1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
//
// Copyright (C) 2013 Paolo Tosco and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "Inversion.h"
#include "Utils.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
namespace ForceFields {
namespace UFF {
InversionContrib::InversionContrib(ForceField *owner, unsigned int idx1,
unsigned int idx2, unsigned int idx3,
unsigned int idx4, int at2AtomicNum,
bool isCBoundToO,
double oobForceScalingFactor) {
PRECONDITION(owner, "bad owner");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
URANGE_CHECK(idx4, owner->positions().size());
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_at4Idx = idx4;
auto invCoeffForceCon = Utils::calcInversionCoefficientsAndForceConstant(
at2AtomicNum, isCBoundToO);
d_forceConstant = oobForceScalingFactor * std::get<0>(invCoeffForceCon);
d_C0 = std::get<1>(invCoeffForceCon);
d_C1 = std::get<2>(invCoeffForceCon);
d_C2 = std::get<3>(invCoeffForceCon);
}
double InversionContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double cosY = Utils::calculateCosY(p1, p2, p3, p4);
double sinYSq = 1.0 - cosY * cosY;
double sinY = ((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0);
// cos(2 * W) = 2 * cos(W) * cos(W) - 1 = 2 * sin(W) * sin(W) - 1
double cos2W = 2.0 * sinY * sinY - 1.0;
double res = d_forceConstant * (d_C0 + d_C1 * sinY + d_C2 * cos2W);
// std::cout << d_at1Idx + 1 << "," << d_at2Idx + 1 << "," << d_at3Idx + 1 <<
// "," << d_at4Idx + 1 << " Inversion: " << res << std::endl;
return res;
}
void InversionContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D p4(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
pos[3 * d_at4Idx + 2]);
double *g1 = &(grad[3 * d_at1Idx]);
double *g2 = &(grad[3 * d_at2Idx]);
double *g3 = &(grad[3 * d_at3Idx]);
double *g4 = &(grad[3 * d_at4Idx]);
RDGeom::Point3D rJI = p1 - p2;
RDGeom::Point3D rJK = p3 - p2;
RDGeom::Point3D rJL = p4 - p2;
double dJI = rJI.length();
double dJK = rJK.length();
double dJL = rJL.length();
if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
return;
}
rJI /= dJI;
rJK /= dJK;
rJL /= dJL;
RDGeom::Point3D n = (-rJI).crossProduct(rJK);
n /= n.length();
double cosY = n.dotProduct(rJL);
clipToOne(cosY);
double sinYSq = 1.0 - cosY * cosY;
double sinY = std::max(sqrt(sinYSq), 1.0e-8);
double cosTheta = rJI.dotProduct(rJK);
clipToOne(cosTheta);
double sinThetaSq = 1.0 - cosTheta * cosTheta;
double sinTheta = std::max(sqrt(sinThetaSq), 1.0e-8);
// sin(2 * W) = 2 * sin(W) * cos(W) = 2 * cos(Y) * sin(Y)
double dE_dW = -d_forceConstant * (d_C1 * cosY - 4.0 * d_C2 * cosY * sinY);
RDGeom::Point3D t1 = rJL.crossProduct(rJK);
RDGeom::Point3D t2 = rJI.crossProduct(rJL);
RDGeom::Point3D t3 = rJK.crossProduct(rJI);
double term1 = sinY * sinTheta;
double term2 = cosY / (sinY * sinThetaSq);
double tg1[3] = {(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
(t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
(t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
double tg3[3] = {(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
(t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
(t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
double tg4[3] = {(t3.x / term1 - rJL.x * cosY / sinY) / dJL,
(t3.y / term1 - rJL.y * cosY / sinY) / dJL,
(t3.z / term1 - rJL.z * cosY / sinY) / dJL};
for (unsigned int i = 0; i < 3; ++i) {
g1[i] += dE_dW * tg1[i];
g2[i] += -dE_dW * (tg1[i] + tg3[i] + tg4[i]);
g3[i] += dE_dW * tg3[i];
g4[i] += dE_dW * tg4[i];
}
}
} // namespace UFF
} // namespace ForceFields
|