1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
//
// Copyright (C) 2024 Niels Maeder and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "Inversions.h"
#include "Utils.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/utils.h>
namespace ForceFields {
namespace UFF {
InversionContribs::InversionContribs(ForceField *owner) {
PRECONDITION(owner, "bad owner");
dp_forceField = owner;
}
void InversionContribs::addContrib(unsigned int idx1, unsigned int idx2,
unsigned int idx3, unsigned int idx4,
int at2AtomicNum, bool isCBoundToO,
double oobForceScalingFactor) {
URANGE_CHECK(idx1, dp_forceField->positions().size());
URANGE_CHECK(idx2, dp_forceField->positions().size());
URANGE_CHECK(idx3, dp_forceField->positions().size());
URANGE_CHECK(idx4, dp_forceField->positions().size());
auto invCoeffForceCon = Utils::calcInversionCoefficientsAndForceConstant(
at2AtomicNum, isCBoundToO);
d_contribs.emplace_back(
idx1, idx2, idx3, idx4, at2AtomicNum, isCBoundToO,
std::get<1>(invCoeffForceCon), std::get<2>(invCoeffForceCon),
std::get<3>(invCoeffForceCon),
std::get<0>(invCoeffForceCon) * oobForceScalingFactor);
}
double InversionContribs::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
double accum = 0;
for (const auto &contrib : d_contribs) {
const RDGeom::Point3D p1(pos[3 * contrib.idx1], pos[3 * contrib.idx1 + 1],
pos[3 * contrib.idx1 + 2]);
const RDGeom::Point3D p2(pos[3 * contrib.idx2], pos[3 * contrib.idx2 + 1],
pos[3 * contrib.idx2 + 2]);
const RDGeom::Point3D p3(pos[3 * contrib.idx3], pos[3 * contrib.idx3 + 1],
pos[3 * contrib.idx3 + 2]);
const RDGeom::Point3D p4(pos[3 * contrib.idx4], pos[3 * contrib.idx4 + 1],
pos[3 * contrib.idx4 + 2]);
const double cosY = Utils::calculateCosY(p1, p2, p3, p4);
const double sinYSq = 1.0 - cosY * cosY;
const double sinY = ((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0);
// cos(2 * W) = 2 * cos(W) * cos(W) - 1 = 2 * sin(W) * sin(W) - 1
const double cos2W = 2.0 * sinY * sinY - 1.0;
accum += contrib.forceConstant *
(contrib.C0 + contrib.C1 * sinY + contrib.C2 * cos2W);
}
return accum;
}
void InversionContribs::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
for (const auto &contrib : d_contribs) {
const RDGeom::Point3D p1(pos[3 * contrib.idx1], pos[3 * contrib.idx1 + 1],
pos[3 * contrib.idx1 + 2]);
const RDGeom::Point3D p2(pos[3 * contrib.idx2], pos[3 * contrib.idx2 + 1],
pos[3 * contrib.idx2 + 2]);
const RDGeom::Point3D p3(pos[3 * contrib.idx3], pos[3 * contrib.idx3 + 1],
pos[3 * contrib.idx3 + 2]);
const RDGeom::Point3D p4(pos[3 * contrib.idx4], pos[3 * contrib.idx4 + 1],
pos[3 * contrib.idx4 + 2]);
double *g1 = &(grad[3 * contrib.idx1]);
double *g2 = &(grad[3 * contrib.idx2]);
double *g3 = &(grad[3 * contrib.idx3]);
double *g4 = &(grad[3 * contrib.idx4]);
RDGeom::Point3D rJI = p1 - p2;
RDGeom::Point3D rJK = p3 - p2;
RDGeom::Point3D rJL = p4 - p2;
const double dJI = rJI.length();
const double dJK = rJK.length();
const double dJL = rJL.length();
if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
return;
}
rJI.normalize();
rJK.normalize();
rJL.normalize();
RDGeom::Point3D n = (-rJI).crossProduct(rJK);
n.normalize();
double cosY = n.dotProduct(rJL);
cosY = std::clamp(cosY, -1.0, 1.0);
const double sinYSq = 1.0 - cosY * cosY;
const double sinY = std::max(sqrt(sinYSq), 1.0e-8);
double cosTheta = rJI.dotProduct(rJK);
cosTheta = std::clamp(cosTheta, -1.0, 1.0);
const double sinThetaSq = 1.0 - cosTheta * cosTheta;
const double sinTheta = std::max(sqrt(sinThetaSq), 1.0e-8);
// sin(2 * W) = 2 * sin(W) * cos(W) = 2 * cos(Y) * sin(Y)
const double dE_dW = -contrib.forceConstant *
(contrib.C1 * cosY - 4.0 * contrib.C2 * cosY * sinY);
const RDGeom::Point3D t1 = rJL.crossProduct(rJK);
const RDGeom::Point3D t2 = rJI.crossProduct(rJL);
const RDGeom::Point3D t3 = rJK.crossProduct(rJI);
const double term1 = sinY * sinTheta;
const double term2 = cosY / (sinY * sinThetaSq);
const double tg1[3] = {
(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
(t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
(t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
const double tg3[3] = {
(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
(t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
(t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
const double tg4[3] = {(t3.x / term1 - rJL.x * cosY / sinY) / dJL,
(t3.y / term1 - rJL.y * cosY / sinY) / dJL,
(t3.z / term1 - rJL.z * cosY / sinY) / dJL};
for (unsigned int i = 0; i < 3; ++i) {
g1[i] += dE_dW * tg1[i];
g2[i] += -dE_dW * (tg1[i] + tg3[i] + tg4[i]);
g3[i] += dE_dW * tg3[i];
g4[i] += dE_dW * tg4[i];
}
}
}
} // namespace UFF
} // namespace ForceFields
|