1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
|
//
// Copyright (C) 2004-2024 Paolo Tosco and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
//
#include <RDGeneral/export.h>
#ifndef RD_MMFFPARAMS_H
#define RD_MMFFPARAMS_H
#include <memory>
#include <RDGeneral/Invariant.h>
#include <cmath>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <iostream>
#include <cstdint>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// binary searches are slightly faster than std::map;
// however when I moved to binary searches I had already
// written the code for std::map, so the two methods
// can be toggled defining RDKIT_MMFF_PARAMS_USE_STD_MAP
// #define RDKIT_MMFF_PARAMS_USE_STD_MAP 1
namespace ForceFields {
namespace MMFF {
constexpr double DEG2RAD = M_PI / 180.0;
constexpr double RAD2DEG = 180.0 / M_PI;
constexpr double MDYNE_A_TO_KCAL_MOL = 143.9325;
inline bool isDoubleZero(const double x) {
return ((x < 1.0e-10) && (x > -1.0e-10));
}
inline void clipToOne(double &x) { x = std::clamp(x, -1.0, 1.0); }
//! class to store MMFF atom type equivalence levels
class RDKIT_FORCEFIELD_EXPORT MMFFDef {
public:
std::uint8_t eqLevel[4];
};
//! class to store MMFF Properties
class RDKIT_FORCEFIELD_EXPORT MMFFProp {
public:
std::uint8_t atno;
std::uint8_t crd;
std::uint8_t val;
std::uint8_t pilp;
std::uint8_t mltb;
std::uint8_t arom;
std::uint8_t linh;
std::uint8_t sbmb;
};
//! class to store MMFF Partial Bond Charge Increments
class RDKIT_FORCEFIELD_EXPORT MMFFPBCI {
public:
double pbci;
double fcadj;
};
//! class to store MMFF bond-charge-increment parameters used to
//! construct MMFF partial atomic charges
class RDKIT_FORCEFIELD_EXPORT MMFFChg {
public:
double bci;
};
//! class to store MMFF parameters for bond stretching
class RDKIT_FORCEFIELD_EXPORT MMFFBond {
public:
double kb;
double r0;
};
//! class to store parameters for Herschbach-Laurie's version
//! of Badger's rule
class RDKIT_FORCEFIELD_EXPORT MMFFHerschbachLaurie {
public:
double a_ij;
double d_ij;
double dp_ij;
};
//! class to store covalent radius and Pauling electronegativity
//! values for MMFF bond stretching empirical rule
class RDKIT_FORCEFIELD_EXPORT MMFFCovRadPauEle {
public:
double r0;
double chi;
};
//! class to store MMFF parameters for angle bending
class RDKIT_FORCEFIELD_EXPORT MMFFAngle {
public:
double ka;
double theta0;
};
//! class to store MMFF parameters for stretch-bending
class RDKIT_FORCEFIELD_EXPORT MMFFStbn {
public:
double kbaIJK;
double kbaKJI;
};
//! class to store MMFF parameters for out-of-plane bending
class RDKIT_FORCEFIELD_EXPORT MMFFOop {
public:
double koop;
};
//! class to store MMFF parameters for torsions
class RDKIT_FORCEFIELD_EXPORT MMFFTor {
public:
double V1;
double V2;
double V3;
};
//! class to store MMFF parameters for non-bonded Van der Waals
class RDKIT_FORCEFIELD_EXPORT MMFFVdW {
public:
double alpha_i;
double N_i;
double A_i;
double G_i;
double R_star;
std::uint8_t DA;
};
class RDKIT_FORCEFIELD_EXPORT MMFFVdWRijstarEps {
public:
double R_ij_starUnscaled;
double epsilonUnscaled;
double R_ij_star;
double epsilon;
};
class RDKIT_FORCEFIELD_EXPORT MMFFAromCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFArom object, NULL on failure.
*/
bool isMMFFAromatic(const unsigned int atomType) const {
return std::find(d_params.begin(), d_params.end(), atomType) !=
d_params.end();
}
MMFFAromCollection(const std::vector<std::uint8_t> *mmffArom = nullptr);
std::vector<std::uint8_t> d_params; //!< the aromatic type vector
};
class RDKIT_FORCEFIELD_EXPORT MMFFDefCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFDef object, NULL on failure.
*/
const MMFFDef *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res = d_params.find(atomType);
return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
return ((atomType && (atomType <= d_params.size()))
? &d_params[atomType - 1]
: nullptr);
#endif
}
MMFFDefCollection(std::string mmffDef = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int, MMFFDef> d_params; //!< the parameter map
#else
std::vector<MMFFDef> d_params; //!< the parameter vector
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFPropCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFProp object, NULL on failure.
*/
const MMFFProp *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res = d_params.find(atomType);
return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
auto bounds =
std::equal_range(d_iAtomType.begin(), d_iAtomType.end(), atomType);
return ((bounds.first != bounds.second)
? &d_params[bounds.first - d_iAtomType.begin()]
: nullptr);
#endif
}
MMFFPropCollection(std::string mmffProp = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int, MMFFProp> d_params; //!< the parameter map
#else
std::vector<MMFFProp> d_params;
std::vector<std::uint8_t> d_iAtomType; //!< the parameter vector
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFPBCICollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFPBCI object, NULL on failure.
*/
const MMFFPBCI *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res = d_params.find(atomType);
return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
return ((atomType && (atomType <= d_params.size()))
? &d_params[atomType - 1]
: nullptr);
#endif
}
MMFFPBCICollection(std::string mmffPBCI = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int, MMFFPBCI> d_params; //!< the parameter map
#else
std::vector<MMFFPBCI> d_params; //!< the parameter vector
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFChgCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFChg object, NULL on failure.
*/
const std::pair<int, const MMFFChg *> getMMFFChgParams(
const unsigned int bondType, const unsigned int iAtomType,
const unsigned int jAtomType) const {
int sign = -1;
const MMFFChg *mmffChgParams = nullptr;
unsigned int canIAtomType = iAtomType;
unsigned int canJAtomType = jAtomType;
if (iAtomType > jAtomType) {
canIAtomType = jAtomType;
canJAtomType = iAtomType;
sign = 1;
}
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res1 = d_params[bondType].find(canIAtomType);
if (res1 != d_params[bondType].end()) {
const auto res2 = ((*res1).second).find(canJAtomType);
if (res2 != ((*res1).second).end()) {
mmffChgParams = &((*res2).second);
}
}
#else
auto bounds =
std::equal_range(d_iAtomType.begin(), d_iAtomType.end(), canIAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_jAtomType.begin() + (bounds.first - d_iAtomType.begin()),
d_jAtomType.begin() + (bounds.second - d_iAtomType.begin()),
canJAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_bondType.begin() + (bounds.first - d_jAtomType.begin()),
d_bondType.begin() + (bounds.second - d_jAtomType.begin()),
bondType);
if (bounds.first != bounds.second) {
mmffChgParams = &d_params[bounds.first - d_bondType.begin()];
}
}
}
#endif
return std::make_pair(sign, mmffChgParams);
}
MMFFChgCollection(std::string mmffChg = "");
//!< the parameter 3D-map
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int,
std::map<const unsigned int, std::map<const unsigned int, MMFFChg>>>
d_params; //!< the parameter 3D-map
#else
std::vector<MMFFChg> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iAtomType; //!< atom type vector for atom i
std::vector<std::uint8_t> d_jAtomType; //!< atom type vector for atom j
std::vector<std::uint8_t> d_bondType; //!< bond type vector for bond i-j
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFBondCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFBond object, NULL on failure.
*/
const MMFFBond *operator()(const unsigned int bondType,
const unsigned int atomType,
const unsigned int nbrAtomType) const {
const MMFFBond *mmffBondParams = nullptr;
unsigned int canAtomType = atomType;
unsigned int canNbrAtomType = nbrAtomType;
if (atomType > nbrAtomType) {
canAtomType = nbrAtomType;
canNbrAtomType = atomType;
}
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res1 = d_params.find(bondType);
std::map<const unsigned int,
std::map<const unsigned int, MMFFBond>>::const_iterator res2;
std::map<const unsigned int, MMFFBond>::const_iterator res3;
if (res1 != d_params.end()) {
res2 = ((*res1).second).find(canAtomType);
if (res2 != ((*res1).second).end()) {
res3 = ((*res2).second).find(canNbrAtomType);
if (res3 != ((*res2).second).end()) {
mmffBondParams = &((*res3).second);
}
}
}
#else
auto bounds =
std::equal_range(d_iAtomType.begin(), d_iAtomType.end(), canAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_jAtomType.begin() + (bounds.first - d_iAtomType.begin()),
d_jAtomType.begin() + (bounds.second - d_iAtomType.begin()),
canNbrAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_bondType.begin() + (bounds.first - d_jAtomType.begin()),
d_bondType.begin() + (bounds.second - d_jAtomType.begin()),
bondType);
if (bounds.first != bounds.second) {
mmffBondParams = &d_params[bounds.first - d_bondType.begin()];
}
}
}
#endif
return mmffBondParams;
}
MMFFBondCollection(std::string mmffBond = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int,
std::map<const unsigned int, std::map<const unsigned int, MMFFBond>>>
d_params; //!< the parameter 3D-map
#else
std::vector<MMFFBond> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iAtomType; //!< atom type vector for atom i
std::vector<std::uint8_t> d_jAtomType; //!< atom type vector for atom j
std::vector<std::uint8_t> d_bondType; //!< bond type vector for bond i-j
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFBndkCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFBndk object, NULL on failure.
*/
const MMFFBond *operator()(const int atomicNum,
const int nbrAtomicNum) const {
const MMFFBond *mmffBndkParams = nullptr;
unsigned int canAtomicNum = atomicNum;
unsigned int canNbrAtomicNum = nbrAtomicNum;
if (atomicNum > nbrAtomicNum) {
canAtomicNum = nbrAtomicNum;
canNbrAtomicNum = atomicNum;
}
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res1 = d_params.find(canAtomicNum);
std::map<const unsigned int, MMFFBond>::const_iterator res2;
if (res1 != d_params.end()) {
res2 = ((*res1).second).find(canNbrAtomicNum);
if (res2 != ((*res1).second).end()) {
mmffBndkParams = &((*res2).second);
}
}
#else
auto bounds = std::equal_range(d_iAtomicNum.begin(), d_iAtomicNum.end(),
canAtomicNum);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_jAtomicNum.begin() + (bounds.first - d_iAtomicNum.begin()),
d_jAtomicNum.begin() + (bounds.second - d_iAtomicNum.begin()),
canNbrAtomicNum);
if (bounds.first != bounds.second) {
mmffBndkParams = &d_params[bounds.first - d_jAtomicNum.begin()];
}
}
#endif
return mmffBndkParams;
}
MMFFBndkCollection(std::string mmffBndk = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int, std::map<const unsigned int, MMFFBond>>
d_params; //!< the parameter 2D-map
#else
std::vector<MMFFBond> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iAtomicNum; //!< atomic number vector for atom i
std::vector<std::uint8_t> d_jAtomicNum; //!< atomic number vector for atom j
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFHerschbachLaurieCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFHerschbachLaurie object, NULL on failure.
*/
const MMFFHerschbachLaurie *operator()(const int iRow, const int jRow) const {
const MMFFHerschbachLaurie *mmffHerschbachLaurieParams = nullptr;
unsigned int canIRow = iRow;
unsigned int canJRow = jRow;
if (iRow > jRow) {
canIRow = jRow;
canJRow = iRow;
}
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res1 = d_params.find(canIRow);
std::map<const unsigned int, MMFFHerschbachLaurie>::const_iterator res2;
if (res1 != d_params.end()) {
res2 = ((*res1).second).find(canJRow);
if (res2 != ((*res1).second).end()) {
mmffHerschbachLaurieParams = &((*res2).second);
}
}
#else
auto bounds = std::equal_range(d_iRow.begin(), d_iRow.end(), canIRow);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_jRow.begin() + (bounds.first - d_iRow.begin()),
d_jRow.begin() + (bounds.second - d_iRow.begin()), canJRow);
if (bounds.first != bounds.second) {
mmffHerschbachLaurieParams = &d_params[bounds.first - d_jRow.begin()];
}
}
#endif
return mmffHerschbachLaurieParams;
}
MMFFHerschbachLaurieCollection(std::string mmffHerschbachLaurie = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int,
std::map<const unsigned int, MMFFHerschbachLaurie>>
d_params; //!< the parameter 2D-map
#else
std::vector<MMFFHerschbachLaurie> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iRow; //!< periodic row number vector for atom i
std::vector<std::uint8_t> d_jRow; //!< periodic row number vector for atom j
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFCovRadPauEleCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFCovRadPauEle object, NULL on failure.
*/
const MMFFCovRadPauEle *operator()(const unsigned int atomicNum) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res = d_params.find(atomicNum);
return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
auto bounds =
std::equal_range(d_atomicNum.begin(), d_atomicNum.end(), atomicNum);
return ((bounds.first != bounds.second)
? &d_params[bounds.first - d_atomicNum.begin()]
: nullptr);
#endif
}
MMFFCovRadPauEleCollection(std::string mmffCovRadPauEle = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int, MMFFCovRadPauEle>
d_params; //!< the parameter map
#else
std::vector<MMFFCovRadPauEle> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_atomicNum; //!< the atomic number vector
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFAngleCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFAngle object, NULL on failure.
*/
const MMFFAngle *operator()(const MMFFDefCollection *mmffDef,
const unsigned int angleType,
const unsigned int iAtomType,
const unsigned int jAtomType,
const unsigned int kAtomType) const {
const MMFFAngle *mmffAngleParams = nullptr;
unsigned int iter = 0;
// For bending of the i-j-k angle, a five-stage process based
// in the level combinations 1-1-1,2-2-2,3-2-3,4-2-4, and
// 5-2-5 is used. (MMFF.I, note 68, page 519)
// We skip 1-1-1 since Level 2 === Level 1
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
while ((iter < 4) && (!mmffAngleParams)) {
unsigned int canIAtomType = (*mmffDef)(iAtomType)->eqLevel[iter];
unsigned int canKAtomType = (*mmffDef)(kAtomType)->eqLevel[iter];
if (canIAtomType > canKAtomType) {
std::swap(canIAtomType, canKAtomType);
}
const auto res1 = d_params.find(angleType);
if (res1 != d_params.end()) {
const auto res2 = ((*res1).second).find(canIAtomType);
if (res2 != ((*res1).second).end()) {
const auto res3 = ((*res2).second).find(jAtomType);
if (res3 != ((*res2).second).end()) {
const auto res4 = ((*res3).second).find(canKAtomType);
if (res4 != ((*res3).second).end()) {
mmffAngleParams = &((*res4).second);
}
}
}
}
++iter;
}
#else
auto jBounds =
std::equal_range(d_jAtomType.begin(), d_jAtomType.end(), jAtomType);
if (jBounds.first != jBounds.second) {
while ((iter < 4) && (!mmffAngleParams)) {
unsigned int canIAtomType = (*mmffDef)(iAtomType)->eqLevel[iter];
unsigned int canKAtomType = (*mmffDef)(kAtomType)->eqLevel[iter];
if (canIAtomType > canKAtomType) {
std::swap(canIAtomType, canKAtomType);
}
auto bounds = std::equal_range(
d_iAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
d_iAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
canIAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_kAtomType.begin() + (bounds.first - d_iAtomType.begin()),
d_kAtomType.begin() + (bounds.second - d_iAtomType.begin()),
canKAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_angleType.begin() + (bounds.first - d_kAtomType.begin()),
d_angleType.begin() + (bounds.second - d_kAtomType.begin()),
angleType);
if (bounds.first != bounds.second) {
mmffAngleParams = &d_params[bounds.first - d_angleType.begin()];
}
}
}
++iter;
}
}
#endif
return mmffAngleParams;
}
MMFFAngleCollection(std::string mmffAngle = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int,
std::map<const unsigned int,
std::map<const unsigned int,
std::map<const unsigned int, MMFFAngle>>>>
d_params; //!< the parameter 4D-map
#else
std::vector<MMFFAngle> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iAtomType; //!< atom type vector for atom i
std::vector<std::uint8_t> d_jAtomType; //!< atom type vector for atom j
std::vector<std::uint8_t> d_kAtomType; //!< atom type vector for atom k
std::vector<std::uint8_t> d_angleType; //!< angle type vector for angle i-j-k
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFStbnCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFStbn object, NULL on failure.
*/
const std::pair<bool, const MMFFStbn *> getMMFFStbnParams(
const unsigned int stretchBendType, const unsigned int bondType1,
const unsigned int bondType2, const unsigned int iAtomType,
const unsigned int jAtomType, const unsigned int kAtomType) const {
const MMFFStbn *mmffStbnParams = nullptr;
bool swap = false;
unsigned int canIAtomType = iAtomType;
unsigned int canKAtomType = kAtomType;
unsigned int canStretchBendType = stretchBendType;
if (iAtomType > kAtomType) {
canIAtomType = kAtomType;
canKAtomType = iAtomType;
swap = true;
} else if (iAtomType == kAtomType) {
swap = (bondType1 < bondType2);
}
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res1 = d_params.find(canStretchBendType);
if (res1 != d_params.end()) {
const auto res2 = ((*res1).second).find(canIAtomType);
if (res2 != ((*res1).second).end()) {
const auto res3 = ((*res2).second).find(jAtomType);
if (res3 != ((*res2).second).end()) {
const auto res4 = ((*res3).second).find(canKAtomType);
if (res4 != ((*res3).second).end()) {
mmffStbnParams = &((*res4).second);
}
}
}
}
#else
auto jBounds =
std::equal_range(d_jAtomType.begin(), d_jAtomType.end(), jAtomType);
if (jBounds.first != jBounds.second) {
auto bounds = std::equal_range(
d_iAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
d_iAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
canIAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_kAtomType.begin() + (bounds.first - d_iAtomType.begin()),
d_kAtomType.begin() + (bounds.second - d_iAtomType.begin()),
canKAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_stretchBendType.begin() + (bounds.first - d_kAtomType.begin()),
d_stretchBendType.begin() + (bounds.second - d_kAtomType.begin()),
canStretchBendType);
if (bounds.first != bounds.second) {
mmffStbnParams =
&d_params[bounds.first - d_stretchBendType.begin()];
}
}
}
}
#endif
return std::make_pair(swap, mmffStbnParams);
}
MMFFStbnCollection(std::string mmffStbn = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int,
std::map<const unsigned int,
std::map<const unsigned int,
std::map<const unsigned int, MMFFStbn>>>>
d_params; //!< the parameter 4D-map
#else
std::vector<MMFFStbn> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iAtomType; //!< atom type vector for atom i
std::vector<std::uint8_t> d_jAtomType; //!< atom type vector for atom j
std::vector<std::uint8_t> d_kAtomType; //!< atom type vector for atom k
std::vector<std::uint8_t>
d_stretchBendType; //!< stretch-bend type vector for angle i-j-k
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFDfsbCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFStbn object, NULL on failure.
*/
const std::pair<bool, const MMFFStbn *> getMMFFDfsbParams(
const unsigned int periodicTableRow1,
const unsigned int periodicTableRow2,
const unsigned int periodicTableRow3) const {
const MMFFStbn *mmffDfsbParams = nullptr;
bool swap = false;
unsigned int canPeriodicTableRow1 = periodicTableRow1;
unsigned int canPeriodicTableRow3 = periodicTableRow3;
if (periodicTableRow1 > periodicTableRow3) {
canPeriodicTableRow1 = periodicTableRow3;
canPeriodicTableRow3 = periodicTableRow1;
swap = true;
}
const auto res1 = d_params.find(canPeriodicTableRow1);
if (res1 != d_params.end()) {
const auto res2 = ((*res1).second).find(periodicTableRow2);
if (res2 != ((*res1).second).end()) {
const auto res3 = ((*res2).second).find(canPeriodicTableRow3);
if (res3 != ((*res2).second).end()) {
mmffDfsbParams = &((*res3).second);
}
}
}
return std::make_pair(swap, mmffDfsbParams);
}
MMFFDfsbCollection(std::string mmffDfsb = "");
std::map<const unsigned int,
std::map<const unsigned int, std::map<const unsigned int, MMFFStbn>>>
d_params; //!< the parameter 3D-map
};
class RDKIT_FORCEFIELD_EXPORT MMFFOopCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFOop object, NULL on failure.
*/
const MMFFOop *operator()(const MMFFDefCollection *mmffDef,
const unsigned int iAtomType,
const unsigned int jAtomType,
const unsigned int kAtomType,
const unsigned int lAtomType) const {
const MMFFOop *mmffOopParams = nullptr;
unsigned int iter = 0;
std::vector<unsigned int> canIKLAtomType(3);
// For out-of-plane bending ijk; I , where j is the central
// atom [cf. eq. (511, the five-stage protocol 1-1-1; 1, 2-2-2; 2,
// 3-2-3;3, 4-2-4;4, 5-2-5;5 is used. The final stage provides
// wild-card defaults for all except the central atom.
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
while ((iter < 4) && (!mmffOopParams)) {
canIKLAtomType[0] = (*mmffDef)(iAtomType)->eqLevel[iter];
unsigned int canJAtomType = jAtomType;
canIKLAtomType[1] = (*mmffDef)(kAtomType)->eqLevel[iter];
canIKLAtomType[2] = (*mmffDef)(lAtomType)->eqLevel[iter];
std::sort(canIKLAtomType.begin(), canIKLAtomType.end());
const auto res1 = d_params.find(canIKLAtomType[0]);
if (res1 != d_params.end()) {
const auto res2 = ((*res1).second).find(canJAtomType);
if (res2 != ((*res1).second).end()) {
const auto res3 = ((*res2).second).find(canIKLAtomType[1]);
if (res3 != ((*res2).second).end()) {
const auto res4 = ((*res3).second).find(canIKLAtomType[2]);
if (res4 != ((*res3).second).end()) {
mmffOopParams = &((*res4).second);
}
}
}
}
++iter;
}
#else
auto jBounds =
std::equal_range(d_jAtomType.begin(), d_jAtomType.end(), jAtomType);
if (jBounds.first != jBounds.second) {
while ((iter < 4) && (!mmffOopParams)) {
canIKLAtomType[0] = (*mmffDef)(iAtomType)->eqLevel[iter];
canIKLAtomType[1] = (*mmffDef)(kAtomType)->eqLevel[iter];
canIKLAtomType[2] = (*mmffDef)(lAtomType)->eqLevel[iter];
std::sort(canIKLAtomType.begin(), canIKLAtomType.end());
auto bounds = std::equal_range(
d_iAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
d_iAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
canIKLAtomType[0]);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_kAtomType.begin() + (bounds.first - d_iAtomType.begin()),
d_kAtomType.begin() + (bounds.second - d_iAtomType.begin()),
canIKLAtomType[1]);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_lAtomType.begin() + (bounds.first - d_kAtomType.begin()),
d_lAtomType.begin() + (bounds.second - d_kAtomType.begin()),
canIKLAtomType[2]);
if (bounds.first != bounds.second) {
mmffOopParams = &d_params[bounds.first - d_lAtomType.begin()];
}
}
}
++iter;
}
}
#endif
return mmffOopParams;
}
MMFFOopCollection(const bool isMMFFs, std::string mmffOop = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int,
std::map<const unsigned int,
std::map<const unsigned int,
std::map<const unsigned int, MMFFOop>>>>
d_params; //!< the parameter 4D-map
#else
std::vector<MMFFOop> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iAtomType; //!< atom type vector for atom i
std::vector<std::uint8_t> d_jAtomType; //!< atom type vector for atom j
std::vector<std::uint8_t> d_kAtomType; //!< atom type vector for atom k
std::vector<std::uint8_t> d_lAtomType; //!< atom type vector for atom l
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFTorCollection {
public:
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFTor object, NULL on failure.
*/
const std::pair<const unsigned int, const MMFFTor *> getMMFFTorParams(
const MMFFDefCollection *mmffDef,
const std::pair<unsigned int, unsigned int> torType,
const unsigned int iAtomType, const unsigned int jAtomType,
const unsigned int kAtomType, const unsigned int lAtomType) const {
const MMFFTor *mmffTorParams = nullptr;
unsigned int iter = 0;
unsigned int iWildCard = 0;
unsigned int lWildCard = 0;
unsigned int canTorType = torType.first;
unsigned int maxIter = 5;
// For i-j-k-2 torsion interactions, a five-stage
// process based on level combinations 1-1-1-1, 2-2-2-2,
// 3-2-2-5, 5-2-2-3, and 5-2-2-5 is used, where stages 3
// and 4 correspond to "half-default" or "half-wild-card" entries.
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
#else
#endif
while (((iter < maxIter) && ((!mmffTorParams) || (maxIter == 4))) ||
((iter == 4) && (torType.first == 5) && torType.second)) {
// The rule of setting the torsion type to the value it had
// before being set to 5 as a last resort in case parameters
// could not be found is not mentioned in MMFF.IV; it was
// empirically discovered due to a number of tests in the
// MMFF validation suite otherwise failing
if ((maxIter == 5) && (iter == 4)) {
maxIter = 4;
iter = 0;
canTorType = torType.second;
}
iWildCard = iter;
lWildCard = iter;
if (iter == 1) {
iWildCard = 1;
lWildCard = 3;
} else if (iter == 2) {
iWildCard = 3;
lWildCard = 1;
}
unsigned int canIAtomType = (*mmffDef)(iAtomType)->eqLevel[iWildCard];
unsigned int canJAtomType = jAtomType;
unsigned int canKAtomType = kAtomType;
unsigned int canLAtomType = (*mmffDef)(lAtomType)->eqLevel[lWildCard];
if (canJAtomType > canKAtomType) {
unsigned int temp = canKAtomType;
canKAtomType = canJAtomType;
canJAtomType = temp;
temp = canLAtomType;
canLAtomType = canIAtomType;
canIAtomType = temp;
} else if ((canJAtomType == canKAtomType) &&
(canIAtomType > canLAtomType)) {
unsigned int temp = canLAtomType;
canLAtomType = canIAtomType;
canIAtomType = temp;
}
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res1 = d_params.find(canTorType);
if (res1 != d_params.end()) {
const auto res2 = ((*res1).second).find(canIAtomType);
if (res2 != ((*res1).second).end()) {
const auto res3 = ((*res2).second).find(canJAtomType);
if (res3 != ((*res2).second).end()) {
const auto res4 = ((*res3).second).find(canKAtomType);
if (res4 != ((*res3).second).end()) {
const auto res5 = ((*res4).second).find(canLAtomType);
if (res5 != ((*res4).second).end()) {
mmffTorParams = &((*res5).second);
if (maxIter == 4) {
break;
}
}
}
}
}
}
#else
auto jBounds = std::equal_range(d_jAtomType.begin(), d_jAtomType.end(),
canJAtomType);
if (jBounds.first != jBounds.second) {
auto bounds = std::equal_range(
d_kAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
d_kAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
canKAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_iAtomType.begin() + (bounds.first - d_kAtomType.begin()),
d_iAtomType.begin() + (bounds.second - d_kAtomType.begin()),
canIAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_lAtomType.begin() + (bounds.first - d_iAtomType.begin()),
d_lAtomType.begin() + (bounds.second - d_iAtomType.begin()),
canLAtomType);
if (bounds.first != bounds.second) {
bounds = std::equal_range(
d_torType.begin() + (bounds.first - d_lAtomType.begin()),
d_torType.begin() + (bounds.second - d_lAtomType.begin()),
canTorType);
if (bounds.first != bounds.second) {
mmffTorParams = &d_params[bounds.first - d_torType.begin()];
if (maxIter == 4) {
break;
}
}
}
}
}
}
#endif
++iter;
}
return std::make_pair(canTorType, mmffTorParams);
}
MMFFTorCollection(const bool isMMFFs, std::string mmffTor = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<
const unsigned int,
std::map<
const unsigned int,
std::map<const unsigned int,
std::map<const unsigned int, std::map<const unsigned int,
MMFFTor>>>>>
d_params; //!< the parameter 5D-map
#else
std::vector<MMFFTor> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_iAtomType; //!< atom type vector for atom i
std::vector<std::uint8_t> d_jAtomType; //!< atom type vector for atom j
std::vector<std::uint8_t> d_kAtomType; //!< atom type vector for atom k
std::vector<std::uint8_t> d_lAtomType; //!< atom type vector for atom l
std::vector<std::uint8_t>
d_torType; //!< torsion type vector for angle i-j-k-l
#endif
};
class RDKIT_FORCEFIELD_EXPORT MMFFVdWCollection {
public:
//! gets a pointer to the singleton MMFFVdWCollection
double power;
double B;
double Beta;
double DARAD;
double DAEPS;
//! Looks up the parameters for a particular key and returns them.
/*!
\return a pointer to the MMFFVdW object, NULL on failure.
*/
const MMFFVdW *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
const auto res = d_params.find(atomType);
return (res != d_params.end() ? &((*res).second) : NULL);
#else
auto bounds =
std::equal_range(d_atomType.begin(), d_atomType.end(), atomType);
return ((bounds.first != bounds.second)
? &d_params[bounds.first - d_atomType.begin()]
: nullptr);
#endif
}
MMFFVdWCollection(std::string mmffVdW = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
std::map<const unsigned int, MMFFVdW> d_params; //!< the parameter map
#else
std::vector<MMFFVdW> d_params; //!< the parameter vector
std::vector<std::uint8_t> d_atomType; //!< atom type vector
#endif
};
} // namespace MMFF
} // namespace ForceFields
#endif
|