File: Embedder.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (1661 lines) | stat: -rw-r--r-- 64,897 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
//
//  Copyright (C) 2004-2025 Greg Landrum and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
// #define DEBUG_EMBEDDING 0
#include "Embedder.h"
#include <DistGeom/BoundsMatrix.h>
#include <DistGeom/DistGeomUtils.h>
#include <DistGeom/TriangleSmooth.h>
#include <DistGeom/ChiralViolationContribs.h>
#include "BoundsMatrixBuilder.h"
#include <ForceField/ForceField.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/Atom.h>
#include <GraphMol/AtomIterators.h>
#include <GraphMol/RingInfo.h>
#include <GraphMol/Atropisomers.h>

#include <GraphMol/Conformer.h>
#include <RDGeneral/types.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/Exceptions.h>
#include <RDGeneral/ControlCHandler.h>

#include <Geometry/Transform3D.h>
#include <Numerics/Alignment/AlignPoints.h>
#include <DistGeom/ChiralSet.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/ForceFieldHelpers/CrystalFF/TorsionPreferences.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/MolAlign/AlignMolecules.h>
#include <boost/dynamic_bitset.hpp>
#include <RDGeneral/RDThreads.h>
#include <cstddef>
#include <stdexcept>
#include <vector>
#include <chrono>  // for time-related functions

#ifdef RDK_BUILD_THREADSAFE_SSS
#include <future>
#include <mutex>
#endif

// #define DEBUG_EMBEDDING 1

#ifdef M_PI_2
#undef M_PI_2
#endif

namespace {
constexpr const char *INTERRUPT_MESSAGE =
    "Interrupted, cancelling conformer generation";
constexpr double M_PI_2 = 1.57079632679489661923;
constexpr double ERROR_TOL = 0.00001;
// these tolerances, all to detect and filter out bogus conformations, are a
// delicate balance between sensitive enough to detect obviously bad
// conformations but not so sensitive that a bunch of ok conformations get
// filtered out, which slows down the whole conformation generation process
constexpr double MAX_MINIMIZED_E_PER_ATOM = 0.05;
constexpr double MIN_TETRAHEDRAL_CHIRAL_VOL = 0.50;
constexpr double TETRAHEDRAL_CENTERINVOLUME_TOL = 0.30;
inline bool haveOppositeSign(double a, double b) {
  return std::signbit(a) ^ std::signbit(b);
}

using Clock = std::chrono::steady_clock;
using TimePoint = std::chrono::time_point<Clock>;

}  // namespace

#ifdef RDK_BUILD_THREADSAFE_SSS
namespace {
std::mutex &failmutex_get() {
  // create on demand
  static std::mutex _mutex;
  return _mutex;
}

void failmutex_create() {
  std::mutex &mutex = failmutex_get();
  std::lock_guard<std::mutex> test_lock(mutex);
}

std::mutex &GetFailMutex() {
  static std::once_flag flag;
  std::call_once(flag, failmutex_create);
  return failmutex_get();
}
}  // namespace
#endif

namespace RDKit {
namespace DGeomHelpers {

//! Parameters corresponding to Sereina Riniker's KDG approach
const EmbedParameters KDG(0,        // maxIterations
                          1,        // numThreads
                          -1,       // randomSeed
                          true,     // clearConfs
                          false,    // useRandomCoords
                          2.0,      // boxSizeMult
                          true,     // randNegEig
                          1,        // numZeroFail
                          nullptr,  // coordMap
                          1e-3,     // optimizerForceTol
                          false,    // ignoreSmoothingFailures
                          true,     // enforceChirality
                          false,    // useExpTorsionAnglePrefs
                          true,     // useBasicKnowledge
                          false,    // verbose
                          5.0,      // basinThresh
                          -1.0,     // pruneRmsThresh
                          true,     // onlyHeavyAtomsForRMS
                          1,        // ETversion
                          nullptr,  // boundsMat
                          true,     // embedFragmentsSeparately
                          false,    // useSmallRingTorsions
                          false,    // useMacrocycleTorsions
                          false,    // useMacrocycle14config
                          0,        // timeout
                          nullptr,  // CPCI
                          nullptr   // callback
);

//! Parameters corresponding to Sereina Riniker's ETDG approach
const EmbedParameters ETDG(0,        // maxIterations
                           1,        // numThreads
                           -1,       // randomSeed
                           true,     // clearConfs
                           false,    // useRandomCoords
                           2.0,      // boxSizeMult
                           true,     // randNegEig
                           1,        // numZeroFail
                           nullptr,  // coordMap
                           1e-3,     // optimizerForceTol
                           false,    // ignoreSmoothingFailures
                           false,    // enforceChirality
                           true,     // useExpTorsionAnglePrefs
                           false,    // useBasicKnowledge
                           false,    // verbose
                           5.0,      // basinThresh
                           -1.0,     // pruneRmsThresh
                           true,     // onlyHeavyAtomsForRMS
                           1,        // ETversion
                           nullptr,  // boundsMat
                           true,     // embedFragmentsSeparately
                           false,    // useSmallRingTorsions
                           false,    // useMacrocycleTorsions
                           false,    // useMacrocycle14config
                           0,        // timeout
                           nullptr,  // CPCI
                           nullptr   // callback
);
//! Parameters corresponding to Sereina Riniker's ETKDG approach
const EmbedParameters ETKDG(0,        // maxIterations
                            1,        // numThreads
                            -1,       // randomSeed
                            true,     // clearConfs
                            false,    // useRandomCoords
                            2.0,      // boxSizeMult
                            true,     // randNegEig
                            1,        // numZeroFail
                            nullptr,  // coordMap
                            1e-3,     // optimizerForceTol
                            false,    // ignoreSmoothingFailures
                            true,     // enforceChirality
                            true,     // useExpTorsionAnglePrefs
                            true,     // useBasicKnowledge
                            false,    // verbose
                            5.0,      // basinThresh
                            -1.0,     // pruneRmsThresh
                            true,     // onlyHeavyAtomsForRMS
                            1,        // ETversion
                            nullptr,  // boundsMat
                            true,     // embedFragmentsSeparately
                            false,    // useSmallRingTorsions
                            false,    // useMacrocycleTorsions
                            false,    // useMacrocycle14config
                            0,        // timeout
                            nullptr,  // CPCI
                            nullptr   // callback
);

//! Parameters corresponding to Sereina Riniker's ETKDG approach - version 2
const EmbedParameters ETKDGv2(0,        // maxIterations
                              1,        // numThreads
                              -1,       // randomSeed
                              true,     // clearConfs
                              false,    // useRandomCoords
                              2.0,      // boxSizeMult
                              true,     // randNegEig
                              1,        // numZeroFail
                              nullptr,  // coordMap
                              1e-3,     // optimizerForceTol
                              false,    // ignoreSmoothingFailures
                              true,     // enforceChirality
                              true,     // useExpTorsionAnglePrefs
                              true,     // useBasicKnowledge
                              false,    // verbose
                              5.0,      // basinThresh
                              -1.0,     // pruneRmsThresh
                              true,     // onlyHeavyAtomsForRMS
                              2,        // ETversion
                              nullptr,  // boundsMat
                              true,     // embedFragmentsSeparately
                              false,    // useSmallRingTorsions
                              false,    // useMacrocycleTorsions
                              false,    // useMacrocycle14config
                              0,        // timeout
                              nullptr,  // CPCI
                              nullptr   // callback
);

//! Parameters corresponding improved ETKDG by Wang, Witek, Landrum and Riniker
//! (10.1021/acs.jcim.0c00025) - the macrocycle part
const EmbedParameters ETKDGv3(0,        // maxIterations
                              1,        // numThreads
                              -1,       // randomSeed
                              true,     // clearConfs
                              false,    // useRandomCoords
                              2.0,      // boxSizeMult
                              true,     // randNegEig
                              1,        // numZeroFail
                              nullptr,  // coordMap
                              1e-3,     // optimizerForceTol
                              false,    // ignoreSmoothingFailures
                              true,     // enforceChirality
                              true,     // useExpTorsionAnglePrefs
                              true,     // useBasicKnowledge
                              false,    // verbose
                              5.0,      // basinThresh
                              -1.0,     // pruneRmsThresh
                              true,     // onlyHeavyAtomsForRMS
                              2,        // ETversion
                              nullptr,  // boundsMat
                              true,     // embedFragmentsSeparately
                              false,    // useSmallRingTorsions
                              true,     // useMacrocycleTorsions
                              true,     // useMacrocycle14config
                              0,        // timeout
                              nullptr,  // CPCI
                              nullptr   // callback
);

//! Parameters corresponding improved ETKDG by Wang, Witek, Landrum and Riniker
//! (10.1021/acs.jcim.0c00025) - the small ring part
const EmbedParameters srETKDGv3(0,        // maxIterations
                                1,        // numThreads
                                -1,       // randomSeed
                                true,     // clearConfs
                                false,    // useRandomCoords
                                2.0,      // boxSizeMult
                                true,     // randNegEig
                                1,        // numZeroFail
                                nullptr,  // coordMap
                                1e-3,     // optimizerForceTol
                                false,    // ignoreSmoothingFailures
                                true,     // enforceChirality
                                true,     // useExpTorsionAnglePrefs
                                true,     // useBasicKnowledge
                                false,    // verbose
                                5.0,      // basinThresh
                                -1.0,     // pruneRmsThresh
                                true,     // onlyHeavyAtomsForRMS
                                2,        // ETversion
                                nullptr,  // boundsMat
                                true,     // embedFragmentsSeparately
                                true,     // useSmallRingTorsions
                                false,    // useMacrocycleTorsions
                                false,    // useMacrocycle14config
                                0,        // timeout
                                nullptr,  // CPCI
                                nullptr   // callback
);

namespace detail {
struct EmbedArgs {
  boost::dynamic_bitset<> *confsOk;
  bool fourD;
  INT_VECT *fragMapping;
  std::vector<std::unique_ptr<Conformer>> *confs;
  unsigned int fragIdx;
  DistGeom::BoundsMatPtr mmat;
  DistGeom::VECT_CHIRALSET const *chiralCenters;
  DistGeom::VECT_CHIRALSET const *tetrahedralCarbons;
  std::vector<std::tuple<unsigned int, unsigned int, unsigned int>> const
      *doubleBondEnds;
  std::vector<std::pair<std::vector<unsigned int>, int>> const
      *stereoDoubleBonds;
  ForceFields::CrystalFF::CrystalFFDetails *etkdgDetails;
};
}  // namespace detail

bool _volumeTest(const DistGeom::ChiralSetPtr &chiralSet,
                 const RDGeom::PointPtrVect &positions, bool verbose = false) {
  RDGeom::Point3D p0((*positions[chiralSet->d_idx0])[0],
                     (*positions[chiralSet->d_idx0])[1],
                     (*positions[chiralSet->d_idx0])[2]);
  RDGeom::Point3D p1((*positions[chiralSet->d_idx1])[0],
                     (*positions[chiralSet->d_idx1])[1],
                     (*positions[chiralSet->d_idx1])[2]);
  RDGeom::Point3D p2((*positions[chiralSet->d_idx2])[0],
                     (*positions[chiralSet->d_idx2])[1],
                     (*positions[chiralSet->d_idx2])[2]);
  RDGeom::Point3D p3((*positions[chiralSet->d_idx3])[0],
                     (*positions[chiralSet->d_idx3])[1],
                     (*positions[chiralSet->d_idx3])[2]);
  RDGeom::Point3D p4((*positions[chiralSet->d_idx4])[0],
                     (*positions[chiralSet->d_idx4])[1],
                     (*positions[chiralSet->d_idx4])[2]);

  // even if we are minimizing in higher dimension the chiral volume is
  // calculated using only the first 3 dimensions
  RDGeom::Point3D v1 = p0 - p1;
  v1.normalize();
  RDGeom::Point3D v2 = p0 - p2;
  v2.normalize();
  RDGeom::Point3D v3 = p0 - p3;
  v3.normalize();
  RDGeom::Point3D v4 = p0 - p4;
  v4.normalize();

  // be more tolerant of tethrahedral centers that are involved in multiple
  // small rings
  double volScale = 1;
  if (chiralSet->d_structureFlags &
      static_cast<std::uint64_t>(
          DistGeom::ChiralSetStructureFlags::IN_FUSED_SMALL_RINGS)) {
    volScale = 0.25;
  }

  RDGeom::Point3D crossp = v1.crossProduct(v2);
  double vol = crossp.dotProduct(v3);
  if (verbose) {
    std::cerr << "   " << fabs(vol) << std::endl;
  }
  if (fabs(vol) < volScale * MIN_TETRAHEDRAL_CHIRAL_VOL) {
    return false;
  }
  crossp = v1.crossProduct(v2);
  vol = crossp.dotProduct(v4);
  if (verbose) {
    std::cerr << "   " << fabs(vol) << std::endl;
  }
  if (fabs(vol) < volScale * MIN_TETRAHEDRAL_CHIRAL_VOL) {
    return false;
  }
  crossp = v1.crossProduct(v3);
  vol = crossp.dotProduct(v4);
  if (verbose) {
    std::cerr << "   " << fabs(vol) << std::endl;
  }
  if (fabs(vol) < volScale * MIN_TETRAHEDRAL_CHIRAL_VOL) {
    return false;
  }
  crossp = v2.crossProduct(v3);
  vol = crossp.dotProduct(v4);
  if (verbose) {
    std::cerr << "   " << fabs(vol) << std::endl;
  }
  return fabs(vol) >= volScale * MIN_TETRAHEDRAL_CHIRAL_VOL;
}

bool _sameSide(const RDGeom::Point3D &v1, const RDGeom::Point3D &v2,
               const RDGeom::Point3D &v3, const RDGeom::Point3D &v4,
               const RDGeom::Point3D &p0, double tol = 0.1) {
  RDGeom::Point3D normal = (v2 - v1).crossProduct(v3 - v1);
  double d1 = normal.dotProduct(v4 - v1);
  double d2 = normal.dotProduct(p0 - v1);
  // std::cerr << "     " << d1 << " - " << d2 << std::endl;
  if (fabs(d1) < tol || fabs(d2) < tol) {
    return false;
  }
  return !((d1 < 0.) ^ (d2 < 0.));
}
bool _centerInVolume(unsigned int idx0, unsigned int idx1, unsigned int idx2,
                     unsigned int idx3, unsigned int idx4,
                     const RDGeom::PointPtrVect &positions, double tol,
                     bool verbose = false) {
  RDGeom::Point3D p0((*positions[idx0])[0], (*positions[idx0])[1],
                     (*positions[idx0])[2]);
  RDGeom::Point3D p1((*positions[idx1])[0], (*positions[idx1])[1],
                     (*positions[idx1])[2]);
  RDGeom::Point3D p2((*positions[idx2])[0], (*positions[idx2])[1],
                     (*positions[idx2])[2]);
  RDGeom::Point3D p3((*positions[idx3])[0], (*positions[idx3])[1],
                     (*positions[idx3])[2]);
  RDGeom::Point3D p4((*positions[idx4])[0], (*positions[idx4])[1],
                     (*positions[idx4])[2]);
  // RDGeom::Point3D centroid = (p1+p2+p3+p4)/4.;
  if (verbose) {
    std::cerr << _sameSide(p1, p2, p3, p4, p0, tol) << " "
              << _sameSide(p2, p3, p4, p1, p0, tol) << " "
              << _sameSide(p3, p4, p1, p2, p0, tol) << " "
              << _sameSide(p4, p1, p2, p3, p0, tol) << std::endl;
  }
  bool res = _sameSide(p1, p2, p3, p4, p0, tol) &&
             _sameSide(p2, p3, p4, p1, p0, tol) &&
             _sameSide(p3, p4, p1, p2, p0, tol) &&
             _sameSide(p4, p1, p2, p3, p0, tol);
  return res;
}

bool _centerInVolume(const DistGeom::ChiralSetPtr &chiralSet,
                     const RDGeom::PointPtrVect &positions, double tol = 0.1,
                     bool verbose = false) {
  if (chiralSet->d_idx0 ==
      chiralSet->d_idx4) {  // this happens for three-coordinate centers
    return true;
  }
  return _centerInVolume(chiralSet->d_idx0, chiralSet->d_idx1,
                         chiralSet->d_idx2, chiralSet->d_idx3,
                         chiralSet->d_idx4, positions, tol, verbose);
}
bool _boundsFulfilled(const std::vector<int> &atoms,
                      const DistGeom::BoundsMatrix &mmat,
                      const RDGeom::PointPtrVect &positions) {
  // unsigned int N = mmat.numRows();
  // std::cerr << N << " " << atoms.size() << std::endl;
  // loop over all pair of atoms
  for (unsigned int i = 0; i < atoms.size() - 1; ++i) {
    for (unsigned int j = i + 1; j < atoms.size(); ++j) {
      int a1 = atoms[i];
      int a2 = atoms[j];
      RDGeom::Point3D p0((*positions[a1])[0], (*positions[a1])[1],
                         (*positions[a1])[2]);
      RDGeom::Point3D p1((*positions[a2])[0], (*positions[a2])[1],
                         (*positions[a2])[2]);
      double d2 = (p0 - p1).length();  // distance
      double lb = mmat.getLowerBound(a1, a2);
      double ub = mmat.getUpperBound(a1, a2);  // bounds
      if (((d2 < lb) && (fabs(d2 - lb) > 0.1 * ub)) ||
          ((d2 > ub) && (fabs(d2 - ub) > 0.1 * ub))) {
#ifdef DEBUG_EMBEDDING
        std::cerr << a1 << " " << a2 << ":" << d2 << " " << lb << " " << ub
                  << " " << fabs(d2 - lb) << " " << fabs(d2 - ub) << std::endl;
#endif
        return false;
      }
    }
  }
  return true;
}

namespace EmbeddingOps {
bool generateInitialCoords(RDGeom::PointPtrVect *positions,
                           const detail::EmbedArgs &eargs,
                           const EmbedParameters &embedParams,
                           RDNumeric::DoubleSymmMatrix &distMat,
                           RDKit::double_source_type *rng) {
  bool gotCoords = false;
  if (!embedParams.useRandomCoords) {
    double largestDistance =
        DistGeom::pickRandomDistMat(*eargs.mmat, distMat, *rng);
    RDUNUSED_PARAM(largestDistance);
    gotCoords = DistGeom::computeInitialCoords(distMat, *positions, *rng,
                                               embedParams.randNegEig,
                                               embedParams.numZeroFail);
  } else {
    double boxSize;
    if (embedParams.boxSizeMult > 0) {
      boxSize = 5. * embedParams.boxSizeMult;
    } else {
      boxSize = -1 * embedParams.boxSizeMult;
    }
    gotCoords = DistGeom::computeRandomCoords(*positions, boxSize, *rng);
    if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
      for (const auto &v : *embedParams.coordMap) {
        auto p = positions->at(v.first);
        for (unsigned int ci = 0; ci < v.second.dimension(); ++ci) {
          (*p)[ci] = v.second[ci];
        }
        // zero out any higher dimensional components:
        for (unsigned int ci = v.second.dimension(); ci < p->dimension();
             ++ci) {
          (*p)[ci] = 0.0;
        }
      }
    }
  }
  return gotCoords;
}
bool firstMinimization(RDGeom::PointPtrVect *positions,
                       const detail::EmbedArgs &eargs,
                       const EmbedParameters &embedParams) {
  bool gotCoords = true;
  boost::dynamic_bitset<> fixedPts(positions->size());
  if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
    for (const auto &v : *embedParams.coordMap) {
      fixedPts.set(v.first);
    }
  }
  std::unique_ptr<ForceFields::ForceField> field(DistGeom::constructForceField(
      *eargs.mmat, *positions, *eargs.chiralCenters, 1.0, 0.1, nullptr,
      embedParams.basinThresh, &fixedPts));
  if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
    for (const auto &v : *embedParams.coordMap) {
      field->fixedPoints().push_back(v.first);
    }
  }
  field->initialize();
  if (field->calcEnergy() > ERROR_TOL) {
    int needMore = 1;
    while (needMore) {
      needMore = field->minimize(400, embedParams.optimizerForceTol);
    }
  }
  std::vector<double> e_contribs;
  double local_e = field->calcEnergy(&e_contribs);

#ifdef DEBUG_EMBEDDING
  std::cerr << " Energy : " << local_e / positions->size() << " "
            << *(std::max_element(e_contribs.begin(), e_contribs.end()))
            << std::endl;
#endif

  // check that the energy is not too high (this is part of github #971)
  if (local_e / positions->size() >= MAX_MINIMIZED_E_PER_ATOM) {
#ifdef DEBUG_EMBEDDING
    std::cerr << " Energy fail: " << local_e / positions->size() << std::endl;
#endif
    gotCoords = false;
  }
  return gotCoords;
}

bool checkTetrahedralCenters(const RDGeom::PointPtrVect *positions,
                             const detail::EmbedArgs &eargs,
                             const EmbedParameters &) {
  // for each of the atoms in the "tetrahedralCarbons" list, make sure
  // that there is a minimum volume around them and that they are inside
  // that volume. (this is part of github #971)
  for (const auto &tetSet : *eargs.tetrahedralCarbons) {
    // it could happen that the centroid is outside the volume defined
    // by the other
    // four points. That is also a fail.
    if (!_volumeTest(tetSet, *positions) ||
        !_centerInVolume(tetSet, *positions, TETRAHEDRAL_CENTERINVOLUME_TOL)) {
#ifdef DEBUG_EMBEDDING
      std::cerr << " fail2! (" << tetSet->d_idx0 << ") iter: "  //<< iter
                << " vol: " << _volumeTest(tetSet, *positions, true)
                << " center: "
                << _centerInVolume(tetSet, *positions,
                                   TETRAHEDRAL_CENTERINVOLUME_TOL, true)
                << std::endl;
#endif
      return false;
    }
  }
  return true;
}
bool checkChiralCenters(const RDGeom::PointPtrVect *positions,
                        const detail::EmbedArgs &eargs,
                        const EmbedParameters &) {
  // check the chiral volume:
  for (const auto &chiralSet : *eargs.chiralCenters) {
    double vol = DistGeom::calcChiralVolume(
        chiralSet->d_idx1, chiralSet->d_idx2, chiralSet->d_idx3,
        chiralSet->d_idx4, *positions);
    double lb = chiralSet->getLowerVolumeBound();
    double ub = chiralSet->getUpperVolumeBound();
    if ((lb > 0 && vol < lb && (vol / lb < .8 || haveOppositeSign(vol, lb))) ||
        (ub < 0 && vol > ub && (vol / ub < .8 || haveOppositeSign(vol, ub)))) {
#ifdef DEBUG_EMBEDDING
      std::cerr << " fail! (" << chiralSet->d_idx0 << ") iter: "
                << " " << vol << " " << lb << "-" << ub << std::endl;
#endif
      return false;
    }
  }
  return true;
}
bool minimizeFourthDimension(RDGeom::PointPtrVect *positions,
                             const detail::EmbedArgs &eargs,
                             EmbedParameters &embedParams,
                             TimePoint *end_time) {
  // now redo the minimization if we have a chiral center
  // or have started from random coords. This
  // time removing the chiral constraints and
  // increasing the weight on the fourth dimension

  std::unique_ptr<ForceFields::ForceField> field2(DistGeom::constructForceField(
      *eargs.mmat, *positions, *eargs.chiralCenters, 0.2, 1.0, nullptr,
      embedParams.basinThresh));
  if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
    for (const auto &v : *embedParams.coordMap) {
      field2->fixedPoints().push_back(v.first);
    }
  }

  field2->initialize();
  // std::cerr << "FIELD2 E: " << field2->calcEnergy() << std::endl;
  if (field2->calcEnergy() > ERROR_TOL) {
    int needMore = 1;
    while (needMore) {
      if (end_time != nullptr && Clock::now() > *end_time) {
        return false;
      }
      needMore = field2->minimize(200, embedParams.optimizerForceTol);
    }
  }
  return true;
}
// the minimization using experimental torsion angle preferences
bool minimizeWithExpTorsions(RDGeom::PointPtrVect &positions,
                             const detail::EmbedArgs &eargs,
                             const EmbedParameters &embedParams) {
  PRECONDITION(eargs.etkdgDetails, "bogus etkdgDetails pointer");
  bool planar = true;

  // convert to 3D positions and create coordMap
  RDGeom::Point3DPtrVect positions3D;
  for (auto &position : positions) {
    positions3D.push_back(
        new RDGeom::Point3D((*position)[0], (*position)[1], (*position)[2]));
  }

  // create the force field
  std::unique_ptr<ForceFields::ForceField> field;
  if (embedParams.useBasicKnowledge) {  // ETKDG or KDG
    if (embedParams.CPCI != nullptr) {
      field.reset(DistGeom::construct3DForceField(
          *eargs.mmat, positions3D, *eargs.etkdgDetails, *embedParams.CPCI));
    } else {
      field.reset(DistGeom::construct3DForceField(*eargs.mmat, positions3D,
                                                  *eargs.etkdgDetails));
    }
  } else {  // plain ETDG
    field.reset(DistGeom::constructPlain3DForceField(*eargs.mmat, positions3D,
                                                     *eargs.etkdgDetails));
  }
  if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
    for (const auto &v : *embedParams.coordMap) {
      field->fixedPoints().push_back(v.first);
    }
  }

  // minimize!
  field->initialize();
  if (field->calcEnergy() > ERROR_TOL) {
    // while (needMore) {
    field->minimize(300, embedParams.optimizerForceTol);
    //      ++nPasses;
    //}
  }
  // std::cout << field->calcEnergy() << std::endl;

  // check for planarity if ETKDG or KDG
  if (embedParams.useBasicKnowledge) {
    // create a force field with only the impropers
    std::unique_ptr<ForceFields::ForceField> field2(
        DistGeom::construct3DImproperForceField(*eargs.mmat, positions3D,
                                                *eargs.etkdgDetails));
    if (embedParams.useRandomCoords && embedParams.coordMap != nullptr) {
      for (const auto &v : *embedParams.coordMap) {
        field2->fixedPoints().push_back(v.first);
      }
    }

    field2->initialize();
    // check if the energy is low enough
    double planarityTolerance = 0.7;
    if (field2->calcEnergy() >
        eargs.etkdgDetails->improperAtoms.size() * planarityTolerance) {
#ifdef DEBUG_EMBEDDING
      std::cerr << "   planar fail: " << field2->calcEnergy() << " "
                << eargs.etkdgDetails->improperAtoms.size() * planarityTolerance
                << std::endl;
#endif
      planar = false;
    }
  }

  // overwrite positions and delete the 3D ones
  for (unsigned int i = 0; i < positions3D.size(); ++i) {
    (*positions[i])[0] = (*positions3D[i])[0];
    (*positions[i])[1] = (*positions3D[i])[1];
    (*positions[i])[2] = (*positions3D[i])[2];
    delete positions3D[i];
  }

  return planar;
}

bool doubleBondGeometryChecks(const RDGeom::PointPtrVect &positions,
                              const detail::EmbedArgs &eargs, EmbedParameters &,
                              double linearTol = 1e-3) {
  if (eargs.doubleBondEnds) {
    for (const auto &itm : *eargs.doubleBondEnds) {
      const auto &a0 = *positions[std::get<0>(itm)];
      const auto &a1 = *positions[std::get<1>(itm)];
      const auto &a2 = *positions[std::get<2>(itm)];
      RDGeom::Point3D p0(a0[0], a0[1], a0[2]);
      RDGeom::Point3D p1(a1[0], a1[1], a1[2]);
      RDGeom::Point3D p2(a2[0], a2[1], a2[2]);

      // check for a linear arrangement

      auto v1 = p1 - p0;
      v1.normalize();
      auto v2 = p1 - p2;
      v2.normalize();
      // this is the arrangement:
      //     a0
      //       \       [intentionally left blank]
      //        a1 = a2
      // we want to be sure it's not actually:
      //   ao - a1 = a2
      if (v1.dotProduct(v2) + 1.0 < linearTol) {
        return false;
      }
    }
  }
  return true;
}

bool doubleBondStereoChecks(const RDGeom::PointPtrVect &positions,
                            const detail::EmbedArgs &eargs, EmbedParameters &) {
  for (const auto &itm : *eargs.stereoDoubleBonds) {
    // itm is a pair with [controlling_atoms], sign
    // where the sign tells us about cis/trans

    const auto &a0 = *positions[itm.first[0]];
    const auto &a1 = *positions[itm.first[1]];
    const auto &a2 = *positions[itm.first[2]];
    const auto &a3 = *positions[itm.first[3]];
    RDGeom::Point3D p0(a0[0], a0[1], a0[2]);
    RDGeom::Point3D p1(a1[0], a1[1], a1[2]);
    RDGeom::Point3D p2(a2[0], a2[1], a2[2]);
    RDGeom::Point3D p3(a3[0], a3[1], a3[2]);

    // check the dihedral and be super permissive. Here's the logic of the
    // check:
    // The second element of the dihedralBond item contains 1 for trans
    //   bonds and -1 for cis bonds.
    // The dihedral is between 0 and 180. subtracting 90 from that gives:
    //   positive values for dihedrals > 90 (closer to trans than cis)
    //   negative values for dihedrals < 90 (closer to cis than trans)
    // So multiplying the result of the subtracion from the second element of
    //   the dihedralBond element will give a positive value if the dihedral is
    //   closer to correct than it is to incorrect and a negative value
    //   otherwise.
    auto dihedral = RDGeom::computeDihedralAngle(p0, p1, p2, p3);
    if ((dihedral - M_PI_2) * itm.second < 0) {
      // closer to incorrect than correct... it's a bad geometry
      return false;
    }
  }
  return true;
}

bool finalChiralChecks(RDGeom::PointPtrVect *positions,
                       const detail::EmbedArgs &eargs,
                       EmbedParameters &embedParams) {
  // confirm chiral volumes
  if (!checkChiralCenters(positions, eargs, embedParams)) {
    if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
      std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
      embedParams.failures[EmbedFailureCauses::CHECK_CHIRAL_CENTERS2]++;
    }
    return false;
  }

  // "distance matrix" chirality test
  std::set<int> atoms;
  for (const auto &chiralSet : *eargs.chiralCenters) {
    if (chiralSet->d_idx0 != chiralSet->d_idx4) {
      atoms.insert(chiralSet->d_idx0);
      atoms.insert(chiralSet->d_idx1);
      atoms.insert(chiralSet->d_idx2);
      atoms.insert(chiralSet->d_idx3);
      atoms.insert(chiralSet->d_idx4);
    }
  }
  std::vector<int> atomsToCheck(atoms.begin(), atoms.end());
  if (atomsToCheck.size() > 0) {
    if (!_boundsFulfilled(atomsToCheck, *eargs.mmat, *positions)) {
#ifdef DEBUG_EMBEDDING
      std::cerr << " fail3a! (" << atomsToCheck[0] << ") iter: "  //<< iter
                << std::endl;
#endif
      if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
        std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
        embedParams.failures[EmbedFailureCauses::FINAL_CHIRAL_BOUNDS]++;
      }

      return false;
    }
  }

  // "center in volume" chirality test
  for (const auto &chiralSet : *eargs.chiralCenters) {
    // it could happen that the centroid is outside the volume defined
    // by the other four points. That is also a fail.
    if (!_centerInVolume(chiralSet, *positions)) {
#ifdef DEBUG_EMBEDDING
      std::cerr << " fail3b! (" << chiralSet->d_idx0 << ") iter: "  //<< iter
                << std::endl;
#endif
      if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
        std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
        embedParams.failures[EmbedFailureCauses::FINAL_CENTER_IN_VOLUME]++;
      }
      return false;
    }
  }
  // FIX: do we need some kind of sanity check here for the non-atomic
  // situations (e.g. atropisomers)?

  return true;
}

bool embedPoints(RDGeom::PointPtrVect *positions, detail::EmbedArgs eargs,
                 EmbedParameters &embedParams, int seed, TimePoint *end_time) {
  PRECONDITION(positions, "bogus positions");
  if (embedParams.maxIterations == 0) {
    embedParams.maxIterations = 10 * positions->size();
  }
  RDNumeric::DoubleSymmMatrix distMat(positions->size(), 0.0);

  // The basin threshold just gets us into trouble when we're using
  // random coordinates since it ends up ignoring 1-4 (and higher)
  // interactions. This causes us to get folded-up (and self-penetrating)
  // conformations for large flexible molecules
  if (embedParams.useRandomCoords) {
    embedParams.basinThresh = 1e8;
  }

  std::unique_ptr<RDKit::rng_type> generator;
  std::unique_ptr<RDKit::uniform_double> distrib;
  std::unique_ptr<RDKit::double_source_type> rngMgr;

  RDKit::double_source_type *rng = nullptr;
  CHECK_INVARIANT(seed >= -1,
                  "random seed must either be positive, zero, or negative one");
  if (seed > -1) {
    generator.reset(new RDKit::rng_type(42u));
    generator->seed(seed);
    distrib.reset(new RDKit::uniform_double(0.0, 1.0));
    rngMgr.reset(new RDKit::double_source_type(*generator, *distrib));
    rng = rngMgr.get();
  } else {
    rng = &RDKit::getDoubleRandomSource();
  }

  bool gotCoords = false;
  unsigned int iter = 0;
  while (!gotCoords && iter < embedParams.maxIterations) {
    if (end_time != nullptr && Clock::now() > *end_time) {
      break;
    }

    ++iter;
    if (embedParams.callback != nullptr) {
      embedParams.callback(iter);
    }
    if (ControlCHandler::getGotSignal()) {
      return false;
    }
    gotCoords = EmbeddingOps::generateInitialCoords(positions, eargs,
                                                    embedParams, distMat, rng);
    if (!gotCoords) {
      if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
        std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
        embedParams.failures[EmbedFailureCauses::INITIAL_COORDS]++;
      }
    } else {
      if (ControlCHandler::getGotSignal()) {
        return false;
      }
      gotCoords =
          EmbeddingOps::firstMinimization(positions, eargs, embedParams);
      if (!gotCoords) {
        if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
          std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
          embedParams.failures[EmbedFailureCauses::FIRST_MINIMIZATION]++;
        }
      } else {
        gotCoords = EmbeddingOps::checkTetrahedralCenters(positions, eargs,
                                                          embedParams);
        if (!gotCoords) {
          if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
            std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
            embedParams
                .failures[EmbedFailureCauses::CHECK_TETRAHEDRAL_CENTERS]++;
          }
        }
      }

      // Check if any of our chiral centers are badly out of whack.
      if (gotCoords && embedParams.enforceChirality &&
          eargs.chiralCenters->size() > 0) {
        gotCoords =
            EmbeddingOps::checkChiralCenters(positions, eargs, embedParams);
        if (!gotCoords) {
          if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
            std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
            embedParams.failures[EmbedFailureCauses::CHECK_CHIRAL_CENTERS]++;
          }
        }
      }
      // redo the minimization if we have a chiral center
      // or have started from random coords.
      if (gotCoords &&
          (eargs.chiralCenters->size() > 0 || embedParams.useRandomCoords)) {
        if (ControlCHandler::getGotSignal()) {
          return false;
        }
        gotCoords = EmbeddingOps::minimizeFourthDimension(
            positions, eargs, embedParams, end_time);
        if (!gotCoords) {
          if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
            std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
            if (end_time != nullptr && Clock::now() > *end_time) {
              embedParams.failures[EmbedFailureCauses::EXCEEDED_TIMEOUT]++;
            }
            embedParams
                .failures[EmbedFailureCauses::MINIMIZE_FOURTH_DIMENSION]++;
          }
        }
      }

      // (ET)(K)DG
      if (gotCoords && (embedParams.useExpTorsionAnglePrefs ||
                        embedParams.useBasicKnowledge)) {
        if (ControlCHandler::getGotSignal()) {
          return false;
        }
        gotCoords = EmbeddingOps::minimizeWithExpTorsions(*positions, eargs,
                                                          embedParams);
        if (!gotCoords) {
          if (embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
            std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
            embedParams.failures[EmbedFailureCauses::ETK_MINIMIZATION]++;
          }
        }
      }
      if (gotCoords) {
        gotCoords = EmbeddingOps::doubleBondGeometryChecks(*positions, eargs,
                                                           embedParams);
        if (!gotCoords && embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
          std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
          embedParams.failures[EmbedFailureCauses::LINEAR_DOUBLE_BOND]++;
        }
      }
      // test if stereo is correct
      if (embedParams.enforceChirality && gotCoords) {
        if (!eargs.chiralCenters->empty()) {
          // test if chirality is correct. Any additional test failures
          // will be tracked there if necessary.
          gotCoords =
              EmbeddingOps::finalChiralChecks(positions, eargs, embedParams);
        }
        if (gotCoords && !eargs.stereoDoubleBonds->empty()) {
          gotCoords = EmbeddingOps::doubleBondStereoChecks(*positions, eargs,
                                                           embedParams);
          if (!gotCoords && embedParams.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
            std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
            embedParams.failures[EmbedFailureCauses::BAD_DOUBLE_BOND_STEREO]++;
          }
        }
      }
    }

  }  // while

  return gotCoords;
}

void findDoubleBonds(
    const ROMol &mol,
    std::vector<std::tuple<unsigned int, unsigned int, unsigned int>>
        &doubleBondEnds,
    std::vector<std::pair<std::vector<unsigned int>, int>> &stereoDoubleBonds,
    const std::map<int, RDGeom::Point3D> *coordMap) {
  doubleBondEnds.clear();
  stereoDoubleBonds.clear();
  for (const auto bnd : mol.bonds()) {
    if (bnd->getBondType() == Bond::BondType::DOUBLE) {
      for (const auto atm : {bnd->getBeginAtom(), bnd->getEndAtom()}) {
        if (atm->getDegree() < 2) {
          continue;
        }
        auto oatm = bnd->getOtherAtom(atm);
        for (const auto nbr : mol.atomNeighbors(atm)) {
          if (nbr == oatm) {
            continue;
          }
          doubleBondEnds.emplace_back(nbr->getIdx(), atm->getIdx(),
                                      oatm->getIdx());
        }
      }
      // if there's stereo, handle that too:
      if (bnd->getStereo() > Bond::BondStereo::STEREOANY) {
        // only do this if the controlling atoms aren't in the coord map
        if (coordMap &&
            coordMap->find(bnd->getStereoAtoms()[0]) != coordMap->end() &&
            coordMap->find(bnd->getStereoAtoms()[1]) != coordMap->end()) {
          continue;
        }
        int sign = 1;
        if (bnd->getStereo() == Bond::BondStereo::STEREOCIS ||
            bnd->getStereo() == Bond::BondStereo::STEREOZ) {
          sign = -1;
        }
        std::pair<std::vector<unsigned int>, int> elem{
            {static_cast<unsigned>(bnd->getStereoAtoms()[0]),
             bnd->getBeginAtomIdx(), bnd->getEndAtomIdx(),
             static_cast<unsigned>(bnd->getStereoAtoms()[1])},
            sign};
        stereoDoubleBonds.push_back(elem);
      }
    }
  }
}
void findChiralSets(const ROMol &mol, DistGeom::VECT_CHIRALSET &chiralCenters,
                    DistGeom::VECT_CHIRALSET &tetrahedralCenters,
                    const std::map<int, RDGeom::Point3D> *coordMap) {
  for (const auto &atom : mol.atoms()) {
    if (atom->getAtomicNum() != 1) {  // skip hydrogens
      Atom::ChiralType chiralType = atom->getChiralTag();
      if ((chiralType == Atom::CHI_TETRAHEDRAL_CW ||
           chiralType == Atom::CHI_TETRAHEDRAL_CCW) ||
          ((atom->getAtomicNum() == 6 || atom->getAtomicNum() == 7) &&
           atom->getDegree() == 4)) {
        // make a chiral set from the neighbors
        INT_VECT nbrs;
        nbrs.reserve(4);
        // find the neighbors of this atom and enter them into the
        // nbr list
        ROMol::OEDGE_ITER beg, end;
        boost::tie(beg, end) = mol.getAtomBonds(atom);
        while (beg != end) {
          nbrs.push_back(mol[*beg]->getOtherAtom(atom)->getIdx());
          ++beg;
        }
        // if we have less than 4 heavy atoms as neighbors,
        // we need to include the chiral center into the mix
        // we should at least have 3 though
        CHECK_INVARIANT(nbrs.size() >= 3, "Cannot be a chiral center");

        double volLowerBound = 5.0;
        double volUpperBound = 100.0;

        if (nbrs.size() < 4) {
          // we get lower volumes if there are three neighbors,
          //  this was github #5883
          volLowerBound = 2.0;
          nbrs.insert(nbrs.end(), atom->getIdx());
        }

        // set a flag for tetrahedral centers that are in multiple small rings
        auto numSmallRings = 0u;
        constexpr int smallRingSize = 5;
        for (const auto sz : mol.getRingInfo()->atomRingSizes(atom->getIdx())) {
          if (sz < smallRingSize) {
            ++numSmallRings;
          }
        }
        std::uint64_t structureFlags = 0;
        if (numSmallRings > 1) {
          structureFlags = static_cast<std::uint64_t>(
              DistGeom::ChiralSetStructureFlags::IN_FUSED_SMALL_RINGS);
        }

        // now create a chiral set and set the upper and lower bound on the
        // volume
        if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
          // positive chiral volume
          auto *cset = new DistGeom::ChiralSet(atom->getIdx(), nbrs[0], nbrs[1],
                                               nbrs[2], nbrs[3], volLowerBound,
                                               volUpperBound, structureFlags);
          DistGeom::ChiralSetPtr cptr(cset);
          chiralCenters.push_back(cptr);
        } else if (chiralType == Atom::CHI_TETRAHEDRAL_CW) {
          auto *cset = new DistGeom::ChiralSet(atom->getIdx(), nbrs[0], nbrs[1],
                                               nbrs[2], nbrs[3], -volUpperBound,
                                               -volLowerBound, structureFlags);
          DistGeom::ChiralSetPtr cptr(cset);
          chiralCenters.push_back(cptr);
        } else {
          if ((coordMap && coordMap->find(atom->getIdx()) != coordMap->end()) ||
              (mol.getRingInfo()->isInitialized() &&
               (mol.getRingInfo()->numAtomRings(atom->getIdx()) < 2 ||
                mol.getRingInfo()->isAtomInRingOfSize(atom->getIdx(), 3)))) {
            // we only want to these tests for ring atoms that are not part of
            // the coordMap
            // there's no sense doing 3-rings because those are a nightmare
          } else {
            auto *cset = new DistGeom::ChiralSet(atom->getIdx(), nbrs[0],
                                                 nbrs[1], nbrs[2], nbrs[3], 0.0,
                                                 0.0, structureFlags);
            DistGeom::ChiralSetPtr cptr(cset);
            tetrahedralCenters.push_back(cptr);
          }
        }
      }  // if block -chirality check
    }  // if block - heavy atom check
  }  // for loop over atoms

  // now do atropisomers
  for (const auto &bond : mol.bonds()) {
    if (bond->getStereo() != Bond::BondStereo::STEREOATROPCCW &&
        bond->getStereo() != Bond::BondStereo::STEREOATROPCW) {
      continue;
    }
    Atropisomers::AtropAtomAndBondVec atomsAndBonds[2];
    Atropisomers::getAtropisomerAtomsAndBonds(bond, atomsAndBonds, mol);
    // make a chiral set for the atropisomeric bond
    // we start with only managing cases where there are two exo-substituents on
    // at least one side
    if (atomsAndBonds[0].second.size() != 2 &&
        atomsAndBonds[1].second.size() != 2) {
      BOOST_LOG(rdWarningLog)
          << "Atropisomer bond stereochemistry not used for bond "
          << bond->getIdx()
          << ", which does not have two exo substituents on at least one side."
          << std::endl;
      continue;
    }
    int idx0 = atomsAndBonds[0].first->getIdx();
    int idx1 = atomsAndBonds[1].first->getIdx();

    int nbr1 = atomsAndBonds[0].second[0]->getOtherAtomIdx(idx0);
    int nbr2 = 0;
    int nbr3 = 0;
    int nbr4 = 0;
    if (atomsAndBonds[0].second.size() == 2) {
      nbr2 = atomsAndBonds[0].second[1]->getOtherAtomIdx(idx0);
      nbr3 = atomsAndBonds[1].second[0]->getOtherAtomIdx(idx1);
      if (atomsAndBonds[1].second.size() == 2) {
        nbr4 = atomsAndBonds[1].second[1]->getOtherAtomIdx(idx1);
      } else {
        nbr4 = idx0;
      }
    } else {
      nbr2 = atomsAndBonds[1].second[0]->getOtherAtomIdx(idx1);
      nbr3 = atomsAndBonds[1].second[1]->getOtherAtomIdx(idx1);
      nbr4 = idx0;
    }
    INT_VECT nbrs = {nbr1, nbr2, nbr3, nbr4};

    // FIX: these numbers are empirical and should be revisited
    double volLowerBound = 1.0;
    double volUpperBound = 100.0;
    if (bond->getStereo() == Bond::BondStereo::STEREOATROPCCW) {
      std::swap(volLowerBound, volUpperBound);
      volLowerBound *= -1;
      volUpperBound *= -1;
    }
    auto *cset = new DistGeom::ChiralSet(idx0, nbrs[0], nbrs[1], nbrs[2],
                                         nbrs[3], volLowerBound, volUpperBound);
    DistGeom::ChiralSetPtr cptr(cset);
    chiralCenters.push_back(cptr);
  }
}

void adjustBoundsMatFromCoordMap(
    DistGeom::BoundsMatPtr mmat, unsigned int,
    const std::map<int, RDGeom::Point3D> *coordMap) {
  for (auto iIt = coordMap->begin(); iIt != coordMap->end(); ++iIt) {
    unsigned int iIdx = iIt->first;
    const RDGeom::Point3D &iPoint = iIt->second;
    auto jIt = iIt;
    while (++jIt != coordMap->end()) {
      unsigned int jIdx = jIt->first;
      const RDGeom::Point3D &jPoint = jIt->second;
      double dist = (iPoint - jPoint).length();
      mmat->setUpperBound(iIdx, jIdx, dist);
      mmat->setLowerBound(iIdx, jIdx, dist);
    }
  }
}

void initETKDG(ROMol *mol, const EmbedParameters &params,
               ForceFields::CrystalFF::CrystalFFDetails &etkdgDetails) {
  PRECONDITION(mol, "bad molecule");
  unsigned int nAtoms = mol->getNumAtoms();
  if (params.useExpTorsionAnglePrefs || params.useBasicKnowledge) {
    ForceFields::CrystalFF::getExperimentalTorsions(
        *mol, etkdgDetails, params.useExpTorsionAnglePrefs,
        params.useSmallRingTorsions, params.useMacrocycleTorsions,
        params.useBasicKnowledge, params.ETversion, params.verbose);
    etkdgDetails.atomNums.resize(nAtoms);
    for (unsigned int i = 0; i < nAtoms; ++i) {
      etkdgDetails.atomNums[i] = mol->getAtomWithIdx(i)->getAtomicNum();
    }
  }
  etkdgDetails.boundsMatForceScaling = params.boundsMatForceScaling;
}

bool setupInitialBoundsMatrix(
    ROMol *mol, DistGeom::BoundsMatPtr mmat,
    const std::map<int, RDGeom::Point3D> *coordMap,
    const EmbedParameters &params,
    ForceFields::CrystalFF::CrystalFFDetails &etkdgDetails) {
  PRECONDITION(mol, "bad molecule");
  unsigned int nAtoms = mol->getNumAtoms();
  if (params.useExpTorsionAnglePrefs || params.useBasicKnowledge) {
    setTopolBounds(*mol, mmat, etkdgDetails.bonds, etkdgDetails.angles, true,
                   false, params.useMacrocycle14config,
                   params.forceTransAmides);
  } else {
    setTopolBounds(*mol, mmat, true, false, params.useMacrocycle14config,
                   params.forceTransAmides);
  }
  double tol = 0.0;
  if (coordMap) {
    adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
    tol = 0.05;
  }
  if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
    // ok this bound matrix failed to triangle smooth - re-compute the
    // bounds matrix without 15 bounds and with VDW scaling
    initBoundsMat(mmat);
    setTopolBounds(*mol, mmat, false, true, params.useMacrocycle14config,
                   params.forceTransAmides);

    if (coordMap) {
      adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
    }

    // try triangle smoothing again
    if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
      // ok, we're not going to be able to smooth this,
      if (params.ignoreSmoothingFailures) {
        // proceed anyway with the more relaxed bounds matrix
        initBoundsMat(mmat);
        setTopolBounds(*mol, mmat, false, true, params.useMacrocycle14config,
                       params.forceTransAmides);

        if (coordMap) {
          adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
        }
      } else {
        BOOST_LOG(rdWarningLog)
            << "Could not triangle bounds smooth molecule." << std::endl;
        return false;
      }
    }
  }
  return true;
}
}  // namespace EmbeddingOps

void _fillAtomPositions(RDGeom::Point3DConstPtrVect &pts, const Conformer &conf,
                        const ROMol &, const std::vector<unsigned int> &match) {
  PRECONDITION(pts.size() == match.size(), "bad pts size");
  for (unsigned int i = 0; i < match.size(); i++) {
    pts[i] = &conf.getAtomPos(match[i]);
  }
}

bool _isConfFarFromRest(
    const ROMol &mol, const Conformer &conf, double threshold,
    const std::vector<std::vector<unsigned int>> &selfMatches) {
  // NOTE: it is tempting to use some triangle inequality to prune
  // conformations here but some basic testing has shown very
  // little advantage and given that the time for pruning fades in
  // comparison to embedding - we will use a simple for loop below
  // over all conformation until we find a match
  RDGeom::Point3DConstPtrVect refPoints(selfMatches[0].size());
  RDGeom::Point3DConstPtrVect prbPoints(selfMatches[0].size());
  _fillAtomPositions(refPoints, conf, mol, selfMatches[0]);

  double ssrThres = selfMatches[0].size() * threshold * threshold;
  for (const auto &match : selfMatches) {
    for (auto confi = mol.beginConformers(); confi != mol.endConformers();
         ++confi) {
      _fillAtomPositions(prbPoints, *(*confi), mol, match);
      RDGeom::Transform3D trans;
      auto ssr =
          RDNumeric::Alignments::AlignPoints(refPoints, prbPoints, trans);
      if (ssr < ssrThres) {
        return false;
      }
    }
  }
  return true;
}

namespace detail {

template <class T>
bool multiplication_overflows_(T a, T b) {
  // a * b > c if and only if a > c / b
  if (a == 0 || b == 0) {
    return false;
  }
  return a > std::numeric_limits<T>::max() / b;
}

void embedHelper_(int threadId, int numThreads, EmbedArgs *eargs,
                  EmbedParameters *params, TimePoint *end_time) {
  PRECONDITION(eargs, "bogus eargs");
  PRECONDITION(params, "bogus params");
  unsigned int nAtoms = eargs->mmat->numRows();
  RDGeom::PointPtrVect positions(nAtoms);
  // we might thrown an exception in a callback
  // in order to avoid leaking the points we're working with
  // allocate them with unique_ptrs and then work with the naked
  // pointers from those
  std::vector<std::unique_ptr<RDGeom::Point>> positionsStore;
  positionsStore.reserve(nAtoms);
  for (unsigned int i = 0; i < nAtoms; ++i) {
    if (eargs->fourD) {
      positionsStore.emplace_back(new RDGeom::PointND(4));
    } else {
      positionsStore.emplace_back(new RDGeom::Point3D());
    }
    positions[i] = positionsStore[i].get();
  }
  for (size_t ci = 0; ci < eargs->confs->size(); ci++) {
    if (ControlCHandler::getGotSignal() ||
        (end_time != nullptr && Clock::now() > *end_time)) {
      return;
    }

    if (rdcast<int>(ci % numThreads) != threadId) {
      continue;
    }
    if (!(*eargs->confsOk)[ci]) {
      // we call this function for each fragment in a molecule,
      // if one of the fragments has already failed, there's no
      // sense in embedding this one
      continue;
    }

    CHECK_INVARIANT(
        params->randomSeed >= -1,
        "random seed must either be positive, zero, or negative one");
    int new_seed = params->randomSeed;
    if (new_seed > -1) {
      if (params->enableSequentialRandomSeeds) {
        new_seed += ci + 1;
      } else {
        if (!multiplication_overflows_(rdcast<int>(ci + 1),
                                       params->randomSeed)) {
          // old method of computing a new seed
          new_seed = (ci + 1) * params->randomSeed;
        } else {
          // If the above simple multiplication will overflow, use a
          // cheap and easy way to hash the conformer index and seed
          // together: for N'ary numerical system, where N is the
          // maximum possible value of the pair of numbers. The
          // following will generate unique integers:
          // hash(a, b) = a + b * N
          auto big_seed = rdcast<size_t>(params->randomSeed);
          size_t max_val = std::max(ci + 1, big_seed);
          size_t big_num = big_seed + max_val * (ci + 1);
          // only grab the first 31 bits xor'd with the next 31 bits to
          // make sure its positive, careful, the 'ULL' is important
          // here, 0x7fffffff is the 'int' type because of C default
          // number semantics and that we definitely don't want!
          const size_t positive_int_mask = 0x7fffffffULL;
          size_t folded_num =
              (big_num & positive_int_mask) ^ (big_num >> 31ULL);
          new_seed = rdcast<int>(folded_num & positive_int_mask);
        }
      }
    }
    CHECK_INVARIANT(new_seed >= -1,
                    "Something went wrong calculating a new seed");
    bool gotCoords = EmbeddingOps::embedPoints(&positions, *eargs, *params,
                                               new_seed, end_time);

    // copy the coordinates into the correct conformer
    if (gotCoords) {
      auto &conf = (*eargs->confs)[ci];
      unsigned int fragAtomIdx = 0;
      for (unsigned int i = 0; i < conf->getNumAtoms(); ++i) {
        if (!eargs->fragMapping ||
            (*eargs->fragMapping)[i] == static_cast<int>(eargs->fragIdx)) {
          conf->setAtomPos(i, RDGeom::Point3D((*positions[fragAtomIdx])[0],
                                              (*positions[fragAtomIdx])[1],
                                              (*positions[fragAtomIdx])[2]));
          ++fragAtomIdx;
        }
      }
    } else {
      (*eargs->confsOk)[ci] = 0;
    }
  }
}

std::vector<std::vector<unsigned int>> getMolSelfMatches(
    const ROMol &mol, const EmbedParameters &params) {
  std::vector<std::vector<unsigned int>> res;
  if (params.pruneRmsThresh && params.useSymmetryForPruning) {
    RWMol tmol(mol);
    MolOps::RemoveHsParameters ps;
    bool sanitize = false;
    MolOps::removeHs(tmol, ps, sanitize);

    std::unique_ptr<RWMol> prbMolSymm;
    if (params.symmetrizeConjugatedTerminalGroupsForPruning) {
      prbMolSymm.reset(new RWMol(tmol));
      MolAlign::details::symmetrizeTerminalAtoms(*prbMolSymm);
    }
    const auto &prbMolForMatch = prbMolSymm ? *prbMolSymm : tmol;

    SubstructMatchParameters sssps;
    sssps.maxMatches = 1;
    // provides the atom indices in the molecule corresponding
    // to the indices in the H-stripped version
    auto strippedMatch = SubstructMatch(mol, prbMolForMatch, sssps);
    CHECK_INVARIANT(strippedMatch.size() == 1, "expected match not found");

    sssps.maxMatches = 1000;
    sssps.uniquify = false;
    auto heavyAtomMatches = SubstructMatch(tmol, prbMolForMatch, sssps);
    for (const auto &match : heavyAtomMatches) {
      res.emplace_back(0);
      res.back().reserve(match.size());
      for (auto midx : match) {
        res.back().push_back(strippedMatch[0][midx.second].second);
      }
    }
  } else if (params.onlyHeavyAtomsForRMS) {
    res.emplace_back(0);
    for (const auto &at : mol.atoms()) {
      if (at->getAtomicNum() != 1) {
        res.back().push_back(at->getIdx());
      }
    }
  } else {
    res.emplace_back(0);
    res.back().reserve(mol.getNumAtoms());
    for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
      res.back().push_back(i);
    }
  }
  return res;
}

}  // end of namespace detail

void EmbedMultipleConfs(ROMol &mol, INT_VECT &res, unsigned int numConfs,
                        EmbedParameters &params) {
  TimePoint *end_time = nullptr;
  TimePoint end_time_storage;
  if (params.timeout > 0) {
    end_time_storage = Clock::now() + std::chrono::seconds(params.timeout);
    end_time = &end_time_storage;
  }

  if (params.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
    std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
    params.failures.resize(EmbedFailureCauses::END_OF_ENUM);
    std::fill(params.failures.begin(), params.failures.end(), 0);
  }
  if (!mol.getNumAtoms()) {
    throw ValueErrorException("molecule has no atoms");
  }
  if (params.ETversion < 1 || params.ETversion > 2) {
    throw ValueErrorException(
        "Only version 1 and 2 of the experimental "
        "torsion-angle preferences (ETversion) supported");
  }

  if (MolOps::needsHs(mol)) {
    BOOST_LOG(rdWarningLog)
        << "Molecule does not have explicit Hs. Consider calling AddHs()"
        << std::endl;
  }

  // initialize the conformers we're going to be creating:
  if (params.clearConfs) {
    res.clear();
    mol.clearConformers();
  }
  std::vector<std::unique_ptr<Conformer>> confs;
  confs.reserve(numConfs);
  for (unsigned int i = 0; i < numConfs; ++i) {
    confs.emplace_back(new Conformer(mol.getNumAtoms()));
  }

  boost::dynamic_bitset<> confsOk(numConfs);
  confsOk.set();

  INT_VECT fragMapping;
  std::vector<ROMOL_SPTR> molFrags;
  if (params.embedFragmentsSeparately) {
    molFrags = MolOps::getMolFrags(mol, true, &fragMapping);
  } else {
    molFrags.push_back(ROMOL_SPTR(new ROMol(mol)));
    fragMapping.resize(mol.getNumAtoms());
    std::fill(fragMapping.begin(), fragMapping.end(), 0);
  }
  const std::map<int, RDGeom::Point3D> *coordMap = params.coordMap;
  if (molFrags.size() > 1 && coordMap) {
    BOOST_LOG(rdWarningLog)
        << "Constrained conformer generation (via the coordMap argument) "
           "does not work with molecules that have multiple fragments."
        << std::endl;
    coordMap = nullptr;
  }
  boost::dynamic_bitset<> constrainedAtoms(mol.getNumAtoms());
  if (coordMap) {
    for (const auto &entry : *coordMap) {
      constrainedAtoms.set(entry.first);
    }
  }

  if (molFrags.size() > 1 && params.boundsMat != nullptr) {
    BOOST_LOG(rdWarningLog)
        << "Conformer generation using a user-provided boundsMat "
           "does not work with molecules that have multiple fragments. The "
           "boundsMat will be ignored."
        << std::endl;
    coordMap = nullptr;  // FIXME not directly related to ETKDG, but here I
                         // think it should be params.boundsMat = nullptr
  }

  // we will generate conformations for each fragment in the molecule
  // separately, so loop over them:
  for (unsigned int fragIdx = 0; fragIdx < molFrags.size(); ++fragIdx) {
    ROMOL_SPTR piece = molFrags[fragIdx];
    unsigned int nAtoms = piece->getNumAtoms();

    ForceFields::CrystalFF::CrystalFFDetails etkdgDetails;
    etkdgDetails.constrainedAtoms = constrainedAtoms;
    EmbeddingOps::initETKDG(piece.get(), params, etkdgDetails);

    DistGeom::BoundsMatPtr mmat;
    if (params.boundsMat == nullptr || molFrags.size() > 1) {
      // The user didn't provide one, so create and initialize the distance
      // bounds matrix
      mmat.reset(new DistGeom::BoundsMatrix(nAtoms));
      initBoundsMat(mmat);
      if (!EmbeddingOps::setupInitialBoundsMatrix(piece.get(), mmat, coordMap,
                                                  params, etkdgDetails)) {
        // return if we couldn't setup the bounds matrix
        // possible causes include a triangle smoothing failure
        return;
      }
    } else {
      // just use what they gave us
      // first make sure it's the right size though:
      if (params.boundsMat->numRows() != nAtoms) {
        throw ValueErrorException(
            "size of boundsMat provided does not match the number of atoms in "
            "the molecule.");
      }
      collectBondsAndAngles((*piece.get()), etkdgDetails.bonds,
                            etkdgDetails.angles);
      mmat.reset(new DistGeom::BoundsMatrix(*params.boundsMat));
    }

    // find all the chiral centers in the molecule
    MolOps::assignStereochemistry(*piece);
    DistGeom::VECT_CHIRALSET chiralCenters;
    DistGeom::VECT_CHIRALSET tetrahedralCarbons;
    EmbeddingOps::findChiralSets(*piece, chiralCenters, tetrahedralCarbons,
                                 coordMap);

    // find double bonds
    std::vector<std::tuple<unsigned int, unsigned int, unsigned int>>
        doubleBondEnds;
    std::vector<std::pair<std::vector<unsigned int>, int>> stereoDoubleBonds;
    EmbeddingOps::findDoubleBonds(*piece, doubleBondEnds, stereoDoubleBonds,
                                  coordMap);

    // if we have any chiral centers or are using random coordinates, we
    // will first embed the molecule in four dimensions, otherwise we will
    // use 3D
    bool fourD = false;
    if (params.useRandomCoords || chiralCenters.size() > 0) {
      fourD = true;
    }
    int numThreads = getNumThreadsToUse(params.numThreads);

    ControlCHandler::reset();

    // do the embedding, using multiple threads if requested
    detail::EmbedArgs eargs = {&confsOk,        fourD,
                               &fragMapping,    &confs,
                               fragIdx,         mmat,
                               &chiralCenters,  &tetrahedralCarbons,
                               &doubleBondEnds, &stereoDoubleBonds,
                               &etkdgDetails};
    if (numThreads == 1) {
      detail::embedHelper_(0, 1, &eargs, &params, end_time);
    }
#ifdef RDK_BUILD_THREADSAFE_SSS
    else {
      std::vector<std::future<void>> tg;
      for (int tid = 0; tid < numThreads; ++tid) {
        tg.emplace_back(std::async(std::launch::async, detail::embedHelper_,
                                   tid, numThreads, &eargs, &params, end_time));
      }
      for (auto &fut : tg) {
        fut.get();
      }
    }
#endif
    if (end_time != nullptr && Clock::now() > *end_time) {
      if (params.trackFailures) {
#ifdef RDK_BUILD_THREADSAFE_SSS
        std::lock_guard<std::mutex> lock(GetFailMutex());
#endif
        params.failures[EmbedFailureCauses::EXCEEDED_TIMEOUT]++;
      }
      res.push_back(-1);
      return;
    }
    if (ControlCHandler::getGotSignal()) {
      BOOST_LOG(rdWarningLog) << INTERRUPT_MESSAGE << std::endl;
      return;
    }
  }
  std::vector<std::vector<unsigned int>> selfMatches;
  if (params.pruneRmsThresh > 0.0) {
    selfMatches = detail::getMolSelfMatches(mol, params);
  }

  for (unsigned int ci = 0; ci < confs.size(); ++ci) {
    auto &conf = confs[ci];
    if (confsOk[ci]) {
      // check if we are pruning away conformations and
      // a close-by conformation has already been chosen :
      if (params.pruneRmsThresh <= 0.0 ||
          _isConfFarFromRest(mol, *conf, params.pruneRmsThresh, selfMatches)) {
        int confId = (int)mol.addConformer(conf.release(), true);
        res.push_back(confId);
      }
    }
  }
}

}  // end of namespace DGeomHelpers
}  // end of namespace RDKit