOST_LOG(rdDebugLog), " "));
BOOST_LOG(rdDebugLog) << std::endl;
std::copy(neighborBondAngles.begin(), neighborBondAngles.end(),
std::ostream_iterator<double>(BOOST_LOG(rdDebugLog), " "));
BOOST_LOG(rdDebugLog) << std::endl;
#endif
if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
if (nSwaps % 2 == 1) {
res = Bond::BEGINDASH;
} else {
res = Bond::BEGINWEDGE;
}
} else {
if (nSwaps % 2 == 1) {
res = Bond::BEGINWEDGE;
} else {
res = Bond::BEGINDASH;
}
}
return res;
}
Bond::BondDir determineBondWedgeState(
const Bond *bond,
const std::map<int, std::unique_ptr<RDKit::Chirality::WedgeInfoBase>>
&wedgeBonds,
const Conformer *conf) {
PRECONDITION(bond, "no bond");
int bid = bond->getIdx();
auto wbi = wedgeBonds.find(bid);
if (wbi == wedgeBonds.end()) {
return bond->getBondDir();
}
if (wbi->second->getType() ==
Chirality::WedgeInfoType::WedgeInfoTypeAtropisomer) {
return wbi->second->getDir();
} else {
return determineBondWedgeState(bond, wbi->second->getIdx(), conf);
}
}
// Logic for two wedges at one atom (based on IUPAC stuff)
// - at least four neighbors
// - neighboring bonds get wedged
// - same rules for picking which one for first
// - not ring bonds (?)
// picks a bond for atom that we will wedge when we write the mol file
// returns idx of that bond.
int pickBondToWedge(
const Atom *atom, const ROMol &mol, const INT_VECT &nChiralNbrs,
const std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> &wedgeBonds,
int noNbrs) {
// here is what we are going to do
// - at each chiral center look for a bond that is begins at the atom and
// is not yet picked to be wedged for a different chiral center, preferring
// bonds to Hs
// - if we do not find a bond that begins at the chiral center - we will take
// the first bond that is not yet picked by any other chiral centers
// we use the orders calculated above to determine which order to do the
// wedging
std::vector<std::pair<int, int>> nbrScores;
for (const auto bond : mol.atomBonds(atom)) {
// can only wedge single bonds:
if (bond->getBondType() != Bond::SINGLE) {
continue;
}
int bid = bond->getIdx();
if (wedgeBonds.find(bid) == wedgeBonds.end()) {
// very strong preference for Hs:
auto *oatom = bond->getOtherAtom(atom);
if (oatom->getAtomicNum() == 1) {
nbrScores.emplace_back(-1000000,
bid); // lower than anything else can be
continue;
}
// prefer lower atomic numbers with lower degrees and no specified
// chirality:
int nbrScore = oatom->getAtomicNum() + 100 * oatom->getDegree() +
1000 * ((oatom->getChiralTag() != Atom::CHI_UNSPECIFIED));
// prefer neighbors that are nonchiral or have as few chiral neighbors
// as possible:
int oIdx = oatom->getIdx();
if (nChiralNbrs[oIdx] < noNbrs) {
// the counts are negative, so we have to subtract them off
nbrScore -= 100000 * nChiralNbrs[oIdx];
}
// prefer bonds to non-ring atoms:
nbrScore += 10000 * mol.getRingInfo()->numAtomRings(oIdx);
// prefer non-ring bonds;
nbrScore += 20000 * mol.getRingInfo()->numBondRings(bid);
// prefer bonds to atoms which don't have a double bond from them
auto [hasDoubleBond, hasKnownDoubleBond, hasAnyDoubleBond] =
getDoubleBondPresence(mol, *oatom);
nbrScore += 11000 * hasDoubleBond;
nbrScore += 12000 * hasKnownDoubleBond;
nbrScore += 23000 * hasAnyDoubleBond;
// if at all possible, do not go to marked attachment points
// since they may well be removed when we write a mol block
if (oatom->hasProp(common_properties::_fromAttachPoint)) {
nbrScore += 500000;
}
// std::cerr << " nrbScore: " << idx << " - " << oIdx << " : "
// << nbrScore << " nChiralNbrs: " << nChiralNbrs[oIdx]
// << std::endl;
nbrScores.emplace_back(nbrScore, bid);
}
}
// There's still one situation where this whole thing can fail: an unlucky
// situation where all neighbors of all neighbors of an atom are chiral
// and that atom ends up being the last one picked for stereochem
// assignment. This also happens in cases where the chiral atom doesn't
// have all of its neighbors (like when working with partially sanitized
// fragments)
//
// We'll bail here by returning -1
if (nbrScores.empty()) {
return -1;
}
auto minPr = std::min_element(nbrScores.begin(), nbrScores.end());
return minPr->second;
}
} // namespace detail
// returns map of bondIdx -> bond begin atom for those bonds that
// need wedging.
std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> pickBondsToWedge(
const ROMol &mol, const BondWedgingParameters *params) {
const Conformer *conf = nullptr;
if (mol.getNumConformers()) {
conf = &mol.getConformer();
}
return pickBondsToWedge(mol, params, conf);
}
std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> pickBondsToWedge(
const ROMol &mol, const BondWedgingParameters *params,
const Conformer *conf) {
if (!params) {
params = &defaultWedgingParams;
}
std::vector<unsigned int> indices(mol.getNumAtoms());
std::iota(indices.begin(), indices.end(), 0);
static int noNbrs = 100;
auto [chiNbrs, nChiralNbrs] = detail::countChiralNbrs(mol, noNbrs);
if (chiNbrs) {
std::sort(indices.begin(), indices.end(),
[&nChiralNbrs = nChiralNbrs](auto i1, auto i2) {
return nChiralNbrs[i1] < nChiralNbrs[i2];
});
}
std::map<int, std::unique_ptr<Chirality::WedgeInfoBase>> wedgeInfo;
for (auto idx : indices) {
if (nChiralNbrs[idx] > noNbrs) {
// std::cerr << " SKIPPING2: " << idx << std::endl;
continue; // already have a wedged bond here
}
auto atom = mol.getAtomWithIdx(idx);
auto type = atom->getChiralTag();
// the indices are ordered such that all chiral atoms come first. If
// this has no chiral flag, we can stop the whole loop:
if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
break;
}
auto bnd1 =
detail::pickBondToWedge(atom, mol, nChiralNbrs, wedgeInfo, noNbrs);
if (bnd1 >= 0) {
auto wi = std::unique_ptr<RDKit::Chirality::WedgeInfoChiral>(
new RDKit::Chirality::WedgeInfoChiral(idx));
wedgeInfo[bnd1] = std::move(wi);
}
}
RDKit::Atropisomers::wedgeBondsFromAtropisomers(mol, conf, wedgeInfo);
return wedgeInfo;
}
namespace {
// conditions here:
// 1. only degree four atoms (IUPAC)
// 2. no ring bonds (IUPAC)
// 3. not to chiral atoms (general IUPAC wedging rule)
void addSecondWedgeAroundAtom(ROMol &mol, Bond *refBond,
const Conformer *conf) {
PRECONDITION(refBond, "no reference bond provided");
PRECONDITION(conf, "no conformer provided");
auto atom = refBond->getBeginAtom();
// we only do degree four atoms (per IUPAC recommendation)
if (atom->getDegree() < 4) {
return;
}
auto aloc = conf->getAtomPos(atom->getIdx());
aloc.z = 0.0;
auto refVect = conf->getAtomPos(refBond->getEndAtomIdx());
refVect.z = 0.0;
refVect = aloc.directionVector(refVect);
double minAngle = 10000.0;
unsigned int bestDegree = 100;
Bond *bondToWedge = nullptr;
for (auto bond : mol.atomBonds(atom)) {
if (bond == refBond || bond->getBondType() != Bond::BondType::SINGLE ||
bond->getBondDir() != Bond::BondDir::NONE ||
bond->getOtherAtom(atom)->getChiralTag() !=
Atom::ChiralType::CHI_UNSPECIFIED ||
mol.getRingInfo()->numBondRings(bond->getIdx())) {
continue;
}
// FIX: There's more checking required here
auto bVect = conf->getAtomPos(bond->getOtherAtomIdx(atom->getIdx()));
bVect.z = 0.0;
bVect = aloc.directionVector(bVect);
auto angle = refVect.angleTo(bVect);
if ((angle - minAngle) < 5 * M_PI / 180 &&
bond->getOtherAtom(atom)->getDegree() <= bestDegree) {
bondToWedge = bond;
minAngle = angle;
bestDegree = bond->getOtherAtom(atom)->getDegree();
}
}
// if we got a bond and the angle is < 120 degrees (quasi-arbitrary)
if (bondToWedge && minAngle < 2 * M_PI / 3) {
bondToWedge->setBondDir(refBond->getBondDir() == Bond::BondDir::BEGINDASH
? Bond::BondDir::BEGINWEDGE
: Bond::BondDir::BEGINDASH);
if (bondToWedge->getBeginAtomIdx() != atom->getIdx()) {
bondToWedge->setEndAtomIdx(bondToWedge->getBeginAtomIdx());
bondToWedge->setBeginAtomIdx(atom->getIdx());
}
}
}
} // namespace
void wedgeMolBonds(ROMol &mol, const Conformer *conf,
const BondWedgingParameters *params) {
PRECONDITION(conf || mol.getNumConformers(), "no conformer available");
if (!conf) {
conf = &mol.getConformer();
}
if (!params) {
params = &defaultWedgingParams;
}
// we need ring info
if (!mol.getRingInfo() || !mol.getRingInfo()->isSssrOrBetter()) {
MolOps::findSSSR(mol);
}
auto wedgeBonds = Chirality::pickBondsToWedge(mol, params, conf);
// loop over the bonds we need to wedge:
for (const auto &[wbi, wedgeInfo] : wedgeBonds) {
if (wedgeInfo->getType() ==
Chirality::WedgeInfoType::WedgeInfoTypeAtropisomer) {
mol.getBondWithIdx(wbi)->setBondDir(wedgeInfo->getDir());
} else { // chiral atom needs wedging
auto bond = mol.getBondWithIdx(wbi);
auto dir =
detail::determineBondWedgeState(bond, wedgeInfo->getIdx(), conf);
if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
bond->setBondDir(dir);
// it is possible that this
// wedging was determined by a chiral atom at the end of the
// bond (instead of at the beginning). In this case we need to
// reverse the begin and end atoms for the bond
if (static_cast<unsigned int>(wedgeInfo->getIdx()) !=
bond->getBeginAtomIdx()) {
auto tmp = bond->getBeginAtomIdx();
bond->setBeginAtomIdx(bond->getEndAtomIdx());
bond->setEndAtomIdx(tmp);
}
}
}
}
if (params->wedgeTwoBondsIfPossible) {
// This should probably check whether the existing wedge
// is in agreement with the chiral tag on the atom.
for (const auto atom : mol.atoms()) {
if (atom->getChiralTag() != Atom::CHI_TETRAHEDRAL_CW &&
atom->getChiralTag() != Atom::CHI_TETRAHEDRAL_CCW) {
continue;
}
unsigned numWedged = 0;
Bond *wedgedBond = nullptr;
for (const auto bond : mol.atomBonds(atom)) {
if (bond->getBeginAtom() == atom &&
bond->getBondType() == Bond::SINGLE &&
(bond->getBondDir() == Bond::BEGINWEDGE ||
bond->getBondDir() == Bond::BEGINDASH)) {
++numWedged;
wedgedBond = bond;
}
}
if (numWedged == 1) {
addSecondWedgeAroundAtom(mol, wedgedBond, conf);
}
}
}
}
void wedgeBond(Bond *bond, unsigned int fromAtomIdx, const Conformer *conf) {
PRECONDITION(bond, "no bond");
PRECONDITION(conf, "no conformer");
PRECONDITION(&conf->getOwningMol() == &bond->getOwningMol(),
"bond and conformer do not belong to same molecule");
if (bond->getBondType() != Bond::SINGLE) {
return;
}
Bond::BondDir dir = detail::determineBondWedgeState(bond, fromAtomIdx, conf);
if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
bond->setBondDir(dir);
}
}
void reapplyMolBlockWedging(ROMol &mol, bool allBondTypes) {
MolOps::clearDirFlags(mol, true);
for (auto b : mol.bonds()) {
int explicit_unknown_stereo = -1;
if (b->getPropIfPresent<int>(common_properties::_UnknownStereo,
explicit_unknown_stereo) &&
explicit_unknown_stereo) {
b->setBondDir(Bond::UNKNOWN);
}
int bond_dir = -1;
if (b->getPropIfPresent<int>(common_properties::_MolFileBondStereo,
bond_dir)) {
if (allBondTypes || canHaveDirection(*b)) {
if (bond_dir == 1) {
b->setBondDir(Bond::BEGINWEDGE);
} else if (bond_dir == 6) {
b->setBondDir(Bond::BEGINDASH);
}
}
if (b->getBondType() == Bond::DOUBLE) {
if (bond_dir == 0 && b->getStereo() == Bond::STEREOANY) {
b->setBondDir(Bond::NONE);
b->setStereo(Bond::STEREONONE);
} else if (bond_dir == 3) {
b->setBondDir(Bond::EITHERDOUBLE);
b->setStereo(Bond::STEREOANY);
}
}
}
int cfg = -1;
b->getPropIfPresent<int>(common_properties::_MolFileBondCfg, cfg);
switch (cfg) {
case 1:
if (allBondTypes || canHaveDirection(*b)) {
b->setBondDir(Bond::BEGINWEDGE);
}
break;
case 2:
if (canHaveDirection(*b)) {
b->setBondDir(Bond::UNKNOWN);
} else if (b->getBondType() == Bond::DOUBLE) {
b->setBondDir(Bond::EITHERDOUBLE);
b->setStereo(Bond::STEREOANY);
}
break;
case 3:
if (allBondTypes || canHaveDirection(*b)) {
b->setBondDir(Bond::BEGINDASH);
}
break;
case 0:
case -1:
if (bond_dir == -1 && b->getBondType() == Bond::DOUBLE &&
b->getStereo() == Bond::STEREOANY) {
b->setBondDir(Bond::NONE);
b->setStereo(Bond::STEREONONE);
}
}
}
}
void clearMolBlockWedgingInfo(ROMol &mol) {
for (auto b : mol.bonds()) {
b->clearProp(common_properties::_MolFileBondStereo);
b->clearProp(common_properties::_MolFileBondCfg);
}
}
void invertMolBlockWedgingInfo(ROMol &mol) {
for (auto b : mol.bonds()) {
int bond_dir = -1;
if (b->getPropIfPresent<int>(common_properties::_MolFileBondStereo,
bond_dir)) {
if (bond_dir == 1) {
b->setProp<int>(common_properties::_MolFileBondStereo, 6);
} else if (bond_dir == 6) {
b->setProp<int>(common_properties::_MolFileBondStereo, 1);
}
}
int cfg = -1;
if (b->getPropIfPresent<int>(common_properties::_MolFileBondCfg, cfg)) {
if (cfg == 1) {
b->setProp<int>(common_properties::_MolFileBondCfg, 3);
} else if (cfg == 3) {
b->setProp<int>(common_properties::_MolFileBondCfg, 1);
}
}
}
}
} // namespace Chirality
} // namespace RDKit
|