File: Params.h

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (997 lines) | stat: -rw-r--r-- 35,334 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
//
//  Copyright (C) 2004-2024 Paolo Tosco and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
//
#include <RDGeneral/export.h>
#ifndef RD_MMFFPARAMS_H
#define RD_MMFFPARAMS_H

#include <memory>
#include <RDGeneral/Invariant.h>
#include <cmath>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <iostream>
#include <cstdint>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

// binary searches are slightly faster than std::map;
// however when I moved to binary searches I had already
// written the code for std::map, so the two methods
// can be toggled defining RDKIT_MMFF_PARAMS_USE_STD_MAP

// #define RDKIT_MMFF_PARAMS_USE_STD_MAP 1

namespace ForceFields {
namespace MMFF {

constexpr double DEG2RAD = M_PI / 180.0;
constexpr double RAD2DEG = 180.0 / M_PI;
constexpr double MDYNE_A_TO_KCAL_MOL = 143.9325;
inline bool isDoubleZero(const double x) {
  return ((x < 1.0e-10) && (x > -1.0e-10));
}
inline void clipToOne(double &x) { x = std::clamp(x, -1.0, 1.0); }

//! class to store MMFF atom type equivalence levels
class RDKIT_FORCEFIELD_EXPORT MMFFDef {
 public:
  std::uint8_t eqLevel[4];
};

//! class to store MMFF Properties
class RDKIT_FORCEFIELD_EXPORT MMFFProp {
 public:
  std::uint8_t atno;
  std::uint8_t crd;
  std::uint8_t val;
  std::uint8_t pilp;
  std::uint8_t mltb;
  std::uint8_t arom;
  std::uint8_t linh;
  std::uint8_t sbmb;
};

//! class to store MMFF Partial Bond Charge Increments
class RDKIT_FORCEFIELD_EXPORT MMFFPBCI {
 public:
  double pbci;
  double fcadj;
};

//! class to store MMFF bond-charge-increment parameters used to
//! construct MMFF partial atomic charges
class RDKIT_FORCEFIELD_EXPORT MMFFChg {
 public:
  double bci;
};

//! class to store MMFF parameters for bond stretching
class RDKIT_FORCEFIELD_EXPORT MMFFBond {
 public:
  double kb;
  double r0;
};

//! class to store parameters for Herschbach-Laurie's version
//! of Badger's rule
class RDKIT_FORCEFIELD_EXPORT MMFFHerschbachLaurie {
 public:
  double a_ij;
  double d_ij;
  double dp_ij;
};

//! class to store covalent radius and Pauling electronegativity
//! values for MMFF bond stretching empirical rule
class RDKIT_FORCEFIELD_EXPORT MMFFCovRadPauEle {
 public:
  double r0;
  double chi;
};

//! class to store MMFF parameters for angle bending
class RDKIT_FORCEFIELD_EXPORT MMFFAngle {
 public:
  double ka;
  double theta0;
};

//! class to store MMFF parameters for stretch-bending
class RDKIT_FORCEFIELD_EXPORT MMFFStbn {
 public:
  double kbaIJK;
  double kbaKJI;
};

//! class to store MMFF parameters for out-of-plane bending
class RDKIT_FORCEFIELD_EXPORT MMFFOop {
 public:
  double koop;
};

//! class to store MMFF parameters for torsions
class RDKIT_FORCEFIELD_EXPORT MMFFTor {
 public:
  double V1;
  double V2;
  double V3;
};

//! class to store MMFF parameters for non-bonded Van der Waals
class RDKIT_FORCEFIELD_EXPORT MMFFVdW {
 public:
  double alpha_i;
  double N_i;
  double A_i;
  double G_i;
  double R_star;
  std::uint8_t DA;
};

class RDKIT_FORCEFIELD_EXPORT MMFFVdWRijstarEps {
 public:
  double R_ij_starUnscaled;
  double epsilonUnscaled;
  double R_ij_star;
  double epsilon;
};

class RDKIT_FORCEFIELD_EXPORT MMFFAromCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFArom object, NULL on failure.
  */
  bool isMMFFAromatic(const unsigned int atomType) const {
    return std::find(d_params.begin(), d_params.end(), atomType) !=
           d_params.end();
  }

  MMFFAromCollection(const std::vector<std::uint8_t> *mmffArom = nullptr);
  std::vector<std::uint8_t> d_params;  //!< the aromatic type vector
};

class RDKIT_FORCEFIELD_EXPORT MMFFDefCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFDef object, NULL on failure.
  */
  const MMFFDef *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res = d_params.find(atomType);
    return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
    return ((atomType && (atomType <= d_params.size()))
                ? &d_params[atomType - 1]
                : nullptr);
#endif
  }

  MMFFDefCollection(std::string mmffDef = "");

#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int, MMFFDef> d_params;  //!< the parameter map
#else
  std::vector<MMFFDef> d_params;  //!< the parameter vector
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFPropCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFProp object, NULL on failure.
  */
  const MMFFProp *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res = d_params.find(atomType);
    return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
    auto bounds =
        std::equal_range(d_iAtomType.begin(), d_iAtomType.end(), atomType);
    return ((bounds.first != bounds.second)
                ? &d_params[bounds.first - d_iAtomType.begin()]
                : nullptr);
#endif
  }

  MMFFPropCollection(std::string mmffProp = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int, MMFFProp> d_params;  //!< the parameter map
#else
  std::vector<MMFFProp> d_params;
  std::vector<std::uint8_t> d_iAtomType;  //!< the parameter vector
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFPBCICollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFPBCI object, NULL on failure.
  */
  const MMFFPBCI *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res = d_params.find(atomType);
    return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
    return ((atomType && (atomType <= d_params.size()))
                ? &d_params[atomType - 1]
                : nullptr);
#endif
  }

  MMFFPBCICollection(std::string mmffPBCI = "");

#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int, MMFFPBCI> d_params;  //!< the parameter map
#else
  std::vector<MMFFPBCI> d_params;  //!< the parameter vector
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFChgCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFChg object, NULL on failure.
  */
  const std::pair<int, const MMFFChg *> getMMFFChgParams(
      const unsigned int bondType, const unsigned int iAtomType,
      const unsigned int jAtomType) const {
    int sign = -1;
    const MMFFChg *mmffChgParams = nullptr;
    unsigned int canIAtomType = iAtomType;
    unsigned int canJAtomType = jAtomType;
    if (iAtomType > jAtomType) {
      canIAtomType = jAtomType;
      canJAtomType = iAtomType;
      sign = 1;
    }
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res1 = d_params[bondType].find(canIAtomType);
    if (res1 != d_params[bondType].end()) {
      const auto res2 = ((*res1).second).find(canJAtomType);
      if (res2 != ((*res1).second).end()) {
        mmffChgParams = &((*res2).second);
      }
    }
#else
    auto bounds =
        std::equal_range(d_iAtomType.begin(), d_iAtomType.end(), canIAtomType);
    if (bounds.first != bounds.second) {
      bounds = std::equal_range(
          d_jAtomType.begin() + (bounds.first - d_iAtomType.begin()),
          d_jAtomType.begin() + (bounds.second - d_iAtomType.begin()),
          canJAtomType);
      if (bounds.first != bounds.second) {
        bounds = std::equal_range(
            d_bondType.begin() + (bounds.first - d_jAtomType.begin()),
            d_bondType.begin() + (bounds.second - d_jAtomType.begin()),
            bondType);
        if (bounds.first != bounds.second) {
          mmffChgParams = &d_params[bounds.first - d_bondType.begin()];
        }
      }
    }
#endif

    return std::make_pair(sign, mmffChgParams);
  }

  MMFFChgCollection(std::string mmffChg = "");

//!< the parameter 3D-map
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int,
           std::map<const unsigned int, std::map<const unsigned int, MMFFChg>>>
      d_params;  //!< the parameter 3D-map
#else
  std::vector<MMFFChg> d_params;          //!< the parameter vector
  std::vector<std::uint8_t> d_iAtomType;  //!< atom type vector for atom i
  std::vector<std::uint8_t> d_jAtomType;  //!< atom type vector for atom j
  std::vector<std::uint8_t> d_bondType;   //!< bond type vector for bond i-j
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFBondCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFBond object, NULL on failure.
  */
  const MMFFBond *operator()(const unsigned int bondType,
                             const unsigned int atomType,
                             const unsigned int nbrAtomType) const {
    const MMFFBond *mmffBondParams = nullptr;
    unsigned int canAtomType = atomType;
    unsigned int canNbrAtomType = nbrAtomType;
    if (atomType > nbrAtomType) {
      canAtomType = nbrAtomType;
      canNbrAtomType = atomType;
    }
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res1 = d_params.find(bondType);
    std::map<const unsigned int,
             std::map<const unsigned int, MMFFBond>>::const_iterator res2;
    std::map<const unsigned int, MMFFBond>::const_iterator res3;
    if (res1 != d_params.end()) {
      res2 = ((*res1).second).find(canAtomType);
      if (res2 != ((*res1).second).end()) {
        res3 = ((*res2).second).find(canNbrAtomType);
        if (res3 != ((*res2).second).end()) {
          mmffBondParams = &((*res3).second);
        }
      }
    }
#else
    auto bounds =
        std::equal_range(d_iAtomType.begin(), d_iAtomType.end(), canAtomType);
    if (bounds.first != bounds.second) {
      bounds = std::equal_range(
          d_jAtomType.begin() + (bounds.first - d_iAtomType.begin()),
          d_jAtomType.begin() + (bounds.second - d_iAtomType.begin()),
          canNbrAtomType);
      if (bounds.first != bounds.second) {
        bounds = std::equal_range(
            d_bondType.begin() + (bounds.first - d_jAtomType.begin()),
            d_bondType.begin() + (bounds.second - d_jAtomType.begin()),
            bondType);
        if (bounds.first != bounds.second) {
          mmffBondParams = &d_params[bounds.first - d_bondType.begin()];
        }
      }
    }
#endif

    return mmffBondParams;
  }

  MMFFBondCollection(std::string mmffBond = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int,
           std::map<const unsigned int, std::map<const unsigned int, MMFFBond>>>
      d_params;  //!< the parameter 3D-map
#else
  std::vector<MMFFBond> d_params;         //!< the parameter vector
  std::vector<std::uint8_t> d_iAtomType;  //!< atom type vector for atom i
  std::vector<std::uint8_t> d_jAtomType;  //!< atom type vector for atom j
  std::vector<std::uint8_t> d_bondType;   //!< bond type vector for bond i-j
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFBndkCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFBndk object, NULL on failure.
  */
  const MMFFBond *operator()(const int atomicNum,
                             const int nbrAtomicNum) const {
    const MMFFBond *mmffBndkParams = nullptr;
    unsigned int canAtomicNum = atomicNum;
    unsigned int canNbrAtomicNum = nbrAtomicNum;
    if (atomicNum > nbrAtomicNum) {
      canAtomicNum = nbrAtomicNum;
      canNbrAtomicNum = atomicNum;
    }
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res1 = d_params.find(canAtomicNum);
    std::map<const unsigned int, MMFFBond>::const_iterator res2;
    if (res1 != d_params.end()) {
      res2 = ((*res1).second).find(canNbrAtomicNum);
      if (res2 != ((*res1).second).end()) {
        mmffBndkParams = &((*res2).second);
      }
    }
#else
    auto bounds = std::equal_range(d_iAtomicNum.begin(), d_iAtomicNum.end(),
                                   canAtomicNum);
    if (bounds.first != bounds.second) {
      bounds = std::equal_range(
          d_jAtomicNum.begin() + (bounds.first - d_iAtomicNum.begin()),
          d_jAtomicNum.begin() + (bounds.second - d_iAtomicNum.begin()),
          canNbrAtomicNum);
      if (bounds.first != bounds.second) {
        mmffBndkParams = &d_params[bounds.first - d_jAtomicNum.begin()];
      }
    }
#endif

    return mmffBndkParams;
  }

  MMFFBndkCollection(std::string mmffBndk = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int, std::map<const unsigned int, MMFFBond>>
      d_params;  //!< the parameter 2D-map
#else
  std::vector<MMFFBond> d_params;          //!< the parameter vector
  std::vector<std::uint8_t> d_iAtomicNum;  //!< atomic number vector for atom i
  std::vector<std::uint8_t> d_jAtomicNum;  //!< atomic number vector for atom j
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFHerschbachLaurieCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFHerschbachLaurie object, NULL on failure.
  */
  const MMFFHerschbachLaurie *operator()(const int iRow, const int jRow) const {
    const MMFFHerschbachLaurie *mmffHerschbachLaurieParams = nullptr;
    unsigned int canIRow = iRow;
    unsigned int canJRow = jRow;
    if (iRow > jRow) {
      canIRow = jRow;
      canJRow = iRow;
    }
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res1 = d_params.find(canIRow);
    std::map<const unsigned int, MMFFHerschbachLaurie>::const_iterator res2;
    if (res1 != d_params.end()) {
      res2 = ((*res1).second).find(canJRow);
      if (res2 != ((*res1).second).end()) {
        mmffHerschbachLaurieParams = &((*res2).second);
      }
    }
#else
    auto bounds = std::equal_range(d_iRow.begin(), d_iRow.end(), canIRow);
    if (bounds.first != bounds.second) {
      bounds = std::equal_range(
          d_jRow.begin() + (bounds.first - d_iRow.begin()),
          d_jRow.begin() + (bounds.second - d_iRow.begin()), canJRow);
      if (bounds.first != bounds.second) {
        mmffHerschbachLaurieParams = &d_params[bounds.first - d_jRow.begin()];
      }
    }
#endif

    return mmffHerschbachLaurieParams;
  }

  MMFFHerschbachLaurieCollection(std::string mmffHerschbachLaurie = "");

#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int,
           std::map<const unsigned int, MMFFHerschbachLaurie>>
      d_params;  //!< the parameter 2D-map
#else
  std::vector<MMFFHerschbachLaurie> d_params;  //!< the parameter vector
  std::vector<std::uint8_t> d_iRow;  //!< periodic row number vector for atom i
  std::vector<std::uint8_t> d_jRow;  //!< periodic row number vector for atom j
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFCovRadPauEleCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFCovRadPauEle object, NULL on failure.
  */
  const MMFFCovRadPauEle *operator()(const unsigned int atomicNum) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res = d_params.find(atomicNum);
    return ((res != d_params.end()) ? &((*res).second) : NULL);
#else
    auto bounds =
        std::equal_range(d_atomicNum.begin(), d_atomicNum.end(), atomicNum);
    return ((bounds.first != bounds.second)
                ? &d_params[bounds.first - d_atomicNum.begin()]
                : nullptr);
#endif
  }

  MMFFCovRadPauEleCollection(std::string mmffCovRadPauEle = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int, MMFFCovRadPauEle>
      d_params;  //!< the parameter map
#else
  std::vector<MMFFCovRadPauEle> d_params;  //!< the parameter vector
  std::vector<std::uint8_t> d_atomicNum;   //!< the atomic number vector
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFAngleCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFAngle object, NULL on failure.
  */
  const MMFFAngle *operator()(const MMFFDefCollection *mmffDef,
                              const unsigned int angleType,
                              const unsigned int iAtomType,
                              const unsigned int jAtomType,
                              const unsigned int kAtomType) const {
    const MMFFAngle *mmffAngleParams = nullptr;
    unsigned int iter = 0;

// For bending of the i-j-k angle, a five-stage process based
// in the level combinations 1-1-1,2-2-2,3-2-3,4-2-4, and
// 5-2-5 is used. (MMFF.I, note 68, page 519)
// We skip 1-1-1 since Level 2 === Level 1
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    while ((iter < 4) && (!mmffAngleParams)) {
      unsigned int canIAtomType = (*mmffDef)(iAtomType)->eqLevel[iter];
      unsigned int canKAtomType = (*mmffDef)(kAtomType)->eqLevel[iter];
      if (canIAtomType > canKAtomType) {
        std::swap(canIAtomType, canKAtomType);
      }
      const auto res1 = d_params.find(angleType);
      if (res1 != d_params.end()) {
        const auto res2 = ((*res1).second).find(canIAtomType);
        if (res2 != ((*res1).second).end()) {
          const auto res3 = ((*res2).second).find(jAtomType);
          if (res3 != ((*res2).second).end()) {
            const auto res4 = ((*res3).second).find(canKAtomType);
            if (res4 != ((*res3).second).end()) {
              mmffAngleParams = &((*res4).second);
            }
          }
        }
      }
      ++iter;
    }
#else
    auto jBounds =
        std::equal_range(d_jAtomType.begin(), d_jAtomType.end(), jAtomType);
    if (jBounds.first != jBounds.second) {
      while ((iter < 4) && (!mmffAngleParams)) {
        unsigned int canIAtomType = (*mmffDef)(iAtomType)->eqLevel[iter];
        unsigned int canKAtomType = (*mmffDef)(kAtomType)->eqLevel[iter];
        if (canIAtomType > canKAtomType) {
          std::swap(canIAtomType, canKAtomType);
        }

        auto bounds = std::equal_range(
            d_iAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
            d_iAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
            canIAtomType);
        if (bounds.first != bounds.second) {
          bounds = std::equal_range(
              d_kAtomType.begin() + (bounds.first - d_iAtomType.begin()),
              d_kAtomType.begin() + (bounds.second - d_iAtomType.begin()),
              canKAtomType);
          if (bounds.first != bounds.second) {
            bounds = std::equal_range(
                d_angleType.begin() + (bounds.first - d_kAtomType.begin()),
                d_angleType.begin() + (bounds.second - d_kAtomType.begin()),
                angleType);
            if (bounds.first != bounds.second) {
              mmffAngleParams = &d_params[bounds.first - d_angleType.begin()];
            }
          }
        }
        ++iter;
      }
    }
#endif

    return mmffAngleParams;
  }

  MMFFAngleCollection(std::string mmffAngle = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int,
           std::map<const unsigned int,
                    std::map<const unsigned int,
                             std::map<const unsigned int, MMFFAngle>>>>
      d_params;  //!< the parameter 4D-map
#else
  std::vector<MMFFAngle> d_params;        //!< the parameter vector
  std::vector<std::uint8_t> d_iAtomType;  //!< atom type vector for atom i
  std::vector<std::uint8_t> d_jAtomType;  //!< atom type vector for atom j
  std::vector<std::uint8_t> d_kAtomType;  //!< atom type vector for atom k
  std::vector<std::uint8_t> d_angleType;  //!< angle type vector for angle i-j-k
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFStbnCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFStbn object, NULL on failure.
  */
  const std::pair<bool, const MMFFStbn *> getMMFFStbnParams(
      const unsigned int stretchBendType, const unsigned int bondType1,
      const unsigned int bondType2, const unsigned int iAtomType,
      const unsigned int jAtomType, const unsigned int kAtomType) const {
    const MMFFStbn *mmffStbnParams = nullptr;
    bool swap = false;
    unsigned int canIAtomType = iAtomType;
    unsigned int canKAtomType = kAtomType;
    unsigned int canStretchBendType = stretchBendType;
    if (iAtomType > kAtomType) {
      canIAtomType = kAtomType;
      canKAtomType = iAtomType;
      swap = true;
    } else if (iAtomType == kAtomType) {
      swap = (bondType1 < bondType2);
    }
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res1 = d_params.find(canStretchBendType);
    if (res1 != d_params.end()) {
      const auto res2 = ((*res1).second).find(canIAtomType);
      if (res2 != ((*res1).second).end()) {
        const auto res3 = ((*res2).second).find(jAtomType);
        if (res3 != ((*res2).second).end()) {
          const auto res4 = ((*res3).second).find(canKAtomType);
          if (res4 != ((*res3).second).end()) {
            mmffStbnParams = &((*res4).second);
          }
        }
      }
    }
#else
    auto jBounds =
        std::equal_range(d_jAtomType.begin(), d_jAtomType.end(), jAtomType);
    if (jBounds.first != jBounds.second) {
      auto bounds = std::equal_range(
          d_iAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
          d_iAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
          canIAtomType);
      if (bounds.first != bounds.second) {
        bounds = std::equal_range(
            d_kAtomType.begin() + (bounds.first - d_iAtomType.begin()),
            d_kAtomType.begin() + (bounds.second - d_iAtomType.begin()),
            canKAtomType);
        if (bounds.first != bounds.second) {
          bounds = std::equal_range(
              d_stretchBendType.begin() + (bounds.first - d_kAtomType.begin()),
              d_stretchBendType.begin() + (bounds.second - d_kAtomType.begin()),
              canStretchBendType);
          if (bounds.first != bounds.second) {
            mmffStbnParams =
                &d_params[bounds.first - d_stretchBendType.begin()];
          }
        }
      }
    }
#endif

    return std::make_pair(swap, mmffStbnParams);
  }

  MMFFStbnCollection(std::string mmffStbn = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int,
           std::map<const unsigned int,
                    std::map<const unsigned int,
                             std::map<const unsigned int, MMFFStbn>>>>
      d_params;  //!< the parameter 4D-map
#else
  std::vector<MMFFStbn> d_params;         //!< the parameter vector
  std::vector<std::uint8_t> d_iAtomType;  //!< atom type vector for atom i
  std::vector<std::uint8_t> d_jAtomType;  //!< atom type vector for atom j
  std::vector<std::uint8_t> d_kAtomType;  //!< atom type vector for atom k
  std::vector<std::uint8_t>
      d_stretchBendType;  //!< stretch-bend type vector for angle i-j-k
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFDfsbCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFStbn object, NULL on failure.
  */
  const std::pair<bool, const MMFFStbn *> getMMFFDfsbParams(
      const unsigned int periodicTableRow1,
      const unsigned int periodicTableRow2,
      const unsigned int periodicTableRow3) const {
    const MMFFStbn *mmffDfsbParams = nullptr;
    bool swap = false;
    unsigned int canPeriodicTableRow1 = periodicTableRow1;
    unsigned int canPeriodicTableRow3 = periodicTableRow3;
    if (periodicTableRow1 > periodicTableRow3) {
      canPeriodicTableRow1 = periodicTableRow3;
      canPeriodicTableRow3 = periodicTableRow1;
      swap = true;
    }
    const auto res1 = d_params.find(canPeriodicTableRow1);
    if (res1 != d_params.end()) {
      const auto res2 = ((*res1).second).find(periodicTableRow2);
      if (res2 != ((*res1).second).end()) {
        const auto res3 = ((*res2).second).find(canPeriodicTableRow3);
        if (res3 != ((*res2).second).end()) {
          mmffDfsbParams = &((*res3).second);
        }
      }
    }

    return std::make_pair(swap, mmffDfsbParams);
  }

  MMFFDfsbCollection(std::string mmffDfsb = "");
  std::map<const unsigned int,
           std::map<const unsigned int, std::map<const unsigned int, MMFFStbn>>>
      d_params;  //!< the parameter 3D-map
};

class RDKIT_FORCEFIELD_EXPORT MMFFOopCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFOop object, NULL on failure.
  */
  const MMFFOop *operator()(const MMFFDefCollection *mmffDef,
                            const unsigned int iAtomType,
                            const unsigned int jAtomType,
                            const unsigned int kAtomType,
                            const unsigned int lAtomType) const {
    const MMFFOop *mmffOopParams = nullptr;
    unsigned int iter = 0;
    std::vector<unsigned int> canIKLAtomType(3);
// For out-of-plane bending ijk; I , where j is the central
// atom [cf. eq. (511, the five-stage protocol 1-1-1; 1, 2-2-2; 2,
// 3-2-3;3, 4-2-4;4, 5-2-5;5 is used. The final stage provides
// wild-card defaults for all except the central atom.
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    while ((iter < 4) && (!mmffOopParams)) {
      canIKLAtomType[0] = (*mmffDef)(iAtomType)->eqLevel[iter];
      unsigned int canJAtomType = jAtomType;
      canIKLAtomType[1] = (*mmffDef)(kAtomType)->eqLevel[iter];
      canIKLAtomType[2] = (*mmffDef)(lAtomType)->eqLevel[iter];
      std::sort(canIKLAtomType.begin(), canIKLAtomType.end());
      const auto res1 = d_params.find(canIKLAtomType[0]);
      if (res1 != d_params.end()) {
        const auto res2 = ((*res1).second).find(canJAtomType);
        if (res2 != ((*res1).second).end()) {
          const auto res3 = ((*res2).second).find(canIKLAtomType[1]);
          if (res3 != ((*res2).second).end()) {
            const auto res4 = ((*res3).second).find(canIKLAtomType[2]);
            if (res4 != ((*res3).second).end()) {
              mmffOopParams = &((*res4).second);
            }
          }
        }
      }
      ++iter;
    }
#else
    auto jBounds =
        std::equal_range(d_jAtomType.begin(), d_jAtomType.end(), jAtomType);
    if (jBounds.first != jBounds.second) {
      while ((iter < 4) && (!mmffOopParams)) {
        canIKLAtomType[0] = (*mmffDef)(iAtomType)->eqLevel[iter];
        canIKLAtomType[1] = (*mmffDef)(kAtomType)->eqLevel[iter];
        canIKLAtomType[2] = (*mmffDef)(lAtomType)->eqLevel[iter];
        std::sort(canIKLAtomType.begin(), canIKLAtomType.end());
        auto bounds = std::equal_range(
            d_iAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
            d_iAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
            canIKLAtomType[0]);
        if (bounds.first != bounds.second) {
          bounds = std::equal_range(
              d_kAtomType.begin() + (bounds.first - d_iAtomType.begin()),
              d_kAtomType.begin() + (bounds.second - d_iAtomType.begin()),
              canIKLAtomType[1]);
          if (bounds.first != bounds.second) {
            bounds = std::equal_range(
                d_lAtomType.begin() + (bounds.first - d_kAtomType.begin()),
                d_lAtomType.begin() + (bounds.second - d_kAtomType.begin()),
                canIKLAtomType[2]);
            if (bounds.first != bounds.second) {
              mmffOopParams = &d_params[bounds.first - d_lAtomType.begin()];
            }
          }
        }
        ++iter;
      }
    }
#endif

    return mmffOopParams;
  }

  MMFFOopCollection(const bool isMMFFs, std::string mmffOop = "");

#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int,
           std::map<const unsigned int,
                    std::map<const unsigned int,
                             std::map<const unsigned int, MMFFOop>>>>
      d_params;  //!< the parameter 4D-map
#else
  std::vector<MMFFOop> d_params;          //!< the parameter vector
  std::vector<std::uint8_t> d_iAtomType;  //!< atom type vector for atom i
  std::vector<std::uint8_t> d_jAtomType;  //!< atom type vector for atom j
  std::vector<std::uint8_t> d_kAtomType;  //!< atom type vector for atom k
  std::vector<std::uint8_t> d_lAtomType;  //!< atom type vector for atom l
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFTorCollection {
 public:
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFTor object, NULL on failure.
  */
  const std::pair<const unsigned int, const MMFFTor *> getMMFFTorParams(
      const MMFFDefCollection *mmffDef,
      const std::pair<unsigned int, unsigned int> torType,
      const unsigned int iAtomType, const unsigned int jAtomType,
      const unsigned int kAtomType, const unsigned int lAtomType) const {
    const MMFFTor *mmffTorParams = nullptr;
    unsigned int iter = 0;
    unsigned int iWildCard = 0;
    unsigned int lWildCard = 0;
    unsigned int canTorType = torType.first;
    unsigned int maxIter = 5;
// For i-j-k-2 torsion interactions, a five-stage
// process based on level combinations 1-1-1-1, 2-2-2-2,
// 3-2-2-5, 5-2-2-3, and 5-2-2-5 is used, where stages 3
// and 4 correspond to "half-default" or "half-wild-card" entries.
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
#else
#endif

    while (((iter < maxIter) && ((!mmffTorParams) || (maxIter == 4))) ||
           ((iter == 4) && (torType.first == 5) && torType.second)) {
      // The rule of setting the torsion type to the value it had
      // before being set to 5 as a last resort in case parameters
      // could not be found is not mentioned in MMFF.IV; it was
      // empirically discovered due to a number of tests in the
      // MMFF validation suite otherwise failing
      if ((maxIter == 5) && (iter == 4)) {
        maxIter = 4;
        iter = 0;
        canTorType = torType.second;
      }
      iWildCard = iter;
      lWildCard = iter;
      if (iter == 1) {
        iWildCard = 1;
        lWildCard = 3;
      } else if (iter == 2) {
        iWildCard = 3;
        lWildCard = 1;
      }
      unsigned int canIAtomType = (*mmffDef)(iAtomType)->eqLevel[iWildCard];
      unsigned int canJAtomType = jAtomType;
      unsigned int canKAtomType = kAtomType;
      unsigned int canLAtomType = (*mmffDef)(lAtomType)->eqLevel[lWildCard];
      if (canJAtomType > canKAtomType) {
        unsigned int temp = canKAtomType;
        canKAtomType = canJAtomType;
        canJAtomType = temp;
        temp = canLAtomType;
        canLAtomType = canIAtomType;
        canIAtomType = temp;
      } else if ((canJAtomType == canKAtomType) &&
                 (canIAtomType > canLAtomType)) {
        unsigned int temp = canLAtomType;
        canLAtomType = canIAtomType;
        canIAtomType = temp;
      }
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
      const auto res1 = d_params.find(canTorType);
      if (res1 != d_params.end()) {
        const auto res2 = ((*res1).second).find(canIAtomType);
        if (res2 != ((*res1).second).end()) {
          const auto res3 = ((*res2).second).find(canJAtomType);
          if (res3 != ((*res2).second).end()) {
            const auto res4 = ((*res3).second).find(canKAtomType);
            if (res4 != ((*res3).second).end()) {
              const auto res5 = ((*res4).second).find(canLAtomType);
              if (res5 != ((*res4).second).end()) {
                mmffTorParams = &((*res5).second);
                if (maxIter == 4) {
                  break;
                }
              }
            }
          }
        }
      }
#else
      auto jBounds = std::equal_range(d_jAtomType.begin(), d_jAtomType.end(),
                                      canJAtomType);
      if (jBounds.first != jBounds.second) {
        auto bounds = std::equal_range(
            d_kAtomType.begin() + (jBounds.first - d_jAtomType.begin()),
            d_kAtomType.begin() + (jBounds.second - d_jAtomType.begin()),
            canKAtomType);
        if (bounds.first != bounds.second) {
          bounds = std::equal_range(
              d_iAtomType.begin() + (bounds.first - d_kAtomType.begin()),
              d_iAtomType.begin() + (bounds.second - d_kAtomType.begin()),
              canIAtomType);
          if (bounds.first != bounds.second) {
            bounds = std::equal_range(
                d_lAtomType.begin() + (bounds.first - d_iAtomType.begin()),
                d_lAtomType.begin() + (bounds.second - d_iAtomType.begin()),
                canLAtomType);
            if (bounds.first != bounds.second) {
              bounds = std::equal_range(
                  d_torType.begin() + (bounds.first - d_lAtomType.begin()),
                  d_torType.begin() + (bounds.second - d_lAtomType.begin()),
                  canTorType);
              if (bounds.first != bounds.second) {
                mmffTorParams = &d_params[bounds.first - d_torType.begin()];
                if (maxIter == 4) {
                  break;
                }
              }
            }
          }
        }
      }
#endif
      ++iter;
    }

    return std::make_pair(canTorType, mmffTorParams);
  }

  MMFFTorCollection(const bool isMMFFs, std::string mmffTor = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<
      const unsigned int,
      std::map<
          const unsigned int,
          std::map<const unsigned int,
                   std::map<const unsigned int, std::map<const unsigned int,
                                                         MMFFTor>>>>>
      d_params;  //!< the parameter 5D-map
#else
  std::vector<MMFFTor> d_params;          //!< the parameter vector
  std::vector<std::uint8_t> d_iAtomType;  //!< atom type vector for atom i
  std::vector<std::uint8_t> d_jAtomType;  //!< atom type vector for atom j
  std::vector<std::uint8_t> d_kAtomType;  //!< atom type vector for atom k
  std::vector<std::uint8_t> d_lAtomType;  //!< atom type vector for atom l
  std::vector<std::uint8_t>
      d_torType;  //!< torsion type vector for angle i-j-k-l
#endif
};

class RDKIT_FORCEFIELD_EXPORT MMFFVdWCollection {
 public:
  //! gets a pointer to the singleton MMFFVdWCollection
  double power;
  double B;
  double Beta;
  double DARAD;
  double DAEPS;
  //! Looks up the parameters for a particular key and returns them.
  /*!
    \return a pointer to the MMFFVdW object, NULL on failure.
  */
  const MMFFVdW *operator()(const unsigned int atomType) const {
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
    const auto res = d_params.find(atomType);
    return (res != d_params.end() ? &((*res).second) : NULL);
#else
    auto bounds =
        std::equal_range(d_atomType.begin(), d_atomType.end(), atomType);
    return ((bounds.first != bounds.second)
                ? &d_params[bounds.first - d_atomType.begin()]
                : nullptr);
#endif
  }

  MMFFVdWCollection(std::string mmffVdW = "");
#ifdef RDKIT_MMFF_PARAMS_USE_STD_MAP
  std::map<const unsigned int, MMFFVdW> d_params;  //!< the parameter map
#else
  std::vector<MMFFVdW> d_params;         //!< the parameter vector
  std::vector<std::uint8_t> d_atomType;  //!< atom type vector
#endif
};
}  // namespace MMFF
}  // namespace ForceFields

#endif