1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
//
//
// Copyright (C) 2020 Schrödinger, LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
///
/// Utilities to handle atomic numbers in Mancude (maximum number
/// of noncumulative double bonds) rings
///
/// This guarantees that aromatic rings containing heteroatoms
/// are always resolved in the same way
///
#include <list>
#include <vector>
#include "Mancude.h"
#include "CIPMol.h"
namespace RDKit {
namespace CIPLabeler {
namespace {
// Initialize atom types for ring atoms, looking at connectivity,
// bond orders, atomic number and charge.
bool SeedTypes(std::vector<Type> &types, const CIPMol &mol) {
bool result = false;
for (const auto &atom : mol.atoms()) {
const int aidx = atom->getIdx();
// check ring
int btypes = atom->getTotalNumHs();
bool ring = false;
for (const auto &bond : mol.getBonds(atom)) {
// Given the possible types we have, we only care
// for single and double bonds which are in rings.
switch (mol.getBondOrder(bond)) {
case 1:
btypes += 0x00000001;
break;
case 2:
btypes += 0x00000100;
break;
default:
btypes += 0x01000000;
break;
}
if (mol.isInRing(bond)) {
ring = true;
}
}
if (ring) {
int q = atom->getFormalCharge();
switch (atom->getAtomicNum()) {
case 6: // C
case 14: // Si
case 32: // Ge
if (q == 0 && btypes == 0x0102) {
types[aidx] = Type::Cv4D3;
} else if (q == -1 && btypes == 0x0003) {
types[aidx] = Type::Cv3D3Minus;
result = true;
}
break;
case 7: // N
case 15: // P
case 33: // As
if (q == 0 && btypes == 0x0101) {
types[aidx] = Type::Nv3D2;
result = true;
} else if (q == -1 && btypes == 0x0002) {
types[aidx] = Type::Nv2D2Minus;
result = true;
} else if (q == +1 && btypes == 0x0102) {
types[aidx] = Type::Nv4D3Plus;
result = true;
}
break;
case 8: // O
if (q == 1 && btypes == 0x0101) {
types[aidx] = Type::Ov3D2Plus;
result = true;
}
break;
}
}
}
return result;
}
// Reset atom types for atoms that have been given a type,
// but cannot be part of a mancude system (more than one
// typed neighbor is required for resonance to be possible)
void RelaxTypes(std::vector<Type> &types, const CIPMol &mol) {
std::list<Atom *> queue;
auto counts = std::vector<int>(mol.getNumAtoms());
for (auto atom : mol.atoms()) {
const auto aidx = atom->getIdx();
for (const auto &nbr : mol.getNeighbors(atom)) {
if (types[nbr->getIdx()] != Type::Other) {
++counts[aidx];
}
}
if (counts[aidx] == 1) {
queue.push_back(atom);
}
}
for (const auto &atom : queue) {
const auto aidx = atom->getIdx();
if (types[aidx] != Type::Other) {
types[aidx] = Type::Other;
for (auto &nbr : mol.getNeighbors(atom)) {
auto nbridx = nbr->getIdx();
--counts[nbridx];
if (counts[nbridx] == 1) {
queue.push_back(nbr);
}
}
}
}
}
// Mark mol atoms in the same resonant part of the mol.
void VisitPart(std::vector<int> &parts, const std::vector<Type> &types,
int part, Atom *atom, const CIPMol &mol) {
Atom *next;
do {
next = nullptr;
for (auto &bond : mol.getBonds(atom)) {
if (!mol.isInRing(bond)) {
continue;
}
auto nbr = bond->getOtherAtom(atom);
int aidx = nbr->getIdx();
if (parts[aidx] == 0 && types[aidx] != Type::Other) {
parts[aidx] = part;
if (next != nullptr) {
VisitPart(parts, types, part, nbr, mol);
} else {
next = nbr;
}
}
}
atom = next;
} while (atom != nullptr);
}
// Classify mol atoms into different resonant parts of the mol.
int VisitParts(std::vector<int> &parts, const std::vector<Type> &types,
const CIPMol &mol) {
int numparts = 0;
for (auto &atom : mol.atoms()) {
int aidx = atom->getIdx();
if (parts[aidx] == 0 && types[aidx] != Type::Other) {
parts[aidx] = ++numparts;
VisitPart(parts, types, parts[aidx], atom, mol);
}
}
return numparts;
}
} // namespace
std::vector<boost::rational<int>> calcFracAtomNums(const CIPMol &mol) {
const auto num_atoms = mol.getNumAtoms();
std::vector<boost::rational<int>> fractions;
fractions.reserve(num_atoms);
for (const auto &atom : mol.atoms()) {
fractions.emplace_back(atom->getAtomicNum(), 1);
}
// Mark all atoms which are potentially part of a resonance system.
auto types = std::vector<Type>(num_atoms, Type::Other);
if (SeedTypes(types, mol)) {
// Filter out atoms which cannot be resonant because
// of not having the proper environment.
RelaxTypes(types, mol);
// Find resonant systems: parts stores the ids of the
// systems each atom is involved in.
auto parts = std::vector<int>(num_atoms);
int numparts = VisitParts(parts, types, mol);
auto resparts = std::vector<int>(numparts);
int numres = 0;
if (numparts > 0) {
for (auto i = 0u; i < num_atoms; ++i) {
if (parts[i] == 0) {
continue;
}
auto atom = mol.getAtom(i);
// Find resonant structures caused by relocation of a negative charge.
if (types[i] == Type::Cv3D3Minus || types[i] == Type::Nv2D2Minus) {
int j = 0;
for (; j < numres; ++j) {
if (resparts[j] == parts[i]) {
break;
}
}
if (j >= numres) {
resparts[numres] = parts[i];
++numres;
}
}
int numerator = 0;
int denominator = 0;
for (const auto &nbr : mol.getNeighbors(atom)) {
if (parts[nbr->getIdx()] == parts[i]) {
numerator += nbr->getAtomicNum();
++denominator;
}
}
// boost::rational does not accept 0 as denominator.
if (denominator == 0) {
fractions[i].assign(0, 1);
} else {
fractions[i].assign(numerator, denominator);
}
}
}
// If there are any resonant structures due to negative charges,
// recalculate the average atomic number considering relocation
// of the charge through higher order bonds.
if (numres > 0) {
for (int j = 0; j < numres; ++j) {
int numerator = 0;
int denominator = 0;
int part = resparts[j];
for (auto i = 0u; i < num_atoms; ++i) {
if (parts[i] == part) {
// boost::rational does not accept 0 as denominator
if (denominator == 0) {
fractions[i].assign(0, 1);
} else {
fractions[i].assign(numerator, denominator);
}
++denominator;
auto atom = mol.getAtom(i);
for (auto &bond : mol.getBonds(atom)) {
auto nbr = bond->getOtherAtom(atom);
int bord = mol.getBondOrder(bond);
if (bord > 1 && parts[nbr->getIdx()] == part) {
numerator += (bord - 1) * nbr->getAtomicNum();
}
}
}
}
}
}
}
return fractions;
}
} // namespace CIPLabeler
} // namespace RDKit
|