File: Inversions.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (137 lines) | stat: -rw-r--r-- 5,819 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
//
//  Copyright (C) 2024 Niels Maeder and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include "Inversions.h"
#include "Utils.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>

namespace ForceFields {
namespace UFF {

InversionContribs::InversionContribs(ForceField *owner) {
  PRECONDITION(owner, "bad owner");
  dp_forceField = owner;
}

void InversionContribs::addContrib(unsigned int idx1, unsigned int idx2,
                                   unsigned int idx3, unsigned int idx4,
                                   int at2AtomicNum, bool isCBoundToO,
                                   double oobForceScalingFactor) {
  URANGE_CHECK(idx1, dp_forceField->positions().size());
  URANGE_CHECK(idx2, dp_forceField->positions().size());
  URANGE_CHECK(idx3, dp_forceField->positions().size());
  URANGE_CHECK(idx4, dp_forceField->positions().size());
  auto invCoeffForceCon = Utils::calcInversionCoefficientsAndForceConstant(
      at2AtomicNum, isCBoundToO);

  d_contribs.emplace_back(
      idx1, idx2, idx3, idx4, at2AtomicNum, isCBoundToO,
      std::get<1>(invCoeffForceCon), std::get<2>(invCoeffForceCon),
      std::get<3>(invCoeffForceCon),
      std::get<0>(invCoeffForceCon) * oobForceScalingFactor);
}

double InversionContribs::getEnergy(double *pos) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  double accum = 0;
  for (const auto &contrib : d_contribs) {
    const RDGeom::Point3D p1(pos[3 * contrib.idx1], pos[3 * contrib.idx1 + 1],
                             pos[3 * contrib.idx1 + 2]);
    const RDGeom::Point3D p2(pos[3 * contrib.idx2], pos[3 * contrib.idx2 + 1],
                             pos[3 * contrib.idx2 + 2]);
    const RDGeom::Point3D p3(pos[3 * contrib.idx3], pos[3 * contrib.idx3 + 1],
                             pos[3 * contrib.idx3 + 2]);
    const RDGeom::Point3D p4(pos[3 * contrib.idx4], pos[3 * contrib.idx4 + 1],
                             pos[3 * contrib.idx4 + 2]);
    const double cosY = Utils::calculateCosY(p1, p2, p3, p4);
    const double sinYSq = 1.0 - cosY * cosY;
    const double sinY = ((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0);
    // cos(2 * W) = 2 * cos(W) * cos(W) - 1 = 2 * sin(W) * sin(W) - 1
    const double cos2W = 2.0 * sinY * sinY - 1.0;
    accum += contrib.forceConstant *
             (contrib.C0 + contrib.C1 * sinY + contrib.C2 * cos2W);
  }
  return accum;
}

void InversionContribs::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");
  for (const auto &contrib : d_contribs) {
    const RDGeom::Point3D p1(pos[3 * contrib.idx1], pos[3 * contrib.idx1 + 1],
                             pos[3 * contrib.idx1 + 2]);
    const RDGeom::Point3D p2(pos[3 * contrib.idx2], pos[3 * contrib.idx2 + 1],
                             pos[3 * contrib.idx2 + 2]);
    const RDGeom::Point3D p3(pos[3 * contrib.idx3], pos[3 * contrib.idx3 + 1],
                             pos[3 * contrib.idx3 + 2]);
    const RDGeom::Point3D p4(pos[3 * contrib.idx4], pos[3 * contrib.idx4 + 1],
                             pos[3 * contrib.idx4 + 2]);
    double *g1 = &(grad[3 * contrib.idx1]);
    double *g2 = &(grad[3 * contrib.idx2]);
    double *g3 = &(grad[3 * contrib.idx3]);
    double *g4 = &(grad[3 * contrib.idx4]);
    RDGeom::Point3D rJI = p1 - p2;
    RDGeom::Point3D rJK = p3 - p2;
    RDGeom::Point3D rJL = p4 - p2;
    const double dJI = rJI.length();
    const double dJK = rJK.length();
    const double dJL = rJL.length();
    if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
      return;
    }
    rJI.normalize();
    rJK.normalize();
    rJL.normalize();

    RDGeom::Point3D n = (-rJI).crossProduct(rJK);
    n.normalize();
    double cosY = n.dotProduct(rJL);
    cosY = std::clamp(cosY, -1.0, 1.0);
    const double sinYSq = 1.0 - cosY * cosY;
    const double sinY = std::max(sqrt(sinYSq), 1.0e-8);
    double cosTheta = rJI.dotProduct(rJK);
    cosTheta = std::clamp(cosTheta, -1.0, 1.0);
    const double sinThetaSq = 1.0 - cosTheta * cosTheta;
    const double sinTheta = std::max(sqrt(sinThetaSq), 1.0e-8);
    // sin(2 * W) = 2 * sin(W) * cos(W) = 2 * cos(Y) * sin(Y)
    const double dE_dW = -contrib.forceConstant *
                         (contrib.C1 * cosY - 4.0 * contrib.C2 * cosY * sinY);
    const RDGeom::Point3D t1 = rJL.crossProduct(rJK);
    const RDGeom::Point3D t2 = rJI.crossProduct(rJL);
    const RDGeom::Point3D t3 = rJK.crossProduct(rJI);
    const double term1 = sinY * sinTheta;
    const double term2 = cosY / (sinY * sinThetaSq);
    const double tg1[3] = {
        (t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
        (t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
        (t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
    const double tg3[3] = {
        (t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
        (t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
        (t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
    const double tg4[3] = {(t3.x / term1 - rJL.x * cosY / sinY) / dJL,
                           (t3.y / term1 - rJL.y * cosY / sinY) / dJL,
                           (t3.z / term1 - rJL.z * cosY / sinY) / dJL};
    for (unsigned int i = 0; i < 3; ++i) {
      g1[i] += dE_dW * tg1[i];
      g2[i] += -dE_dW * (tg1[i] + tg3[i] + tg4[i]);
      g3[i] += dE_dW * tg3[i];
      g4[i] += dE_dW * tg4[i];
    }
  }
}
}  // namespace UFF
}  // namespace ForceFields