1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// Copyright (C) 2013-2025 Paolo Tosco and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "OopBend.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
namespace ForceFields {
namespace MMFF {
namespace Utils {
double calcOopChi(const RDGeom::Point3D &iPoint, const RDGeom::Point3D &jPoint,
const RDGeom::Point3D &kPoint,
const RDGeom::Point3D &lPoint) {
RDGeom::Point3D rJI = iPoint - jPoint;
RDGeom::Point3D rJK = kPoint - jPoint;
RDGeom::Point3D rJL = lPoint - jPoint;
rJI /= rJI.length();
rJK /= rJK.length();
rJL /= rJL.length();
RDGeom::Point3D n = rJI.crossProduct(rJK);
n /= n.length();
double sinChi = n.dotProduct(rJL);
clipToOne(sinChi);
return RAD2DEG * asin(sinChi);
}
double calcOopBendForceConstant(const MMFFOop *mmffOopParams) {
PRECONDITION(mmffOopParams, "no OOP parameters");
return mmffOopParams->koop;
}
double calcOopBendEnergy(const double chi, const double koop) {
double const c2 = MDYNE_A_TO_KCAL_MOL * DEG2RAD * DEG2RAD;
return (0.5 * c2 * koop * chi * chi);
}
} // end of namespace Utils
OopBendContrib::OopBendContrib(ForceField *owner) {
PRECONDITION(owner, "bad owner");
dp_forceField = owner;
}
void OopBendContrib::addTerm(unsigned int idx1,
unsigned int idx2,
unsigned int idx3,
unsigned int idx4,
const ForceFields::MMFF::MMFFOop *mmffOopParams) {
PRECONDITION(mmffOopParams, "no OOP parameters");
PRECONDITION((idx1 != idx2) && (idx1 != idx3) && (idx1 != idx4) &&
(idx2 != idx3) && (idx2 != idx4) && (idx3 != idx4),
"degenerate points");
URANGE_CHECK(idx1, dp_forceField->positions().size());
URANGE_CHECK(idx2, dp_forceField->positions().size());
URANGE_CHECK(idx3, dp_forceField->positions().size());
URANGE_CHECK(idx4, dp_forceField->positions().size());
d_at1Idxs.push_back(idx1);
d_at2Idxs.push_back(idx2);
d_at3Idxs.push_back(idx3);
d_at4Idxs.push_back(idx4);
d_koop.push_back(mmffOopParams->koop);
}
double OopBendContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
const int numTerms = d_at1Idxs.size();
double totalEnergy = 0.0;
for (int i = 0; i < numTerms; ++i) {
const int d_at1Idx = d_at1Idxs[i];
const int d_at2Idx = d_at2Idxs[i];
const int d_at3Idx = d_at3Idxs[i];
const int d_at4Idx = d_at4Idxs[i];
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
totalEnergy += Utils::calcOopBendEnergy(Utils::calcOopChi(p1, p2, p3, p4), d_koop[i]);
}
return totalEnergy;
}
void OopBendContrib::getGrad(double* pos, double* grad) const {
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
PRECONDITION(dp_forceField, "no owner");
const int numTerms = d_at1Idxs.size();
for (int i =0; i < numTerms; i++) {
getSingleGrad(pos, grad, i);
}
}
void OopBendContrib::getSingleGrad(double *pos, double *grad, unsigned int termIdx) const {
const int d_at1Idx = d_at1Idxs[termIdx];
const int d_at2Idx = d_at2Idxs[termIdx];
const int d_at3Idx = d_at3Idxs[termIdx];
const int d_at4Idx = d_at4Idxs[termIdx];
RDGeom::Point3D iPoint(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D jPoint(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D kPoint(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D lPoint(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double *g1 = &(grad[3 * d_at1Idx]);
double *g2 = &(grad[3 * d_at2Idx]);
double *g3 = &(grad[3 * d_at3Idx]);
double *g4 = &(grad[3 * d_at4Idx]);
RDGeom::Point3D rJI = iPoint - jPoint;
RDGeom::Point3D rJK = kPoint - jPoint;
RDGeom::Point3D rJL = lPoint - jPoint;
double dJI = rJI.length();
double dJK = rJK.length();
double dJL = rJL.length();
if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
return;
}
rJI /= dJI;
rJK /= dJK;
rJL /= dJL;
RDGeom::Point3D n = (-rJI).crossProduct(rJK);
n /= n.length();
double const c2 = MDYNE_A_TO_KCAL_MOL * DEG2RAD * DEG2RAD;
double sinChi = rJL.dotProduct(n);
clipToOne(sinChi);
double cosChiSq = 1.0 - sinChi * sinChi;
double cosChi = std::max(((cosChiSq > 0.0) ? sqrt(cosChiSq) : 0.0), 1.0e-8);
double chi = RAD2DEG * asin(sinChi);
double cosTheta = rJI.dotProduct(rJK);
clipToOne(cosTheta);
double sinThetaSq = std::max(1.0 - cosTheta * cosTheta, 1.0e-8);
double sinTheta =
std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
double dE_dChi = RAD2DEG * c2 * d_koop[termIdx] * chi;
RDGeom::Point3D t1 = rJL.crossProduct(rJK);
RDGeom::Point3D t2 = rJI.crossProduct(rJL);
RDGeom::Point3D t3 = rJK.crossProduct(rJI);
double term1 = cosChi * sinTheta;
double term2 = sinChi / (cosChi * sinThetaSq);
double tg1[3] = {(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
(t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
(t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
double tg3[3] = {(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
(t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
(t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
double tg4[3] = {(t3.x / term1 - rJL.x * sinChi / cosChi) / dJL,
(t3.y / term1 - rJL.y * sinChi / cosChi) / dJL,
(t3.z / term1 - rJL.z * sinChi / cosChi) / dJL};
for (unsigned int i = 0; i < 3; ++i) {
g1[i] += dE_dChi * tg1[i];
g2[i] += -dE_dChi * (tg1[i] + tg3[i] + tg4[i]);
g3[i] += dE_dChi * tg3[i];
g4[i] += dE_dChi * tg4[i];
}
}
} // namespace MMFF
} // namespace ForceFields
|