File: Inversion.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (136 lines) | stat: -rw-r--r-- 5,253 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//
//  Copyright (C) 2013 Paolo Tosco and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include "Inversion.h"
#include "Utils.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>

namespace ForceFields {
namespace UFF {

InversionContrib::InversionContrib(ForceField *owner, unsigned int idx1,
                                   unsigned int idx2, unsigned int idx3,
                                   unsigned int idx4, int at2AtomicNum,
                                   bool isCBoundToO,
                                   double oobForceScalingFactor) {
  PRECONDITION(owner, "bad owner");
  URANGE_CHECK(idx1, owner->positions().size());
  URANGE_CHECK(idx2, owner->positions().size());
  URANGE_CHECK(idx3, owner->positions().size());
  URANGE_CHECK(idx4, owner->positions().size());

  dp_forceField = owner;
  d_at1Idx = idx1;
  d_at2Idx = idx2;
  d_at3Idx = idx3;
  d_at4Idx = idx4;

  auto invCoeffForceCon = Utils::calcInversionCoefficientsAndForceConstant(
      at2AtomicNum, isCBoundToO);
  d_forceConstant = oobForceScalingFactor * std::get<0>(invCoeffForceCon);
  d_C0 = std::get<1>(invCoeffForceCon);
  d_C1 = std::get<2>(invCoeffForceCon);
  d_C2 = std::get<3>(invCoeffForceCon);
}

double InversionContrib::getEnergy(double *pos) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
                     pos[3 * d_at4Idx + 2]);

  double cosY = Utils::calculateCosY(p1, p2, p3, p4);
  double sinYSq = 1.0 - cosY * cosY;
  double sinY = ((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0);
  // cos(2 * W) = 2 * cos(W) * cos(W) - 1 = 2 * sin(W) * sin(W) - 1
  double cos2W = 2.0 * sinY * sinY - 1.0;
  double res = d_forceConstant * (d_C0 + d_C1 * sinY + d_C2 * cos2W);
  // std::cout << d_at1Idx + 1 << "," << d_at2Idx + 1 << "," << d_at3Idx + 1 <<
  // "," << d_at4Idx + 1 << " Inversion: " << res << std::endl;

  return res;
}
void InversionContrib::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");

  RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                     pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                     pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                     pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
                     pos[3 * d_at4Idx + 2]);
  double *g1 = &(grad[3 * d_at1Idx]);
  double *g2 = &(grad[3 * d_at2Idx]);
  double *g3 = &(grad[3 * d_at3Idx]);
  double *g4 = &(grad[3 * d_at4Idx]);

  RDGeom::Point3D rJI = p1 - p2;
  RDGeom::Point3D rJK = p3 - p2;
  RDGeom::Point3D rJL = p4 - p2;
  double dJI = rJI.length();
  double dJK = rJK.length();
  double dJL = rJL.length();
  if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
    return;
  }
  rJI /= dJI;
  rJK /= dJK;
  rJL /= dJL;

  RDGeom::Point3D n = (-rJI).crossProduct(rJK);
  n /= n.length();
  double cosY = n.dotProduct(rJL);
  clipToOne(cosY);
  double sinYSq = 1.0 - cosY * cosY;
  double sinY = std::max(sqrt(sinYSq), 1.0e-8);
  double cosTheta = rJI.dotProduct(rJK);
  clipToOne(cosTheta);
  double sinThetaSq = 1.0 - cosTheta * cosTheta;
  double sinTheta = std::max(sqrt(sinThetaSq), 1.0e-8);
  // sin(2 * W) = 2 * sin(W) * cos(W) = 2 * cos(Y) * sin(Y)
  double dE_dW = -d_forceConstant * (d_C1 * cosY - 4.0 * d_C2 * cosY * sinY);
  RDGeom::Point3D t1 = rJL.crossProduct(rJK);
  RDGeom::Point3D t2 = rJI.crossProduct(rJL);
  RDGeom::Point3D t3 = rJK.crossProduct(rJI);
  double term1 = sinY * sinTheta;
  double term2 = cosY / (sinY * sinThetaSq);
  double tg1[3] = {(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
                   (t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
                   (t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
  double tg3[3] = {(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
                   (t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
                   (t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
  double tg4[3] = {(t3.x / term1 - rJL.x * cosY / sinY) / dJL,
                   (t3.y / term1 - rJL.y * cosY / sinY) / dJL,
                   (t3.z / term1 - rJL.z * cosY / sinY) / dJL};
  for (unsigned int i = 0; i < 3; ++i) {
    g1[i] += dE_dW * tg1[i];
    g2[i] += -dE_dW * (tg1[i] + tg3[i] + tg4[i]);
    g3[i] += dE_dW * tg3[i];
    g4[i] += dE_dW * tg4[i];
  }
}
}  // namespace UFF
}  // namespace ForceFields