1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
//
// Copyright (C) 2022 Sreya Gogineni and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "DetermineBonds.h"
#include <GraphMol/RDKitBase.h>
#ifdef RDK_BUILD_YAEHMOP_SUPPORT
#include <YAeHMOP/EHTTools.h>
#endif
#include <iostream>
#include <vector>
#include <numeric>
#include <cmath>
#include <unordered_map>
#include <RDGeneral/BoostStartInclude.h>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/multiprecision/cpp_int.hpp>
#include <RDGeneral/BoostEndInclude.h>
#include <GraphMol/FileParsers/ProximityBonds.h>
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>
Graph;
using boost::multiprecision::uint1024_t;
namespace {
// see http://phrogz.net/lazy-cartesian-product
template <typename T>
struct LazyCartesianProduct {
std::vector<std::vector<T>> d_listOfLists;
std::vector<uint1024_t> d_divs;
std::vector<uint1024_t> d_mods;
uint1024_t d_maxSize;
uint1024_t d_currentPos;
explicit LazyCartesianProduct(const std::vector<std::vector<T>> &input)
: d_listOfLists(input), d_currentPos(0) {
auto size = d_listOfLists.size();
d_divs.resize(size);
d_mods.resize(size);
d_maxSize = 1;
for (int i = size - 1; i >= 0; --i) {
uint1024_t items(d_listOfLists[i].size());
d_divs[i] = d_maxSize;
d_mods[i] = items;
d_maxSize *= items;
}
}
std::vector<T> entryAt(uint1024_t pos) const;
std::vector<T> next() { return entryAt(d_currentPos++); }
bool atEnd() const { return d_currentPos >= d_maxSize; }
};
template <typename T>
std::vector<T> LazyCartesianProduct<T>::entryAt(uint1024_t pos) const {
auto length = d_listOfLists.size();
std::vector<T> res(length);
for (auto i = 0u; i < length; ++i) {
res[i] = d_listOfLists[i][static_cast<size_t>(
static_cast<uint1024_t>(pos / d_divs[i]) % d_mods[i])];
}
return res;
}
std::vector<unsigned int> possibleValences(
const RDKit::Atom *atom,
const std::unordered_map<int, std::vector<unsigned int>> &atomicValence) {
auto atomNum = atom->getAtomicNum() - atom->getFormalCharge();
auto numBonds = atom->getDegree();
std::vector<unsigned int> avalences;
auto valences = atomicValence.find(atomNum);
if (valences != atomicValence.end()) {
avalences = valences->second;
} else {
for (auto v : RDKit::PeriodicTable::getTable()->getValenceList(atomNum)) {
if (v >= 0) {
avalences.push_back(v);
}
}
}
std::vector<unsigned int> possible;
for (const auto &valence : avalences) {
if (numBonds <= valence) {
possible.push_back(valence);
}
}
return possible;
}
LazyCartesianProduct<unsigned int> getValenceCombinations(
const RDKit::RWMol &mol) {
auto numAtoms = mol.getNumAtoms();
const std::unordered_map<int, std::vector<unsigned int>> atomicValence = {
{1, {1}}, {5, {3, 4}}, {6, {4}}, {7, {3, 4}}, {8, {2, 1, 3}},
{9, {1}}, {14, {4}}, {15, {5, 3}}, {16, {6, 3, 2}}, {17, {1}},
{32, {4}}, {35, {1}}, {53, {1}}};
std::vector<std::vector<unsigned int>> possible(numAtoms);
for (unsigned int i = 0; i < numAtoms; i++) {
possible[i] = possibleValences(mol.getAtomWithIdx(i), atomicValence);
if (possible[i].empty()) {
const auto atom = mol.getAtomWithIdx(i);
std::vector<unsigned int> valences =
atomicValence.at(atom->getAtomicNum());
std::stringstream ss;
ss << "Valence of atom " << i << " is " << atom->getDegree()
<< ", which is larger than the allowed maximum, "
<< valences[valences.size() - 1];
throw ValueErrorException(ss.str());
}
}
return LazyCartesianProduct<unsigned int>(possible);
}
} // namespace
namespace RDKit {
#ifdef RDK_BUILD_YAEHMOP_SUPPORT
void connectivityHueckel(RWMol &mol, int charge) {
auto numAtoms = mol.getNumAtoms();
mol.getAtomWithIdx(0)->setFormalCharge(charge);
EHTTools::EHTResults res;
bool success = runMol(mol, res);
RDUNUSED_PARAM(success);
// as of this writing runMol() always returns true, so we ignore the return
// value.
double *mat = res.reducedOverlapPopulationMatrix.get();
int matInd = 0;
for (unsigned int i = 0; i < numAtoms; i++) {
for (unsigned int j = 0; j < i + 1; j++) {
if (i != j && mat[matInd] >= 0.15) {
mol.addBond(i, j, Bond::BondType::SINGLE);
}
matInd++;
}
}
} // connectivityHueckel()
#else
void connectivityHueckel(RWMol &, int) {
CHECK_INVARIANT(0, "YAeHMOP support not available");
}
#endif
void connectivityVdW(RWMol &mol, double covFactor) {
auto numAtoms = mol.getNumAtoms();
double *distMat = MolOps::get3DDistanceMat(mol);
std::vector<double> rcov(numAtoms);
for (unsigned int i = 0; i < numAtoms; i++) {
rcov[i] = covFactor * PeriodicTable::getTable()->getRcovalent(
mol.getAtomWithIdx(i)->getAtomicNum());
}
for (unsigned int i = 0; i < numAtoms; i++) {
for (unsigned int j = i + 1; j < numAtoms; j++) {
if (distMat[i * numAtoms + j] <= (rcov[i] + rcov[j])) {
mol.addBond(i, j, Bond::BondType::SINGLE);
}
}
}
} // connectivityVdW()
void determineConnectivity(RWMol &mol, bool useHueckel, int charge,
double covFactor, bool useVdw) {
#ifndef RDK_BUILD_YAEHMOP_SUPPORT
if (useHueckel) {
throw ValueErrorException(
"The RDKit was not compiled with YAeHMOP support");
}
#endif
auto numAtoms = mol.getNumAtoms();
for (unsigned int i = 0; i < numAtoms; i++) {
for (unsigned int j = i + 1; j < numAtoms; j++) {
mol.removeBond(i, j);
mol.getAtomWithIdx(i)->setNoImplicit(true);
mol.getAtomWithIdx(j)->setNoImplicit(true);
}
}
if (useHueckel) {
connectivityHueckel(mol, charge);
} else if (useVdw) {
connectivityVdW(mol, covFactor);
} else {
ConnectTheDots(&mol, ctdIGNORE_H_H_CONTACTS);
}
} // determineConnectivity()
void getUnsaturated(const std::vector<unsigned int> &order,
const std::vector<unsigned int> &valency,
std::vector<unsigned int> &unsat) {
for (unsigned int i = 0; i < order.size(); i++) {
if (order[i] > valency[i]) {
unsat.push_back(i);
}
}
}
void getUnsaturatedPairs(
const std::vector<std::vector<unsigned int>> &ordMat,
const std::vector<unsigned int> &unsat,
std::vector<std::pair<unsigned int, unsigned int>> &unsatPairs) {
for (unsigned int i = 0; i < unsat.size(); i++) {
for (unsigned int j = i + 1; j < unsat.size(); j++) {
if (ordMat[unsat[i]][unsat[j]]) {
unsatPairs.push_back(std::make_pair(unsat[i], unsat[j]));
}
}
}
}
bool checkValency(const std::vector<unsigned int> &order,
const std::vector<unsigned int> &valency) {
for (unsigned int i = 0; i < valency.size(); i++) {
if (valency[i] > order[i]) {
return false;
}
}
return true;
}
int getAtomicCharge(int atom, unsigned int valence) {
if (atom == 1) {
return 1 - valence;
} else if (atom == 5) {
return 3 - valence;
} else if (atom == 15 && valence == 5) {
return 0;
} else if (atom == 16 && valence == 6) {
return 0;
} else {
return PeriodicTable::getTable()->getNouterElecs(atom) - 8 + valence;
}
}
bool checkCharge(RWMol &mol, const std::vector<unsigned int> &valency,
int charge) {
int molCharge = 0;
for (unsigned int i = 0; i < mol.getNumAtoms(); i++) {
const auto atom = mol.getAtomWithIdx(i);
int atomCharge = getAtomicCharge(atom->getAtomicNum(), valency[i]);
molCharge += atomCharge;
if (atom->getAtomicNum() == 6) {
if (atom->getDegree() == 2 && valency[i] == 2) {
molCharge += 1;
atomCharge = 2;
} else if (atom->getDegree() == 3 && (molCharge + 1 < charge)) {
molCharge += 2;
atomCharge = 1;
}
}
}
return molCharge == charge;
}
void setAtomicCharges(RWMol &mol, const std::vector<unsigned int> &valency,
int charge) {
int molCharge = 0;
for (unsigned int i = 0; i < mol.getNumAtoms(); i++) {
auto atom = mol.getAtomWithIdx(i);
int atomCharge = getAtomicCharge(
atom->getAtomicNum() - atom->getFormalCharge(), valency[i]);
molCharge += atomCharge;
if (atom->getAtomicNum() == 6) {
if (atom->getDegree() == 2 && valency[i] == 2) {
molCharge += 1;
atomCharge = 0;
} else if (atom->getDegree() == 3 && (molCharge + 1 < charge)) {
molCharge += 2;
atomCharge = 1;
}
}
if (atomCharge != 0) {
atom->setFormalCharge(atomCharge);
}
}
}
void setAtomicRadicals(RWMol &mol, const std::vector<unsigned int> &valency,
int charge) {
for (unsigned int i = 0; i < mol.getNumAtoms(); i++) {
auto atom = mol.getAtomWithIdx(i);
int atomCharge = getAtomicCharge(atom->getAtomicNum(), valency[i]);
if (atomCharge != 0) {
atom->setNumRadicalElectrons(std::abs(charge));
}
}
}
bool checkSaturation(const std::vector<unsigned int> &order,
const std::vector<unsigned int> &valency) {
std::vector<unsigned int> unsat;
getUnsaturated(order, valency, unsat);
return unsat.empty();
}
void setAtomMap(RWMol &mol) {
for (unsigned int i = 0; i < mol.getNumAtoms(); i++) {
auto atom = mol.getAtomWithIdx(i);
atom->setAtomMapNum(i + 1);
}
}
void setChirality(RWMol &mol) {
MolOps::sanitizeMol(mol);
MolOps::setDoubleBondNeighborDirections(mol, &mol.getConformer());
MolOps::assignStereochemistryFrom3D(mol);
}
void addBondOrdering(RWMol &mol,
const std::vector<std::vector<unsigned int>> &ordMat,
const std::vector<unsigned int> &valency,
bool allowChargedFragments, bool embedChiral,
bool useAtomMap, int charge) {
auto numAtoms = mol.getNumAtoms();
for (unsigned int i = 0; i < numAtoms; i++) {
for (unsigned int j = i + 1; j < numAtoms; j++) {
if (ordMat[i][j] == 0) {
continue;
} else if (ordMat[i][j] == 1) {
mol.getBondBetweenAtoms(i, j)->setBondType(Bond::BondType::SINGLE);
} else if (ordMat[i][j] == 2) {
mol.getBondBetweenAtoms(i, j)->setBondType(Bond::BondType::DOUBLE);
} else if (ordMat[i][j] == 3) {
mol.getBondBetweenAtoms(i, j)->setBondType(Bond::BondType::TRIPLE);
} else {
mol.getBondBetweenAtoms(i, j)->setBondType(Bond::BondType::SINGLE);
}
}
}
if (allowChargedFragments) {
setAtomicCharges(mol, valency, charge);
} else {
setAtomicRadicals(mol, valency, charge);
}
if (MolOps::getFormalCharge(mol) != charge) {
std::stringstream ss;
ss << "Final molecular charge (" << charge << ") does not match input ("
<< MolOps::getFormalCharge(mol)
<< "); could not find valid bond ordering";
throw ValueErrorException(ss.str());
}
if (useAtomMap) {
setAtomMap(mol);
}
if (embedChiral) {
setChirality(mol);
}
}
void determineBondOrders(RWMol &mol, int charge, bool allowChargedFragments,
bool embedChiral, bool useAtomMap) {
auto numAtoms = mol.getNumAtoms();
std::vector<std::vector<unsigned int>> conMat(
numAtoms, std::vector<unsigned int>(numAtoms, 0));
std::vector<unsigned int> origValency(numAtoms, 0);
for (unsigned int i = 0; i < numAtoms; i++) {
for (unsigned int j = i + 1; j < numAtoms; j++) {
if (mol.getBondBetweenAtoms(i, j)) {
conMat[i][j]++;
origValency[i]++;
origValency[j]++;
}
}
}
std::vector<std::vector<unsigned int>> best(conMat);
std::vector<unsigned int> bestValency(origValency);
int bestSum = std::accumulate(origValency.begin(), origValency.end(), 0);
auto valenceCombos = getValenceCombinations(mol);
bool valencyValid = false;
bool chargeValid = false;
bool saturationValid = false;
while (!valenceCombos.atEnd()) {
auto order = valenceCombos.next();
std::vector<unsigned int> unsat;
getUnsaturated(order, origValency, unsat);
// checks whether the atomic connectivity is valid for the current set of
// atomic valences
if (unsat.empty()) {
valencyValid = checkValency(order, origValency);
chargeValid = checkCharge(mol, origValency, charge);
saturationValid = checkSaturation(order, origValency);
if (valencyValid && chargeValid && saturationValid) {
addBondOrdering(mol, conMat, origValency, allowChargedFragments,
embedChiral, useAtomMap, charge);
return;
} else {
continue;
}
}
std::vector<std::vector<unsigned int>> ordMat(conMat);
std::vector<unsigned int> valency(origValency);
bool newBonds = false;
do {
newBonds = false;
std::vector<unsigned int> unsat;
getUnsaturated(order, valency, unsat);
std::vector<std::pair<unsigned int, unsigned int>> unsatPairs;
getUnsaturatedPairs(conMat, unsat, unsatPairs);
if (!unsatPairs.empty()) {
Graph graph(unsatPairs.begin(), unsatPairs.end(), numAtoms);
std::vector<boost::graph_traits<Graph>::vertex_descriptor> mate(
numAtoms);
edmonds_maximum_cardinality_matching(graph, &mate[0]);
boost::graph_traits<Graph>::vertex_iterator vi, viEnd;
for (boost::tie(vi, viEnd) = vertices(graph); vi != viEnd; ++vi) {
if (mate[*vi] != boost::graph_traits<Graph>::null_vertex() &&
*vi < mate[*vi]) {
newBonds = true;
ordMat[*vi][mate[*vi]]++;
valency[*vi]++;
valency[mate[*vi]]++;
}
}
}
} while (newBonds == true);
valencyValid = checkValency(order, valency);
chargeValid = checkCharge(mol, valency, charge);
saturationValid = checkSaturation(order, valency);
if (valencyValid && chargeValid) {
if (saturationValid) {
addBondOrdering(mol, ordMat, valency, allowChargedFragments,
embedChiral, useAtomMap, charge);
return;
} else {
int sum = std::accumulate(valency.begin(), valency.end(), 0);
;
if (sum > bestSum) {
best = ordMat;
bestSum = sum;
bestValency = valency;
}
}
}
}
addBondOrdering(mol, best, bestValency, allowChargedFragments, embedChiral,
useAtomMap, charge);
return;
} // determineBondOrdering()
void determineBonds(RWMol &mol, bool useHueckel, int charge, double covFactor,
bool allowChargedFragments, bool embedChiral,
bool useAtomMap, bool useVdw) {
if (mol.getNumAtoms() <= 1) {
return;
}
determineConnectivity(mol, useHueckel, charge, covFactor, useVdw);
determineBondOrders(mol, charge, allowChargedFragments, embedChiral,
useAtomMap);
} // determineBonds()
} // namespace RDKit
|