1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
//
//
// Copyright (C) 2020 Schrödinger, LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <algorithm>
#include <list>
#include <RDGeneral/Invariant.h>
#include "Rule4b.h"
#include "../Digraph.h"
#include "Pairlist.h"
namespace RDKit {
namespace CIPLabeler {
Rule4b::Rule4b() = default;
Rule4b::Rule4b(Descriptor ref) : d_ref{ref} {}
std::vector<Descriptor> Rule4b::getReferenceDescriptors(
const Node *node) const {
std::vector<Descriptor> result;
auto prev = initialLevel(node);
while (!prev.empty()) {
for (const auto &nodes : prev) {
if (getReference(nodes, result)) {
return result;
}
}
prev = getNextLevel(prev);
}
return {};
}
int Rule4b::compare(const Edge *a, const Edge *b) const {
const auto &aBeg = a->getBeg();
const auto &aEnd = a->getEnd();
const auto &bBeg = b->getBeg();
const auto &bEnd = b->getEnd();
if (aBeg->getDigraph()->getCurrentRoot() != aBeg ||
bBeg->getDigraph()->getCurrentRoot() != bBeg) {
if (d_ref == Descriptor::NONE) {
return 0;
}
Descriptor aDesc = aEnd->getAux();
Descriptor bDesc = bEnd->getAux();
if (aDesc != Descriptor::NONE && bDesc != Descriptor::NONE &&
aDesc != Descriptor::ns && bDesc != Descriptor::ns) {
bool alike = PairList::ref(d_ref) == PairList::ref(aDesc);
bool blike = PairList::ref(d_ref) == PairList::ref(bDesc);
if (alike && !blike) {
return +1;
}
if (blike && !alike) {
return -1;
}
}
return 0;
} else {
auto list1 = newPairLists(getReferenceDescriptors(aEnd));
auto list2 = newPairLists(getReferenceDescriptors(bEnd));
if (list1.empty() != list2.empty()) {
throw std::runtime_error(
"Substituents should be topologically equivalent!");
}
if (list1.size() == 1) {
return comparePairs(aEnd, bEnd, list1[0].getRefDescriptor(),
list2[0].getRefDescriptor());
} else if (list1.size() > 1) {
for (auto &plist : list1) {
fillPairs(aEnd, plist);
}
for (auto &plist : list2) {
fillPairs(bEnd, plist);
}
std::sort(list1.rbegin(), list1.rend());
std::sort(list2.rbegin(), list2.rend());
for (auto i = 0u; i < list1.size(); ++i) {
int cmp = list1[i].compareTo(list2[i]);
if (cmp != 0) {
return cmp;
}
}
}
return 0;
}
}
bool Rule4b::hasDescriptors(const Node *node) const {
auto queue = std::list<const Node *>({node});
for (const auto &node : queue) {
if (node->getAux() != Descriptor::NONE) {
return true;
}
for (const auto &e : node->getEdges()) {
if (e->getEnd() == node) {
continue;
}
if (getBondLabel(e) != Descriptor::NONE) {
return true;
}
queue.push_back(e->getEnd());
}
}
return false;
}
bool Rule4b::getReference(const std::vector<const Node *> &nodes,
std::vector<Descriptor> &result) const {
int right = 0;
int left = 0;
for (const auto &node : nodes) {
auto desc = node->getAux();
switch (desc) {
case Descriptor::NONE:
continue;
case Descriptor::R:
case Descriptor::M:
case Descriptor::seqCis:
++right;
break;
case Descriptor::S:
case Descriptor::P:
case Descriptor::seqTrans:
++left;
break;
default:
break;
}
}
if (right + left == 0) {
return false;
} else if (right > left) {
result.push_back(Descriptor::R);
return true;
} else if (right < left) {
result.push_back(Descriptor::S);
return true;
} else {
result.push_back(Descriptor::R);
result.push_back(Descriptor::S);
return true;
}
}
std::vector<std::vector<const Node *>> Rule4b::initialLevel(
const Node *node) const {
return {{node}};
}
std::vector<std::vector<const Node *>> Rule4b::getNextLevel(
const std::vector<std::vector<const Node *>> &prevLevel) const {
std::vector<std::vector<const Node *>> nextLevel;
nextLevel.reserve(4 * prevLevel.size());
for (const auto &prev : prevLevel) {
std::vector<std::vector<std::vector<Edge *>>> tmp;
for (const auto &node : prev) {
auto edges = node->getNonTerminalOutEdges();
sort(node, edges);
tmp.push_back(getSorter()->getGroups(edges));
}
// check sizes
int size = -1;
for (auto i = 0u; i < tmp.size(); ++i) {
int localSize = tmp[0].size();
if (size < 0) {
size = localSize;
} else if (size != localSize) {
throw std::runtime_error("Something unexpected!");
}
}
for (int i = 0; i < size; ++i) {
std::vector<const Node *> eq;
for (const auto &aTmp : tmp) {
auto tmpNodes = toNodeList(aTmp[i]);
eq.insert(eq.end(), tmpNodes.begin(), tmpNodes.end());
}
if (!eq.empty()) {
nextLevel.push_back(eq);
}
}
}
return nextLevel;
}
std::vector<const Node *> Rule4b::toNodeList(
const std::vector<Edge *> &eqEdges) const {
std::vector<const Node *> eqNodes;
eqNodes.reserve(eqEdges.size());
for (const auto &edge : eqEdges) {
eqNodes.push_back(edge->getEnd());
}
return eqNodes;
}
std::vector<PairList> Rule4b::newPairLists(
const std::vector<Descriptor> &descriptors) const {
std::vector<PairList> pairs;
pairs.reserve(descriptors.size());
for (Descriptor descriptor : descriptors) {
pairs.emplace_back(descriptor);
}
return pairs;
}
void Rule4b::fillPairs(const Node *beg, PairList &plist) const {
const Rule4b replacement_rule(plist.getRefDescriptor());
const auto &sorter = getRefSorter(&replacement_rule);
auto queue = std::list<const Node *>({beg});
for (const auto &node : queue) {
plist.add(node->getAux());
auto edges = node->getEdges();
sorter.prioritize(node, edges);
for (const auto &edge : edges) {
if (edge->isBeg(node) && !edge->getEnd()->isTerminal()) {
queue.push_back(edge->getEnd());
}
}
}
}
int Rule4b::comparePairs(const Node *a, const Node *b, Descriptor refA,
Descriptor refB) const {
const Rule4b replacementA(refA);
const Rule4b replacementB(refB);
const auto &aSorter = getRefSorter(&replacementA);
const auto &bSorter = getRefSorter(&replacementB);
auto aQueue = std::vector<const Node *>({a});
auto bQueue = std::vector<const Node *>({b});
for (auto pos = 0u; pos < aQueue.size() && pos < bQueue.size(); ++pos) {
const auto aNode = aQueue[pos];
const auto bNode = bQueue[pos];
const auto &desA = PairList::ref(aNode->getAux());
const auto &desB = PairList::ref(bNode->getAux());
if (desA == refA && desB != refB) {
return +1;
} else if (desA != refA && desB == refB) {
return -1;
}
auto edges = aNode->getEdges();
aSorter.prioritize(aNode, edges);
for (const auto &edge : edges) {
if (edge->isBeg(aNode) && !edge->getEnd()->isTerminal()) {
aQueue.push_back(edge->getEnd());
}
}
edges = bNode->getEdges();
bSorter.prioritize(bNode, edges);
for (const auto &edge : edges) {
if (edge->isBeg(bNode) && !edge->getEnd()->isTerminal()) {
bQueue.push_back(edge->getEnd());
}
}
}
return 0;
}
Sort Rule4b::getRefSorter(const SequenceRule *replacement_rule) const {
const auto &rules = getSorter()->getRules();
CHECK_INVARIANT(std::find(rules.begin(), rules.end(), this) != rules.end(),
"Rule4b instance not in rule set");
std::vector<const SequenceRule *> new_rules;
new_rules.reserve(rules.size());
for (const auto &rule : rules) {
if (this != rule) {
new_rules.push_back(rule);
}
}
new_rules.push_back(replacement_rule);
return {new_rules};
}
} // namespace CIPLabeler
} // namespace RDKit
|