File: Rule4b.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (299 lines) | stat: -rw-r--r-- 8,047 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
//
//
//  Copyright (C) 2020 Schrödinger, LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <algorithm>
#include <list>

#include <RDGeneral/Invariant.h>

#include "Rule4b.h"

#include "../Digraph.h"
#include "Pairlist.h"

namespace RDKit {
namespace CIPLabeler {

Rule4b::Rule4b() = default;

Rule4b::Rule4b(Descriptor ref) : d_ref{ref} {}

std::vector<Descriptor> Rule4b::getReferenceDescriptors(
    const Node *node) const {
  std::vector<Descriptor> result;
  auto prev = initialLevel(node);
  while (!prev.empty()) {
    for (const auto &nodes : prev) {
      if (getReference(nodes, result)) {
        return result;
      }
    }
    prev = getNextLevel(prev);
  }
  return {};
}

int Rule4b::compare(const Edge *a, const Edge *b) const {
  const auto &aBeg = a->getBeg();
  const auto &aEnd = a->getEnd();
  const auto &bBeg = b->getBeg();
  const auto &bEnd = b->getEnd();
  if (aBeg->getDigraph()->getCurrentRoot() != aBeg ||
      bBeg->getDigraph()->getCurrentRoot() != bBeg) {
    if (d_ref == Descriptor::NONE) {
      return 0;
    }
    Descriptor aDesc = aEnd->getAux();
    Descriptor bDesc = bEnd->getAux();
    if (aDesc != Descriptor::NONE && bDesc != Descriptor::NONE &&
        aDesc != Descriptor::ns && bDesc != Descriptor::ns) {
      bool alike = PairList::ref(d_ref) == PairList::ref(aDesc);
      bool blike = PairList::ref(d_ref) == PairList::ref(bDesc);
      if (alike && !blike) {
        return +1;
      }
      if (blike && !alike) {
        return -1;
      }
    }
    return 0;
  } else {
    auto list1 = newPairLists(getReferenceDescriptors(aEnd));

    auto list2 = newPairLists(getReferenceDescriptors(bEnd));

    if (list1.empty() != list2.empty()) {
      throw std::runtime_error(
          "Substituents should be topologically equivalent!");
    }
    if (list1.size() == 1) {
      return comparePairs(aEnd, bEnd, list1[0].getRefDescriptor(),
                          list2[0].getRefDescriptor());
    } else if (list1.size() > 1) {
      for (auto &plist : list1) {
        fillPairs(aEnd, plist);
      }
      for (auto &plist : list2) {
        fillPairs(bEnd, plist);
      }

      std::sort(list1.rbegin(), list1.rend());
      std::sort(list2.rbegin(), list2.rend());

      for (auto i = 0u; i < list1.size(); ++i) {
        int cmp = list1[i].compareTo(list2[i]);
        if (cmp != 0) {
          return cmp;
        }
      }
    }
    return 0;
  }
}

bool Rule4b::hasDescriptors(const Node *node) const {
  auto queue = std::list<const Node *>({node});

  for (const auto &node : queue) {
    if (node->getAux() != Descriptor::NONE) {
      return true;
    }
    for (const auto &e : node->getEdges()) {
      if (e->getEnd() == node) {
        continue;
      }
      if (getBondLabel(e) != Descriptor::NONE) {
        return true;
      }
      queue.push_back(e->getEnd());
    }
  }
  return false;
}

bool Rule4b::getReference(const std::vector<const Node *> &nodes,
                          std::vector<Descriptor> &result) const {
  int right = 0;
  int left = 0;
  for (const auto &node : nodes) {
    auto desc = node->getAux();
    switch (desc) {
      case Descriptor::NONE:
        continue;
      case Descriptor::R:
      case Descriptor::M:
      case Descriptor::seqCis:
        ++right;
        break;
      case Descriptor::S:
      case Descriptor::P:
      case Descriptor::seqTrans:
        ++left;
        break;
      default:
        break;
    }
  }
  if (right + left == 0) {
    return false;
  } else if (right > left) {
    result.push_back(Descriptor::R);
    return true;
  } else if (right < left) {
    result.push_back(Descriptor::S);
    return true;
  } else {
    result.push_back(Descriptor::R);
    result.push_back(Descriptor::S);
    return true;
  }
}

std::vector<std::vector<const Node *>> Rule4b::initialLevel(
    const Node *node) const {
  return {{node}};
}

std::vector<std::vector<const Node *>> Rule4b::getNextLevel(
    const std::vector<std::vector<const Node *>> &prevLevel) const {
  std::vector<std::vector<const Node *>> nextLevel;
  nextLevel.reserve(4 * prevLevel.size());

  for (const auto &prev : prevLevel) {
    std::vector<std::vector<std::vector<Edge *>>> tmp;
    for (const auto &node : prev) {
      auto edges = node->getNonTerminalOutEdges();
      sort(node, edges);
      tmp.push_back(getSorter()->getGroups(edges));
    }

    // check sizes
    int size = -1;
    for (auto i = 0u; i < tmp.size(); ++i) {
      int localSize = tmp[0].size();
      if (size < 0) {
        size = localSize;
      } else if (size != localSize) {
        throw std::runtime_error("Something unexpected!");
      }
    }

    for (int i = 0; i < size; ++i) {
      std::vector<const Node *> eq;
      for (const auto &aTmp : tmp) {
        auto tmpNodes = toNodeList(aTmp[i]);
        eq.insert(eq.end(), tmpNodes.begin(), tmpNodes.end());
      }
      if (!eq.empty()) {
        nextLevel.push_back(eq);
      }
    }
  }
  return nextLevel;
}

std::vector<const Node *> Rule4b::toNodeList(
    const std::vector<Edge *> &eqEdges) const {
  std::vector<const Node *> eqNodes;
  eqNodes.reserve(eqEdges.size());
  for (const auto &edge : eqEdges) {
    eqNodes.push_back(edge->getEnd());
  }
  return eqNodes;
}

std::vector<PairList> Rule4b::newPairLists(
    const std::vector<Descriptor> &descriptors) const {
  std::vector<PairList> pairs;
  pairs.reserve(descriptors.size());
  for (Descriptor descriptor : descriptors) {
    pairs.emplace_back(descriptor);
  }
  return pairs;
}

void Rule4b::fillPairs(const Node *beg, PairList &plist) const {
  const Rule4b replacement_rule(plist.getRefDescriptor());
  const auto &sorter = getRefSorter(&replacement_rule);
  auto queue = std::list<const Node *>({beg});

  for (const auto &node : queue) {
    plist.add(node->getAux());
    auto edges = node->getEdges();
    sorter.prioritize(node, edges);
    for (const auto &edge : edges) {
      if (edge->isBeg(node) && !edge->getEnd()->isTerminal()) {
        queue.push_back(edge->getEnd());
      }
    }
  }
}

int Rule4b::comparePairs(const Node *a, const Node *b, Descriptor refA,
                         Descriptor refB) const {
  const Rule4b replacementA(refA);
  const Rule4b replacementB(refB);
  const auto &aSorter = getRefSorter(&replacementA);
  const auto &bSorter = getRefSorter(&replacementB);
  auto aQueue = std::vector<const Node *>({a});
  auto bQueue = std::vector<const Node *>({b});

  for (auto pos = 0u; pos < aQueue.size() && pos < bQueue.size(); ++pos) {
    const auto aNode = aQueue[pos];
    const auto bNode = bQueue[pos];

    const auto &desA = PairList::ref(aNode->getAux());
    const auto &desB = PairList::ref(bNode->getAux());

    if (desA == refA && desB != refB) {
      return +1;
    } else if (desA != refA && desB == refB) {
      return -1;
    }

    auto edges = aNode->getEdges();
    aSorter.prioritize(aNode, edges);
    for (const auto &edge : edges) {
      if (edge->isBeg(aNode) && !edge->getEnd()->isTerminal()) {
        aQueue.push_back(edge->getEnd());
      }
    }

    edges = bNode->getEdges();
    bSorter.prioritize(bNode, edges);
    for (const auto &edge : edges) {
      if (edge->isBeg(bNode) && !edge->getEnd()->isTerminal()) {
        bQueue.push_back(edge->getEnd());
      }
    }
  }
  return 0;
}

Sort Rule4b::getRefSorter(const SequenceRule *replacement_rule) const {
  const auto &rules = getSorter()->getRules();

  CHECK_INVARIANT(std::find(rules.begin(), rules.end(), this) != rules.end(),
                  "Rule4b instance not in rule set");

  std::vector<const SequenceRule *> new_rules;
  new_rules.reserve(rules.size());
  for (const auto &rule : rules) {
    if (this != rule) {
      new_rules.push_back(rule);
    }
  }
  new_rules.push_back(replacement_rule);
  return {new_rules};
}

}  // namespace CIPLabeler
}  // namespace RDKit