File: Atom.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (1050 lines) | stat: -rw-r--r-- 31,787 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
//
//  Copyright (C) 2001-2024 Greg Landrum and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <cmath>

#include "ROMol.h"
#include "Atom.h"
#include "PeriodicTable.h"
#include "SanitException.h"
#include "QueryOps.h"
#include "MonomerInfo.h"

#include <RDGeneral/Invariant.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/types.h>
#include <RDGeneral/Dict.h>

namespace RDKit {

bool isAromaticAtom(const Atom &atom) {
  if (atom.getIsAromatic()) {
    return true;
  }
  if (atom.hasOwningMol()) {
    for (const auto &bond : atom.getOwningMol().atomBonds(&atom)) {
      if (bond->getIsAromatic() ||
          bond->getBondType() == Bond::BondType::AROMATIC) {
        return true;
      }
    }
  }
  return false;
}

unsigned int getEffectiveAtomicNum(const Atom &atom, bool checkValue) {
  auto effectiveAtomicNum = atom.getAtomicNum() - atom.getFormalCharge();
  if (checkValue &&
      (effectiveAtomicNum < 0 ||
       effectiveAtomicNum >
           static_cast<int>(PeriodicTable::getTable()->getMaxAtomicNumber()))) {
    throw AtomValenceException("Effective atomic number out of range",
                               atom.getIdx());
  }
  effectiveAtomicNum = std::clamp(
      effectiveAtomicNum, 0,
      static_cast<int>(PeriodicTable::getTable()->getMaxAtomicNumber()));
  return static_cast<unsigned int>(effectiveAtomicNum);
}

// Determine whether or not an element is to the left of carbon.
bool isEarlyAtom(int atomicNum) {
  static const bool table[119] = {
      false,  // #0 *
      false,  // #1 H
      false,  // #2 He
      true,   // #3 Li
      true,   // #4 Be
      true,   // #5 B
      false,  // #6 C
      false,  // #7 N
      false,  // #8 O
      false,  // #9 F
      false,  // #10 Ne
      true,   // #11 Na
      true,   // #12 Mg
      true,   // #13 Al
      false,  // #14 Si
      false,  // #15 P
      false,  // #16 S
      false,  // #17 Cl
      false,  // #18 Ar
      true,   // #19 K
      true,   // #20 Ca
      true,   // #21 Sc
      true,   // #22 Ti
      false,  // #23 V
      false,  // #24 Cr
      false,  // #25 Mn
      false,  // #26 Fe
      false,  // #27 Co
      false,  // #28 Ni
      false,  // #29 Cu
      true,   // #30 Zn
      true,   // #31 Ga
      true,   // #32 Ge  see github #2606
      false,  // #33 As
      false,  // #34 Se
      false,  // #35 Br
      false,  // #36 Kr
      true,   // #37 Rb
      true,   // #38 Sr
      true,   // #39 Y
      true,   // #40 Zr
      true,   // #41 Nb
      false,  // #42 Mo
      false,  // #43 Tc
      false,  // #44 Ru
      false,  // #45 Rh
      false,  // #46 Pd
      false,  // #47 Ag
      true,   // #48 Cd
      true,   // #49 In
      true,   // #50 Sn  see github #2606
      true,   // #51 Sb  see github #2775
      false,  // #52 Te
      false,  // #53 I
      false,  // #54 Xe
      true,   // #55 Cs
      true,   // #56 Ba
      true,   // #57 La
      true,   // #58 Ce
      true,   // #59 Pr
      true,   // #60 Nd
      true,   // #61 Pm
      false,  // #62 Sm
      false,  // #63 Eu
      false,  // #64 Gd
      false,  // #65 Tb
      false,  // #66 Dy
      false,  // #67 Ho
      false,  // #68 Er
      false,  // #69 Tm
      false,  // #70 Yb
      false,  // #71 Lu
      true,   // #72 Hf
      true,   // #73 Ta
      false,  // #74 W
      false,  // #75 Re
      false,  // #76 Os
      false,  // #77 Ir
      false,  // #78 Pt
      false,  // #79 Au
      true,   // #80 Hg
      true,   // #81 Tl
      true,   // #82 Pb  see github #2606
      true,   // #83 Bi  see github #2775
      false,  // #84 Po
      false,  // #85 At
      false,  // #86 Rn
      true,   // #87 Fr
      true,   // #88 Ra
      true,   // #89 Ac
      true,   // #90 Th
      true,   // #91 Pa
      true,   // #92 U
      true,   // #93 Np
      false,  // #94 Pu
      false,  // #95 Am
      false,  // #96 Cm
      false,  // #97 Bk
      false,  // #98 Cf
      false,  // #99 Es
      false,  // #100 Fm
      false,  // #101 Md
      false,  // #102 No
      false,  // #103 Lr
      true,   // #104 Rf
      true,   // #105 Db
      true,   // #106 Sg
      true,   // #107 Bh
      true,   // #108 Hs
      true,   // #109 Mt
      true,   // #110 Ds
      true,   // #111 Rg
      true,   // #112 Cn
      true,   // #113 Nh
      true,   // #114 Fl
      true,   // #115 Mc
      true,   // #116 Lv
      true,   // #117 Ts
      true,   // #118 Og
  };
  return ((unsigned int)atomicNum < 119) && table[atomicNum];
}

Atom::Atom() : RDProps() {
  d_atomicNum = 0;
  initAtom();
}

Atom::Atom(unsigned int num) : RDProps() {
  d_atomicNum = num;
  initAtom();
};

Atom::Atom(const std::string &what) : RDProps() {
  d_atomicNum = PeriodicTable::getTable()->getAtomicNumber(what);
  initAtom();
};

void Atom::initFromOther(const Atom &other) {
  RDProps::operator=(other);
  // NOTE: we do *not* copy ownership!
  dp_mol = nullptr;
  d_atomicNum = other.d_atomicNum;
  d_index = 0;
  d_formalCharge = other.d_formalCharge;
  df_noImplicit = other.df_noImplicit;
  df_isAromatic = other.df_isAromatic;
  d_numExplicitHs = other.d_numExplicitHs;
  d_numRadicalElectrons = other.d_numRadicalElectrons;
  d_isotope = other.d_isotope;
  // d_pos = other.d_pos;
  d_chiralTag = other.d_chiralTag;
  d_hybrid = other.d_hybrid;
  d_implicitValence = other.d_implicitValence;
  d_explicitValence = other.d_explicitValence;
  if (other.dp_monomerInfo) {
    dp_monomerInfo = other.dp_monomerInfo->copy();
  } else {
    dp_monomerInfo = nullptr;
  }
}

Atom::Atom(const Atom &other) : RDProps() { initFromOther(other); }

Atom &Atom::operator=(const Atom &other) {
  if (this == &other) {
    return *this;
  }
  initFromOther(other);
  return *this;
}

void Atom::initAtom() {
  df_isAromatic = false;
  df_noImplicit = false;
  d_numExplicitHs = 0;
  d_numRadicalElectrons = 0;
  d_formalCharge = 0;
  d_index = 0;
  d_isotope = 0;
  d_chiralTag = CHI_UNSPECIFIED;
  d_hybrid = UNSPECIFIED;
  dp_mol = nullptr;
  dp_monomerInfo = nullptr;

  d_implicitValence = -1;
  d_explicitValence = -1;
}

Atom::~Atom() { delete dp_monomerInfo; }

Atom *Atom::copy() const {
  auto *res = new Atom(*this);
  return res;
}

void Atom::setOwningMol(ROMol *other) {
  // NOTE: this operation does not update the topology of the owning
  // molecule (i.e. this atom is not added to the graph).  Only
  // molecules can add atoms to themselves.
  dp_mol = other;
}

std::string Atom::getSymbol() const {
  std::string res;
  // handle dummies differently:
  if (d_atomicNum != 0 ||
      !getPropIfPresent<std::string>(common_properties::dummyLabel, res)) {
    res = PeriodicTable::getTable()->getElementSymbol(d_atomicNum);
  }
  return res;
}

unsigned int Atom::getDegree() const {
  return dp_mol ? getOwningMol().getAtomDegree(this) : 0;
}

unsigned int Atom::getTotalDegree() const {
  unsigned int res = this->getTotalNumHs(false) + this->getDegree();
  return res;
}

//
//  If includeNeighbors is set, we'll loop over our neighbors
//   and include any of them that are Hs in the count here
//
unsigned int Atom::getTotalNumHs(bool includeNeighbors) const {
  int res = getNumExplicitHs() + getNumImplicitHs();
  if (includeNeighbors && dp_mol) {
    auto nbrs = dp_mol->atomNeighbors(this);
    res += std::count_if(nbrs.begin(), nbrs.end(), [](const auto nbr) {
      return (nbr->getAtomicNum() == 1);
    });
  }
  return res;
}

unsigned int Atom::getNumImplicitHs() const {
  if (df_noImplicit) {
    return 0;
  }

  PRECONDITION(d_implicitValence > -1,
               "getNumImplicitHs() called without preceding call to "
               "calcImplicitValence()");
  return getValence(ValenceType::IMPLICIT);
}

int Atom::getExplicitValence() const {
  return getValence(ValenceType::EXPLICIT);
}

int Atom::getImplicitValence() const {
  return getValence(ValenceType::IMPLICIT);
}

unsigned int Atom::getValence(ValenceType which) const {
  if (!dp_mol) {
    return 0;
  }
  PRECONDITION(
      (which == ValenceType::IMPLICIT || d_explicitValence > -1),
      "getValence(ValenceType::EXPLICIT) called without call to calcExplicitValence()");
  PRECONDITION(
      (which == ValenceType::EXPLICIT || df_noImplicit ||
       d_implicitValence > -1),
      "getValence(ValenceType::IMPLICIT) called without call to calcImplicitValence()");
  if (which == ValenceType::EXPLICIT) {
    return d_explicitValence;
  } else {
    return df_noImplicit ? 0 : d_implicitValence;
  }
}

unsigned int Atom::getTotalValence() const {
  return getValence(ValenceType::EXPLICIT) + getValence(ValenceType::IMPLICIT);
}

namespace {

bool canBeHypervalent(const Atom &atom, unsigned int effectiveAtomicNum) {
  return (effectiveAtomicNum > 16 &&
          (atom.getAtomicNum() == 15 || atom.getAtomicNum() == 16)) ||
         (effectiveAtomicNum > 34 &&
          (atom.getAtomicNum() == 33 || atom.getAtomicNum() == 34));
}

int calculateExplicitValence(const Atom &atom, bool strict, bool checkIt) {
  // FIX: contributions of bonds to valence are being done at best
  // approximately
  double accum = 0;
  for (const auto bnd : atom.getOwningMol().atomBonds(&atom)) {
    accum += bnd->getValenceContrib(&atom);
  }
  accum += atom.getNumExplicitHs();

  const auto &ovalens =
      PeriodicTable::getTable()->getValenceList(atom.getAtomicNum());
  // if we start with an atom that doesn't have specified valences, we stick
  // with that. otherwise we will use the effective valence
  unsigned int effectiveAtomicNum = atom.getAtomicNum();
  if (ovalens.size() > 1 || ovalens[0] != -1) {
    effectiveAtomicNum = getEffectiveAtomicNum(atom, checkIt);
  }
  unsigned int dv =
      PeriodicTable::getTable()->getDefaultValence(effectiveAtomicNum);
  const auto &valens =
      PeriodicTable::getTable()->getValenceList(effectiveAtomicNum);
  if (accum > dv && isAromaticAtom(atom)) {
    // this needs some explanation : if the atom is aromatic and
    // accum > dv we assume that no hydrogen can be added
    // to this atom.  We set x = (v + chr) such that x is the
    // closest possible integer to "accum" but less than
    // "accum".
    //
    // "v" here is one of the allowed valences. For example:
    //    sulfur here : O=c1ccs(=O)cc1
    //    nitrogen here : c1cccn1C

    int pval = dv;
    for (auto val : valens) {
      if (val == -1) {
        break;
      }
      if (val > accum) {
        break;
      } else {
        pval = val;
      }
    }
    // if we're within 1.5 of the allowed valence, go ahead and take it.
    // this reflects things like the N in c1cccn1C, which starts with
    // accum of 4, but which can be kekulized to C1=CC=CN1C, where
    // the valence is 3 or the bridging N in c1ccn2cncc2c1, which starts
    // with a valence of 4.5, but can be happily kekulized down to a valence
    // of 3
    if (accum - pval <= 1.5) {
      accum = pval;
    }
  }
  // despite promising to not to blame it on him - this a trick Greg
  // came up with: if we have a bond order sum of x.5 (i.e. 1.5, 2.5
  // etc) we would like it to round to the higher integer value --
  // 2.5 to 3 instead of 2 -- so we will add 0.1 to accum.
  // this plays a role in the number of hydrogen that are implicitly
  // added. This will only happen when the accum is a non-integer
  // value and less than the default valence (otherwise the above if
  // statement should have caught it). An example of where this can
  // happen is the following smiles:
  //    C1ccccC1
  // Daylight accepts this smiles and we should be able to Kekulize
  // correctly.
  accum += 0.1;

  auto res = static_cast<int>(std::round(accum));

  if (strict || checkIt) {
    int maxValence = valens.back();
    int offset = 0;
    // we have to include a special case here for negatively charged P, S, As,
    // and Se, which all support "hypervalent" forms, but which can be
    // isoelectronic to Cl/Ar or Br/Kr, which do not support hypervalent forms.
    if (canBeHypervalent(atom, effectiveAtomicNum)) {
      maxValence = ovalens.back();
      offset -= atom.getFormalCharge();
    }
    // we have historically accepted two-coordinate [H-] as a valid atom. This
    // is highly questionable, but changing it requires some thought. For now we
    // will just keep accepting it
    if (atom.getAtomicNum() == 1 && atom.getFormalCharge() == -1) {
      maxValence = 2;
    }
    // maxValence == -1 signifies that we'll take anything at the high end
    if (maxValence >= 0 && ovalens.back() >= 0 && (res + offset) > maxValence) {
      // the explicit valence is greater than any
      // allowed valence for the atoms

      if (strict) {
        // raise an error
        std::ostringstream errout;
        errout << "Explicit valence for atom # " << atom.getIdx() << " "
               << PeriodicTable::getTable()->getElementSymbol(
                      atom.getAtomicNum())
               << ", " << res << ", is greater than permitted";
        std::string msg = errout.str();
        BOOST_LOG(rdErrorLog) << msg << std::endl;
        throw AtomValenceException(msg, atom.getIdx());
      } else {
        return -1;
      }
    }
  }
  return res;
}
}  // namespace

// NOTE: this uses the explicitValence, so it will call
// calculateExplicitValence if it is not set on the given atom
int calculateImplicitValence(const Atom &atom, bool strict, bool checkIt) {
  if (atom.df_noImplicit) {
    return 0;
  }
  auto explicitValence = atom.d_explicitValence;
  if (explicitValence == -1) {
    explicitValence = calculateExplicitValence(atom, strict, checkIt);
  }
  // special cases
  auto atomicNum = atom.d_atomicNum;
  if (atomicNum == 0) {
    return 0;
  }
  for (const auto bnd : atom.getOwningMol().atomBonds(&atom)) {
    if (QueryOps::hasComplexBondTypeQuery(*bnd)) {
      return 0;
    }
  }

  auto formalCharge = atom.d_formalCharge;
  auto numRadicalElectrons = atom.d_numRadicalElectrons;
  if (explicitValence == 0 && numRadicalElectrons == 0 && atomicNum == 1) {
    if (formalCharge == 1 || formalCharge == -1) {
      return 0;
    } else if (formalCharge == 0) {
      return 1;
    } else {
      if (strict) {
        std::ostringstream errout;
        errout << "Unreasonable formal charge on atom # " << atom.getIdx()
               << ".";
        std::string msg = errout.str();
        BOOST_LOG(rdErrorLog) << msg << std::endl;
        throw AtomValenceException(msg, atom.getIdx());
      } else if (checkIt) {
        return -1;
      } else {
        return 0;
      }
    }
  }
  int explicitPlusRadV = atom.d_explicitValence + atom.d_numRadicalElectrons;

  const auto &ovalens =
      PeriodicTable::getTable()->getValenceList(atom.d_atomicNum);
  // if we start with an atom that doesn't have specified valences, we stick
  // with that. otherwise we will use the effective valence for the rest of
  // this.
  unsigned int effectiveAtomicNum = atom.d_atomicNum;
  if (ovalens.size() > 1 || ovalens[0] != -1) {
    effectiveAtomicNum = getEffectiveAtomicNum(atom, checkIt);
  }
  if (effectiveAtomicNum == 0) {
    return 0;
  }

  // this is basically the difference between the allowed valence of
  // the atom and the explicit valence already specified - tells how
  // many Hs to add
  //

  // The d-block and f-block of the periodic table (i.e. transition metals,
  // lanthanoids and actinoids) have no default valence.
  int dv = PeriodicTable::getTable()->getDefaultValence(effectiveAtomicNum);
  if (dv == -1) {
    return 0;
  }

  // here is how we are going to deal with the possibility of
  // multiple valences
  // - check the explicit valence "ev"
  // - if it is already equal to one of the allowed valences for the
  //    atom return 0
  // - otherwise take return difference between next larger allowed
  //   valence and "ev"
  // if "ev" is greater than all allowed valences for the atom raise an
  // exception
  // finally aromatic cases are dealt with differently - these atoms are allowed
  // only default valences

  // we have to include a special case here for negatively charged P, S, As,
  // and Se, which all support "hypervalent" forms, but which can be
  // isoelectronic to Cl/Ar or Br/Kr, which do not support hypervalent forms.
  if (canBeHypervalent(atom, effectiveAtomicNum)) {
    effectiveAtomicNum = atomicNum;
    explicitPlusRadV -= atom.d_formalCharge;
  }
  const auto &valens =
      PeriodicTable::getTable()->getValenceList(effectiveAtomicNum);

  int res = 0;
  // if we have an aromatic case treat it differently
  if (isAromaticAtom(atom)) {
    if (explicitPlusRadV <= dv) {
      res = dv - explicitPlusRadV;
    } else {
      // As we assume when finding the explicitPlusRadValence if we are
      // aromatic we should not be adding any hydrogen and already
      // be at an accepted valence state,

      // FIX: this is just ERROR checking and probably moot - the
      // explicitPlusRadValence function called above should assure us that
      // we satisfy one of the accepted valence states for the
      // atom. The only diff I can think of is in the way we handle
      // formal charge here vs the explicit valence function.
      bool satis = false;
      for (auto vi = valens.begin(); vi != valens.end() && *vi > 0; ++vi) {
        if (explicitPlusRadV == *vi) {
          satis = true;
          break;
        }
      }
      if (!satis && (strict || checkIt)) {
        if (strict) {
          std::ostringstream errout;
          errout << "Explicit valence for aromatic atom # " << atom.getIdx()
                 << " not equal to any accepted valence\n";
          std::string msg = errout.str();
          BOOST_LOG(rdErrorLog) << msg << std::endl;
          throw AtomValenceException(msg, atom.getIdx());
        } else {
          return -1;
        }
      }
      res = 0;
    }
  } else {
    // non-aromatic case we are allowed to have non default valences
    // and be able to add hydrogens
    res = -1;
    for (auto vi = valens.begin(); vi != valens.end() && *vi >= 0; ++vi) {
      int tot = *vi;
      if (explicitPlusRadV <= tot) {
        res = tot - explicitPlusRadV;
        break;
      }
    }
    if (res < 0) {
      if ((strict || checkIt) && valens.back() != -1 && ovalens.back() > 0) {
        // this means that the explicit valence is greater than any
        // allowed valence for the atoms
        if (strict) {
          // raise an error
          std::ostringstream errout;
          errout << "Explicit valence for atom # " << atom.getIdx() << " "
                 << PeriodicTable::getTable()->getElementSymbol(atomicNum)
                 << " greater than permitted";
          std::string msg = errout.str();
          BOOST_LOG(rdErrorLog) << msg << std::endl;
          throw AtomValenceException(msg, atom.getIdx());
        } else {
          return -1;
        }
      } else {
        res = 0;
      }
    }
  }
  return res;
}

int Atom::calcExplicitValence(bool strict) {
  bool checkIt = false;
  d_explicitValence = calculateExplicitValence(*this, strict, checkIt);
  return d_explicitValence;
}

int Atom::calcImplicitValence(bool strict) {
  if (d_explicitValence == -1) {
    calcExplicitValence(strict);
  }
  bool checkIt = false;
  d_implicitValence = calculateImplicitValence(*this, strict, checkIt);
  return d_implicitValence;
}

void Atom::setMonomerInfo(AtomMonomerInfo *info) {
  delete dp_monomerInfo;
  dp_monomerInfo = info;
}

void Atom::setIsotope(unsigned int what) { d_isotope = what; }

double Atom::getMass() const {
  if (d_isotope) {
    double res =
        PeriodicTable::getTable()->getMassForIsotope(d_atomicNum, d_isotope);
    if (d_atomicNum != 0 && res == 0.0) {
      res = d_isotope;
    }
    return res;
  } else {
    return PeriodicTable::getTable()->getAtomicWeight(d_atomicNum);
  }
}

bool Atom::hasValenceViolation() const {
  // Ignore dummy atoms, query atoms, or atoms attached to query bonds
  auto bonds = getOwningMol().atomBonds(this);
  auto is_query = [](auto b) { return b->hasQuery(); };
  if (getAtomicNum() == 0 || hasQuery() ||
      std::any_of(bonds.begin(), bonds.end(), is_query)) {
    return false;
  }

  unsigned int effectiveAtomicNum;
  try {
    bool checkIt = true;
    effectiveAtomicNum = getEffectiveAtomicNum(*this, checkIt);
  } catch (const AtomValenceException &) {
    return true;
  }

  // special case for H:
  if (getAtomicNum() == 1) {
    if (getFormalCharge() > 1 || getFormalCharge() < -1) {
      return true;
    }
  } else {
    // Non-H checks for absurd charge values:
    //   1. the formal charge is larger than the atomic number
    //   2. the formal charge moves us to a different row of the periodic table
    if (getFormalCharge() > getAtomicNum() ||
        PeriodicTable::getTable()->getRow(d_atomicNum) !=
            PeriodicTable::getTable()->getRow(effectiveAtomicNum)) {
      return true;
    }
  }

  bool strict = false;
  bool checkIt = true;
  if (calculateExplicitValence(*this, strict, checkIt) == -1 ||
      calculateImplicitValence(*this, strict, checkIt) == -1) {
    return true;
  }
  return false;
}

void Atom::setQuery(Atom::QUERYATOM_QUERY *) {
  //  Atoms don't have complex queries so this has to fail
  PRECONDITION(0, "plain atoms have no Query");
}
Atom::QUERYATOM_QUERY *Atom::getQuery() const { return nullptr; };
void Atom::expandQuery(Atom::QUERYATOM_QUERY *, Queries::CompositeQueryType,
                       bool) {
  PRECONDITION(0, "plain atoms have no Query");
}

bool Atom::Match(Atom const *what) const {
  PRECONDITION(what, "bad query atom");
  bool res = getAtomicNum() == what->getAtomicNum();

  // special dummy--dummy match case:
  //   [*] matches [*],[1*],[2*],etc.
  //   [1*] only matches [*] and [1*]
  if (res) {
    if (!this->getAtomicNum()) {
      // this is the new behavior, based on the isotopes:
      int tgt = this->getIsotope();
      int test = what->getIsotope();
      if (tgt && test && tgt != test) {
        res = false;
      }
    } else {
      // standard atom-atom match: The general rule here is that if this atom
      // has a property that
      // deviates from the default, then the other atom should match that value.
      if ((this->getFormalCharge() &&
           this->getFormalCharge() != what->getFormalCharge()) ||
          (this->getIsotope() && this->getIsotope() != what->getIsotope()) ||
          (this->getNumRadicalElectrons() &&
           this->getNumRadicalElectrons() != what->getNumRadicalElectrons())) {
        res = false;
      }
    }
  }
  return res;
}
void Atom::updatePropertyCache(bool strict) {
  calcExplicitValence(strict);
  calcImplicitValence(strict);
}

bool Atom::needsUpdatePropertyCache() const {
  return !(this->d_explicitValence >= 0 &&
           (this->df_noImplicit || this->d_implicitValence >= 0));
}

// returns the number of swaps required to convert the ordering
// of the probe list to match the order of our incoming bonds:
//
//  e.g. if our incoming bond order is: [0,1,2,3]:
//   getPerturbationOrder([1,0,2,3]) = 1
//   getPerturbationOrder([1,2,3,0]) = 3
//   getPerturbationOrder([1,2,0,3]) = 2
int Atom::getPerturbationOrder(const INT_LIST &probe) const {
  INT_LIST ref;
  for (const auto bnd : getOwningMol().atomBonds(this)) {
    ref.push_back(bnd->getIdx());
  }
  return static_cast<int>(countSwapsToInterconvert(probe, ref));
}

static const unsigned char octahedral_invert[31] = {
    0,   //  0 -> 0
    2,   //  1 -> 2
    1,   //  2 -> 1
    16,  //  3 -> 16
    14,  //  4 -> 14
    15,  //  5 -> 15
    18,  //  6 -> 18
    17,  //  7 -> 17
    10,  //  8 -> 10
    11,  //  9 -> 11
    8,   // 10 -> 8
    9,   // 11 -> 9
    13,  // 12 -> 13
    12,  // 13 -> 12
    4,   // 14 -> 4
    5,   // 15 -> 5
    3,   // 16 -> 3
    7,   // 17 -> 7
    6,   // 18 -> 6
    24,  // 19 -> 24
    23,  // 20 -> 23
    22,  // 21 -> 22
    21,  // 22 -> 21
    20,  // 23 -> 20
    19,  // 24 -> 19
    30,  // 25 -> 30
    29,  // 26 -> 29
    28,  // 27 -> 28
    27,  // 28 -> 27
    26,  // 29 -> 26
    25   // 30 -> 25
};

static const unsigned char trigonalbipyramidal_invert[21] = {
    0,   //  0 -> 0
    2,   //  1 -> 2
    1,   //  2 -> 1
    4,   //  3 -> 4
    3,   //  4 -> 3
    6,   //  5 -> 6
    5,   //  6 -> 5
    8,   //  7 -> 8
    7,   //  8 -> 7
    11,  //  9 -> 11
    12,  // 10 -> 12
    9,   // 11 -> 9
    10,  // 12 -> 10
    14,  // 13 -> 14
    13,  // 14 -> 13
    20,  // 15 -> 20
    19,  // 16 -> 19
    18,  // 17 -> 28
    17,  // 18 -> 17
    16,  // 19 -> 16
    15   // 20 -> 15
};

bool Atom::invertChirality() {
  unsigned int perm;
  switch (getChiralTag()) {
    case CHI_TETRAHEDRAL_CW:
      setChiralTag(CHI_TETRAHEDRAL_CCW);
      return true;
    case CHI_TETRAHEDRAL_CCW:
      setChiralTag(CHI_TETRAHEDRAL_CW);
      return true;
    case CHI_TETRAHEDRAL:
      if (getPropIfPresent(common_properties::_chiralPermutation, perm)) {
        if (perm == 1) {
          perm = 2;
        } else if (perm == 2) {
          perm = 1;
        } else {
          perm = 0;
        }
        setProp(common_properties::_chiralPermutation, perm);
        return perm != 0;
      }
      break;
    case CHI_TRIGONALBIPYRAMIDAL:
      if (getPropIfPresent(common_properties::_chiralPermutation, perm)) {
        perm = (perm <= 20) ? trigonalbipyramidal_invert[perm] : 0;
        setProp(common_properties::_chiralPermutation, perm);
        return perm != 0;
      }
      break;
    case CHI_OCTAHEDRAL:
      if (getPropIfPresent(common_properties::_chiralPermutation, perm)) {
        perm = (perm <= 30) ? octahedral_invert[perm] : 0;
        setProp(common_properties::_chiralPermutation, perm);
        return perm != 0;
      }
      break;
    default:
      break;
  }
  return false;
}

void setAtomRLabel(Atom *atm, int rlabel) {
  PRECONDITION(atm, "bad atom");
  // rlabel ==> n2 => 0..99
  PRECONDITION(rlabel >= 0 && rlabel < 100,
               "rlabel out of range for MDL files");
  if (rlabel) {
    atm->setProp(common_properties::_MolFileRLabel,
                 static_cast<unsigned int>(rlabel));
  } else {
    atm->clearProp(common_properties::_MolFileRLabel);
  }
}
//! Gets the atom's RLabel
int getAtomRLabel(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  unsigned int rlabel = 0;
  atom->getPropIfPresent(common_properties::_MolFileRLabel, rlabel);
  return static_cast<int>(rlabel);
}

void setAtomAlias(Atom *atom, const std::string &alias) {
  PRECONDITION(atom, "bad atom");
  if (alias != "") {
    atom->setProp(common_properties::molFileAlias, alias);
  } else {
    atom->clearProp(common_properties::molFileAlias);
  }
}

std::string getAtomAlias(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  std::string alias;
  atom->getPropIfPresent(common_properties::molFileAlias, alias);
  return alias;
}

void setAtomValue(Atom *atom, const std::string &value) {
  PRECONDITION(atom, "bad atom");
  if (value != "") {
    atom->setProp(common_properties::molFileValue, value);
  } else {
    atom->clearProp(common_properties::molFileValue);
  }
}

std::string getAtomValue(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  std::string value;
  atom->getPropIfPresent(common_properties::molFileValue, value);
  return value;
}

void setSupplementalSmilesLabel(Atom *atom, const std::string &label) {
  PRECONDITION(atom, "bad atom");
  if (label != "") {
    atom->setProp(common_properties::_supplementalSmilesLabel, label);
  } else {
    atom->clearProp(common_properties::_supplementalSmilesLabel);
  }
}

std::string getSupplementalSmilesLabel(const Atom *atom) {
  PRECONDITION(atom, "bad atom");
  std::string label;
  atom->getPropIfPresent(common_properties::_supplementalSmilesLabel, label);
  return label;
}

unsigned int numPiElectrons(const Atom &atom) {
  unsigned int res = 0;
  if (atom.getIsAromatic()) {
    res = 1;
  } else if (atom.getHybridization() != Atom::SP3) {
    auto val =
        static_cast<unsigned int>(atom.getValence(Atom::ValenceType::EXPLICIT));
    unsigned int physical_bonds = atom.getNumExplicitHs();
    const auto &mol = atom.getOwningMol();
    for (const auto bond : mol.atomBonds(&atom)) {
      if (bond->getValenceContrib(&atom) != 0.0) {
        ++physical_bonds;
      }
    }
    CHECK_INVARIANT(val >= physical_bonds,
                    "explicit valence exceeds atom degree");
    res = val - physical_bonds;
  }
  return res;
}
}  // namespace RDKit

namespace {
constexpr const char *hybridizationToString(
    RDKit::Atom::HybridizationType type) {
  switch (type) {
    case RDKit::Atom::HybridizationType::UNSPECIFIED:
      return "";
    case RDKit::Atom::HybridizationType::S:
      return "S";
    case RDKit::Atom::HybridizationType::SP:
      return "SP";
    case RDKit::Atom::HybridizationType::SP2:
      return "SP2";
    case RDKit::Atom::HybridizationType::SP3:
      return "SP3";
    case RDKit::Atom::HybridizationType::SP3D:
      return "SP3D";
    case RDKit::Atom::HybridizationType::SP2D:
      return "SP2D";
    case RDKit::Atom::HybridizationType::SP3D2:
      return "SP3D2";
    case RDKit::Atom::HybridizationType::OTHER:
      return "OTHER";
  }
  return "";
}
constexpr const char *chiralityToString(RDKit::Atom::ChiralType type) {
  switch (type) {
    case RDKit::Atom::ChiralType::CHI_UNSPECIFIED:
      return "Unspecified";
    case RDKit::Atom::ChiralType::CHI_TETRAHEDRAL_CW:
      return "CW";
    case RDKit::Atom::ChiralType::CHI_TETRAHEDRAL_CCW:
      return "CCW";
    case RDKit::Atom::ChiralType::CHI_OTHER:
      return "Other";
    case RDKit::Atom::ChiralType::CHI_TETRAHEDRAL:
      return "Td";
    case RDKit::Atom::ChiralType::CHI_ALLENE:
      return "Allene";
    case RDKit::Atom::ChiralType::CHI_SQUAREPLANAR:
      return "SqP";
    case RDKit::Atom::ChiralType::CHI_TRIGONALBIPYRAMIDAL:
      return "Tbp";
    case RDKit::Atom::ChiralType::CHI_OCTAHEDRAL:
      return "Oh";
  }
  return "";
}
}  // namespace
std::ostream &operator<<(std::ostream &target, const RDKit::Atom &at) {
  target << at.getIdx() << " " << at.getAtomicNum() << " " << at.getSymbol();
  target << " chg: " << at.getFormalCharge();
  target << "  deg: " << at.getDegree();
  target << " exp: ";
  target << (at.d_explicitValence >= 0 ? std::to_string(at.d_explicitValence)
                                       : "N/A");

  target << " imp: ";
  if (at.df_noImplicit) {
    target << "0";
  } else {
    target << (at.d_implicitValence >= 0 ? std::to_string(at.d_implicitValence)
                                         : "N/A");
  }
  target << " hyb: " << hybridizationToString(at.getHybridization());
  if (at.getIsAromatic()) {
    target << " arom?: " << at.getIsAromatic();
  }
  if (at.getChiralTag() != RDKit::Atom::CHI_UNSPECIFIED) {
    target << " chi: " << chiralityToString(at.getChiralTag());
    int perm;
    if (at.getPropIfPresent(RDKit::common_properties::_chiralPermutation,
                            perm)) {
      target << "(" << perm << ")";
    }
    target << " nbrs:[";
    bool first = true;
    for (const auto nbr : at.getOwningMol().atomNeighbors(&at)) {
      if (!first) {
        target << " ";
      } else {
        first = false;
      }
      target << nbr->getIdx();
    }
    target << "]";
  }
  if (at.getNumRadicalElectrons()) {
    target << " rad: " << at.getNumRadicalElectrons();
  }
  if (at.getIsotope()) {
    target << " iso: " << at.getIsotope();
  }
  if (at.getAtomMapNum()) {
    target << " mapno: " << at.getAtomMapNum();
  }
  if (at.hasQuery()) {
    target << " query: " << at.getQuery()->getDescription();
  }
  return target;
};