1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
//
// Copyright (C) 2024 Greg Landrum and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "ChiralViolationContribs.h"
#include "ChiralSet.h"
#include <ForceField/ForceField.h>
namespace DistGeom {
double calcChiralVolume(const unsigned int idx1, const unsigned int idx2,
const unsigned int idx3, const unsigned int idx4,
const double *pos, const unsigned int dim) {
// even if we are minimizing in higher dimension the chiral volume is
// calculated using only the first 3 dimensions
RDGeom::Point3D v1(pos[idx1 * dim] - pos[idx4 * dim],
pos[idx1 * dim + 1] - pos[idx4 * dim + 1],
pos[idx1 * dim + 2] - pos[idx4 * dim + 2]);
RDGeom::Point3D v2(pos[idx2 * dim] - pos[idx4 * dim],
pos[idx2 * dim + 1] - pos[idx4 * dim + 1],
pos[idx2 * dim + 2] - pos[idx4 * dim + 2]);
RDGeom::Point3D v3(pos[idx3 * dim] - pos[idx4 * dim],
pos[idx3 * dim + 1] - pos[idx4 * dim + 1],
pos[idx3 * dim + 2] - pos[idx4 * dim + 2]);
RDGeom::Point3D v2xv3 = v2.crossProduct(v3);
double vol = v1.dotProduct(v2xv3);
return vol;
}
double calcChiralVolume(const unsigned int idx1, const unsigned int idx2,
const unsigned int idx3, const unsigned int idx4,
const RDGeom::PointPtrVect &pts) {
// even if we are minimizing in higher dimension the chiral volume is
// calculated using only the first 3 dimensions
RDGeom::Point3D v1((*pts[idx1])[0] - (*pts[idx4])[0],
(*pts[idx1])[1] - (*pts[idx4])[1],
(*pts[idx1])[2] - (*pts[idx4])[2]);
RDGeom::Point3D v2((*pts[idx2])[0] - (*pts[idx4])[0],
(*pts[idx2])[1] - (*pts[idx4])[1],
(*pts[idx2])[2] - (*pts[idx4])[2]);
RDGeom::Point3D v3((*pts[idx3])[0] - (*pts[idx4])[0],
(*pts[idx3])[1] - (*pts[idx4])[1],
(*pts[idx3])[2] - (*pts[idx4])[2]);
RDGeom::Point3D v2xv3 = v2.crossProduct(v3);
double vol = v1.dotProduct(v2xv3);
return vol;
}
ChiralViolationContribs::ChiralViolationContribs(
ForceFields::ForceField *owner) {
PRECONDITION(owner, "bad owner");
dp_forceField = owner;
}
void ChiralViolationContribs::addContrib(const ChiralSet *cset, double weight) {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(cset, "bad chiral set");
URANGE_CHECK(cset->d_idx1, dp_forceField->positions().size());
URANGE_CHECK(cset->d_idx2, dp_forceField->positions().size());
URANGE_CHECK(cset->d_idx3, dp_forceField->positions().size());
URANGE_CHECK(cset->d_idx4, dp_forceField->positions().size());
d_contribs.emplace_back(cset->d_idx1, cset->d_idx2, cset->d_idx3,
cset->d_idx4, cset->getUpperVolumeBound(),
cset->getLowerVolumeBound(), weight);
}
double ChiralViolationContribs::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
const unsigned int dim = dp_forceField->dimension();
double res = 0.0;
for (const auto &c : d_contribs) {
double vol = calcChiralVolume(c.idx1, c.idx2, c.idx3, c.idx4, pos, dim);
if (vol < c.volLower) {
res += c.weight * (vol - c.volLower) * (vol - c.volLower);
} else if (vol > c.volUpper) {
res += c.weight * (vol - c.volUpper) * (vol - c.volUpper);
}
}
return res;
}
void ChiralViolationContribs::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
const unsigned int dim = dp_forceField->dimension();
for (const auto &c : d_contribs) {
// even if we are minimizing in higher dimension the chiral volume is
// calculated using only the first 3 dimensions
RDGeom::Point3D v1(pos[c.idx1 * dim] - pos[c.idx4 * dim],
pos[c.idx1 * dim + 1] - pos[c.idx4 * dim + 1],
pos[c.idx1 * dim + 2] - pos[c.idx4 * dim + 2]);
RDGeom::Point3D v2(pos[c.idx2 * dim] - pos[c.idx4 * dim],
pos[c.idx2 * dim + 1] - pos[c.idx4 * dim + 1],
pos[c.idx2 * dim + 2] - pos[c.idx4 * dim + 2]);
RDGeom::Point3D v3(pos[c.idx3 * dim] - pos[c.idx4 * dim],
pos[c.idx3 * dim + 1] - pos[c.idx4 * dim + 1],
pos[c.idx3 * dim + 2] - pos[c.idx4 * dim + 2]);
RDGeom::Point3D v2xv3 = v2.crossProduct(v3);
double vol = v1.dotProduct(v2xv3);
double preFactor;
if (vol < c.volLower) {
preFactor = c.weight * (vol - c.volLower);
} else if (vol > c.volUpper) {
preFactor = c.weight * (vol - c.volUpper);
} else {
continue;
}
// now comes the hard part - there are a total of 12 variables involved
// 4 x 3 - four points and 3 dimensions
//
grad[dim * c.idx1] += preFactor * ((v2.y) * (v3.z) - (v3.y) * (v2.z));
grad[dim * c.idx1 + 1] += preFactor * ((v3.x) * (v2.z) - (v2.x) * (v3.z));
grad[dim * c.idx1 + 2] += preFactor * ((v2.x) * (v3.y) - (v3.x) * (v2.y));
grad[dim * c.idx2] += preFactor * ((v3.y) * (v1.z) - (v3.z) * (v1.y));
grad[dim * c.idx2 + 1] += preFactor * ((v3.z) * (v1.x) - (v3.x) * (v1.z));
grad[dim * c.idx2 + 2] += preFactor * ((v3.x) * (v1.y) - (v3.y) * (v1.x));
grad[dim * c.idx3] += preFactor * ((v2.z) * (v1.y) - (v2.y) * (v1.z));
grad[dim * c.idx3 + 1] += preFactor * ((v2.x) * (v1.z) - (v2.z) * (v1.x));
grad[dim * c.idx3 + 2] += preFactor * ((v2.y) * (v1.x) - (v2.x) * (v1.y));
grad[dim * c.idx4] +=
preFactor * (pos[c.idx1 * dim + 2] *
(pos[c.idx2 * dim + 1] - pos[c.idx3 * dim + 1]) +
pos[c.idx2 * dim + 2] *
(pos[c.idx3 * dim + 1] - pos[c.idx1 * dim + 1]) +
pos[c.idx3 * dim + 2] *
(pos[c.idx1 * dim + 1] - pos[c.idx2 * dim + 1]));
grad[dim * c.idx4 + 1] +=
preFactor *
(pos[c.idx1 * dim] * (pos[c.idx2 * dim + 2] - pos[c.idx3 * dim + 2]) +
pos[c.idx2 * dim] * (pos[c.idx3 * dim + 2] - pos[c.idx1 * dim + 2]) +
pos[c.idx3 * dim] * (pos[c.idx1 * dim + 2] - pos[c.idx2 * dim + 2]));
grad[dim * c.idx4 + 2] +=
preFactor *
(pos[c.idx1 * dim + 1] * (pos[c.idx2 * dim] - pos[c.idx3 * dim]) +
pos[c.idx2 * dim + 1] * (pos[c.idx3 * dim] - pos[c.idx1 * dim]) +
pos[c.idx3 * dim + 1] * (pos[c.idx1 * dim] - pos[c.idx2 * dim]));
}
}
} // namespace DistGeom
|