1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
//
//
// Copyright (C) 2020 Schrödinger, LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "Tetrahedral.h"
#include "../rules/Rules.h"
namespace RDKit {
namespace CIPLabeler {
Tetrahedral::Tetrahedral(const CIPMol &mol, Atom *focus)
: Configuration(mol, focus) {
CHECK_INVARIANT(focus, "bad atom")
CHECK_INVARIANT(focus->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW ||
focus->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW,
"bad config")
std::vector<Atom *> carriers;
carriers.reserve(4);
for (auto &nbr : mol.getNeighbors(focus)) {
carriers.push_back(nbr);
}
if (carriers.size() < 4) {
// Implicit H -- use the central atom instead of a dummy H
carriers.push_back(focus);
}
if (carriers.size() < 4) {
// Trigonal pyramid centers with an implicit H need a phantom
// atom as fourth carrier. This one must be represented differently
// than the implicit H.
carriers.push_back(nullptr);
}
POSTCONDITION(carriers.size() == 4, "configurtion must have 4 carriers");
setCarriers(std::move(carriers));
};
void Tetrahedral::setPrimaryLabel(Descriptor desc) {
switch (desc) {
case Descriptor::R:
case Descriptor::S:
case Descriptor::r:
case Descriptor::s:
getFocus()->setProp(common_properties::_CIPCode, to_string(desc));
return;
case Descriptor::seqTrans:
case Descriptor::seqCis:
case Descriptor::E:
case Descriptor::Z:
case Descriptor::M:
case Descriptor::P:
case Descriptor::m:
case Descriptor::p:
case Descriptor::SP_4:
case Descriptor::TBPY_5:
case Descriptor::OC_6:
throw std::runtime_error(
"Received a Descriptor that is not supported for atoms");
default:
throw std::runtime_error("Received an invalid Atom Descriptor");
}
}
Descriptor Tetrahedral::label(const Rules &comp) {
auto &digraph = getDigraph();
auto root = digraph.getOriginalRoot();
if (digraph.getCurrentRoot() != root) {
digraph.changeRoot(root);
}
return label(root, comp);
}
Descriptor Tetrahedral::label(Node *node, Digraph &digraph, const Rules &comp) {
digraph.changeRoot(node);
return label(node, comp);
}
Descriptor Tetrahedral::label(Node *node, const Rules &comp) const {
auto focus = getFocus();
auto edges = node->getEdges();
// something not right!?! bad creation
if (edges.size() < 3) {
return Descriptor::ns;
}
auto priority = comp.sort(node, edges);
bool isUnique = priority.isUnique();
if (!isUnique && edges.size() == 4) {
if (comp.getNumSubRules() == 3) {
return Descriptor::UNKNOWN;
}
auto partition = comp.getSorter()->getGroups(edges);
if (partition.size() == 2) {
node->getDigraph()->setRule6Ref(edges[1]->getEnd()->getAtom());
priority = comp.sort(node, edges);
node->getDigraph()->setRule6Ref(nullptr);
} else if (partition.size() == 1) {
// S4 symmetric case
node->getDigraph()->setRule6Ref(edges[0]->getEnd()->getAtom());
comp.sort(node, edges);
auto nbrs1 = std::vector<Edge *>(edges.begin(), edges.end());
node->getDigraph()->setRule6Ref(edges[1]->getEnd()->getAtom());
priority = comp.sort(node, edges);
node->getDigraph()->setRule6Ref(nullptr);
if (parity4(nbrs1, edges) == 1) {
return Descriptor::UNKNOWN;
}
}
if (!priority.isUnique()) {
return Descriptor::UNKNOWN;
}
} else if (!isUnique) {
return Descriptor::UNKNOWN;
}
// if we are resolving a trigonal pyramid with an implicit H,
// the 4th carrier will be a nullptr: we need to add a phantom
// atom, which will always have the lowest priority, so that
// it must be different than the representation of the implicit H.
auto ordered = std::vector<Atom *>(4, nullptr);
int idx = 0;
for (const auto &edge : edges) {
if (edge->getEnd()->isSet(Node::BOND_DUPLICATE) ||
edge->getEnd()->isSet(Node::IMPL_HYDROGEN)) {
continue;
}
ordered[idx] = edge->getEnd()->getAtom();
++idx;
}
if (idx < 4) {
ordered[idx] = focus;
}
int parity = parity4(ordered, getCarriers());
if (parity == 0) {
throw std::runtime_error("Could not calculate parity! Carrier mismatch");
}
auto config = focus->getChiralTag();
if (parity == 1) {
if (config == Atom::CHI_TETRAHEDRAL_CCW) {
config = Atom::CHI_TETRAHEDRAL_CW;
} else {
config = Atom::CHI_TETRAHEDRAL_CCW;
}
}
if (config == Atom::CHI_TETRAHEDRAL_CCW) {
if (priority.isPseudoAsymetric()) {
return Descriptor::s;
} else {
return Descriptor::S;
}
} else if (config == Atom::CHI_TETRAHEDRAL_CW) {
if (priority.isPseudoAsymetric()) {
return Descriptor::r;
} else {
return Descriptor::R;
}
}
return Descriptor::UNKNOWN;
}
} // namespace CIPLabeler
} // namespace RDKit
|