File: Nonbonded.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (236 lines) | stat: -rw-r--r-- 8,671 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//  Copyright (C) 2013-2025 Paolo Tosco and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "Nonbonded.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
#include <GraphMol/ForceFieldHelpers/MMFF/AtomTyper.h>

namespace ForceFields {
namespace MMFF {
namespace Utils {
double calcUnscaledVdWMinimum(const MMFFVdWCollection *mmffVdW,
                              const MMFFVdW *mmffVdWParamsIAtom,
                              const MMFFVdW *mmffVdWParamsJAtom) {
  double gamma_ij = (mmffVdWParamsIAtom->R_star - mmffVdWParamsJAtom->R_star) /
                    (mmffVdWParamsIAtom->R_star + mmffVdWParamsJAtom->R_star);

  return (0.5 * (mmffVdWParamsIAtom->R_star + mmffVdWParamsJAtom->R_star) *
          (1.0 +
           (((mmffVdWParamsIAtom->DA == 'D') || (mmffVdWParamsJAtom->DA == 'D'))
                ? 0.0
                : mmffVdW->B *
                      (1.0 - exp(-(mmffVdW->Beta) * gamma_ij * gamma_ij)))));
}

double calcUnscaledVdWWellDepth(double R_star_ij,
                                const MMFFVdW *mmffVdWParamsIAtom,
                                const MMFFVdW *mmffVdWParamsJAtom) {
  double R_star_ij2 = R_star_ij * R_star_ij;
  double const c4 = 181.16;

  return (c4 * mmffVdWParamsIAtom->G_i * mmffVdWParamsJAtom->G_i *
          mmffVdWParamsIAtom->alpha_i * mmffVdWParamsJAtom->alpha_i /
          ((sqrt(mmffVdWParamsIAtom->alpha_i / mmffVdWParamsIAtom->N_i) +
            sqrt(mmffVdWParamsJAtom->alpha_i / mmffVdWParamsJAtom->N_i)) *
           R_star_ij2 * R_star_ij2 * R_star_ij2));
}

double calcVdWEnergy(const double dist, const double R_star_ij,
                     const double wellDepth) {
  double const vdw1 = 1.07;
  double const vdw1m1 = vdw1 - 1.0;
  double const vdw2 = 1.12;
  double const vdw2m1 = vdw2 - 1.0;
  double dist2 = dist * dist;
  double dist7 = dist2 * dist2 * dist2 * dist;
  double aTerm = vdw1 * R_star_ij / (dist + vdw1m1 * R_star_ij);
  double aTerm2 = aTerm * aTerm;
  double aTerm7 = aTerm2 * aTerm2 * aTerm2 * aTerm;
  double R_star_ij2 = R_star_ij * R_star_ij;
  double R_star_ij7 = R_star_ij2 * R_star_ij2 * R_star_ij2 * R_star_ij;
  double bTerm = vdw2 * R_star_ij7 / (dist7 + vdw2m1 * R_star_ij7) - 2.0;
  double res = wellDepth * aTerm7 * bTerm;

  return res;
}

void scaleVdWParams(double &R_star_ij, double &wellDepth,
                    const MMFFVdWCollection *mmffVdW,
                    const MMFFVdW *mmffVdWParamsIAtom,
                    const MMFFVdW *mmffVdWParamsJAtom) {
  if (((mmffVdWParamsIAtom->DA == 'D') && (mmffVdWParamsJAtom->DA == 'A')) ||
      ((mmffVdWParamsIAtom->DA == 'A') && (mmffVdWParamsJAtom->DA == 'D'))) {
    R_star_ij *= mmffVdW->DARAD;
    wellDepth *= mmffVdW->DAEPS;
  }
}

double calcEleEnergy(unsigned int, unsigned int, double dist, double chargeTerm,
                     std::uint8_t dielModel, bool is1_4) {
  double corr_dist = dist + 0.05;
  double const diel = 332.0716;
  double const sc1_4 = 0.75;
  if (dielModel == RDKit::MMFF::DISTANCE) {
    corr_dist *= corr_dist;
  }
  return (diel * chargeTerm / corr_dist * (is1_4 ? sc1_4 : 1.0));
}
}  // namespace Utils

VdWContrib::VdWContrib(ForceField *owner) {
  PRECONDITION(owner, "bad owner");
  dp_forceField = owner;
}

void VdWContrib::addTerm(unsigned int idx1, unsigned int idx2, const MMFFVdWRijstarEps *mmffVdWConstants) {
  PRECONDITION(mmffVdWConstants, "bad MMFFVdW parameters");
  URANGE_CHECK(idx1, dp_forceField->positions().size());
  URANGE_CHECK(idx2, dp_forceField->positions().size());
  d_at1Idxs.push_back(idx1);
  d_at2Idxs.push_back(idx2);
  d_R_ij_stars.push_back(mmffVdWConstants->R_ij_star);
  d_wellDepths.push_back(mmffVdWConstants->epsilon);
}

double VdWContrib::getEnergy(double *pos) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  double energySum = 0.0;

  const int numPairs = d_at1Idxs.size();
  for (int i = 0; i < numPairs; ++i) {
    unsigned int d_at1Idx = d_at1Idxs[i];
    unsigned int d_at2Idx = d_at2Idxs[i];
    double dist = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
    double res = Utils::calcVdWEnergy(dist, d_R_ij_stars[i], d_wellDepths[i]);
    energySum += res;
  }
  return energySum;
}

void VdWContrib::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");

  double const vdw1 = 1.07;
  double const vdw1m1 = vdw1 - 1.0;
  double const vdw2 = 1.12;
  double const vdw2m1 = vdw2 - 1.0;
  double const vdw2t7 = vdw2 * 7.0;


  const int numPairs = d_at1Idxs.size();
  for (int pairIdx = 0; pairIdx < numPairs; ++pairIdx) {
    const int d_at1Idx = d_at1Idxs[pairIdx];
    const int d_at2Idx = d_at2Idxs[pairIdx];
    const double d_R_ij_star = d_R_ij_stars[pairIdx];
    const double d_wellDepth = d_wellDepths[pairIdx];

    double dist = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
    double *at1Coords = &(pos[3 * d_at1Idx]);
    double *at2Coords = &(pos[3 * d_at2Idx]);
    double *g1 = &(grad[3 * d_at1Idx]);
    double *g2 = &(grad[3 * d_at2Idx]);
    double q = dist / d_R_ij_star;
    double q2 = q * q;
    double q6 = q2 * q2 * q2;
    double q7 = q6 * q;
    double q7pvdw2m1 = q7 + vdw2m1;
    double t = vdw1 / (q + vdw1 - 1.0);
    double t2 = t * t;
    double t7 = t2 * t2 * t2 * t;
    double dE_dr = d_wellDepth / d_R_ij_star * t7 *
                   (-vdw2t7 * q6 / (q7pvdw2m1 * q7pvdw2m1) +
                    ((-vdw2t7 / q7pvdw2m1 + 14.0) / (q + vdw1m1)));
    for (unsigned int i = 0; i < 3; ++i) {
      double dGrad;
      dGrad = ((dist > 0.0) ? (dE_dr * (at1Coords[i] - at2Coords[i]) / dist)
                            : d_R_ij_star * 0.01);
      g1[i] += dGrad;
      g2[i] -= dGrad;
    }
  }
}

EleContrib::EleContrib(ForceField *owner) {
  PRECONDITION(owner, "bad owner");
  dp_forceField = owner;
}
void EleContrib::addTerm(unsigned int idx1, unsigned int idx2,
             double chargeTerm, std::uint8_t dielModel, bool is1_4) {
  URANGE_CHECK(idx1, dp_forceField->positions().size());
  URANGE_CHECK(idx2, dp_forceField->positions().size());
  d_at1Idxs.push_back(idx1);
  d_at2Idxs.push_back(idx2);
  d_chargeTerms.push_back(chargeTerm);
  d_dielModels.push_back(dielModel);
  d_is_1_4s.push_back(is1_4);
}
double EleContrib::getEnergy(double *pos) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");

  double res = 0.0;
  const int numPairs = d_at1Idxs.size();

  for (int i = 0; i < numPairs; ++i) {
    unsigned int d_at1Idx = d_at1Idxs[i];
    unsigned int d_at2Idx = d_at2Idxs[i];
    double d_chargeTerm = d_chargeTerms[i];
    std::uint8_t d_dielModel = d_dielModels[i];
    bool d_is1_4 = d_is_1_4s[i];

    res += Utils::calcEleEnergy(d_at1Idx,
                                d_at2Idx,
                                dp_forceField->distance(d_at1Idx, d_at2Idx, pos),
                                d_chargeTerm,
                                d_dielModel,
                                d_is1_4);
  }
  return res;
}

void EleContrib::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");

  const int numPairs = d_at1Idxs.size();
  for (int pairIdx = 0; pairIdx < numPairs; ++pairIdx) {
    const int d_at1Idx = d_at1Idxs[pairIdx];
    const int d_at2Idx = d_at2Idxs[pairIdx];
    const double d_chargeTerm = d_chargeTerms[pairIdx];
    const std::uint8_t d_dielModel = d_dielModels[pairIdx];
    const bool d_is1_4 = d_is_1_4s[pairIdx];

    double dist = dp_forceField->distance(d_at1Idx, d_at2Idx, pos);
    double *at1Coords = &(pos[3 * d_at1Idx]);
    double *at2Coords = &(pos[3 * d_at2Idx]);
    double *g1 = &(grad[3 * d_at1Idx]);
    double *g2 = &(grad[3 * d_at2Idx]);
    double corr_dist = dist + 0.05;
    corr_dist *= ((d_dielModel == RDKit::MMFF::DISTANCE) ? corr_dist * corr_dist
                                                         : corr_dist);
    double dE_dr = -332.0716 * (double)(d_dielModel)*d_chargeTerm / corr_dist *
                   (d_is1_4 ? 0.75 : 1.0);
    for (unsigned int i = 0; i < 3; ++i) {
      double dGrad;
      dGrad = ((dist > 0.0) ? (dE_dr * (at1Coords[i] - at2Coords[i]) / dist)
                            : 0.02);
      g1[i] += dGrad;
      g2[i] -= dGrad;
    }
  }
}
}  // namespace MMFF
}  // namespace ForceFields