File: MaximumCommonSubgraph.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (1449 lines) | stat: -rw-r--r-- 53,793 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
//
//  Copyright (C) 2014 Novartis Institutes for BioMedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <list>
#include <algorithm>
#include <cmath>
#include "../QueryAtom.h"
#include "../QueryBond.h"
#include "../SmilesParse/SmilesWrite.h"
#include "../SmilesParse/SmartsWrite.h"
#include "../SmilesParse/SmilesParse.h"
#include "../Substruct/SubstructMatch.h"
#include "SubstructMatchCustom.h"
#include "MaximumCommonSubgraph.h"
#include <RDGeneral/BoostStartInclude.h>
#include <boost/graph/adjacency_list.hpp>
#include <boost/dynamic_bitset.hpp>
#include <RDGeneral/BoostEndInclude.h>

namespace RDKit {
namespace FMCS {

struct LabelDefinition {
  unsigned int ItemIndex;  // item with this label value
  unsigned int Value;
  LabelDefinition() : ItemIndex(NotSet), Value(NotSet) {}
  LabelDefinition(unsigned int i, unsigned int value)
      : ItemIndex(i), Value(value) {}
};

MaximumCommonSubgraph::MaximumCommonSubgraph(const MCSParameters *params) {
  Parameters = detail::MCSParametersInternal(params);
  if (!Parameters.ProgressCallback) {
    Parameters.ProgressCallback = MCSProgressCallbackTimeout;
    Parameters.ProgressCallbackUserData = &To;
  }
  if (Parameters.AtomCompareParameters.MatchChiralTag) {
    Parameters.BondCompareParameters.MatchStereo = true;
  }
  QueryMoleculeMatchedBonds = 0;
  QueryMoleculeMatchedAtoms = 0;
  QueryMoleculeSingleMatchedAtom = nullptr;
  To = nanoClock();
}

static bool molPtr_NumBondLess(
    const ROMol *l,
    const ROMol *r) {  // need for sorting the source molecules by size
  return l->getNumBonds() < r->getNumBonds();
}

void MaximumCommonSubgraph::init(size_t startIdx) {
  QueryMolecule = Molecules.at(startIdx);

  Targets.clear();
#ifdef FAST_SUBSTRUCT_CACHE
  QueryAtomLabels.clear();
  QueryBondLabels.clear();
  QueryAtomMatchTable.clear();
  QueryBondMatchTable.clear();
#endif
#ifdef DUP_SUBSTRUCT_CACHE
  DuplicateCache.clear();
#endif

  size_t nq = 0;
#ifdef FAST_SUBSTRUCT_CACHE
  // fill out match tables
  nq = QueryMolecule->getNumAtoms();
  QueryAtomMatchTable.resize(nq, nq);
  for (size_t aj = 0; aj < nq; aj++) {
    for (size_t ai = 0; ai < nq; ai++) {
      QueryAtomMatchTable.set(
          ai, aj,
          Parameters.AtomTyper(Parameters.AtomCompareParameters, *QueryMolecule,
                               ai, *QueryMolecule, aj,
                               Parameters.CompareFunctionsUserData));
    }
  }
  nq = QueryMolecule->getNumBonds();
  QueryBondMatchTable.resize(nq, nq);
  for (size_t aj = 0; aj < nq; aj++) {
    for (size_t ai = 0; ai < nq; ai++) {
      QueryBondMatchTable.set(
          ai, aj,
          Parameters.BondTyper(Parameters.BondCompareParameters, *QueryMolecule,
                               ai, *QueryMolecule, aj,
                               Parameters.CompareFunctionsUserData));
    }
  }
  // Compute label values based on current functor and parameters for code
  // Morgan correct computation.
  unsigned int currentLabelValue = 1;
  std::vector<LabelDefinition> labels;
  nq = QueryMolecule->getNumAtoms();
  QueryAtomLabels.resize(nq, NotSet);
  for (size_t ai = 0; ai < nq; ++ai) {
    if (MCSAtomCompareAny ==
        Parameters.AtomTyper) {  // predefined functor without atom compare
                                 // parameters
      QueryAtomLabels[ai] = 1;
    } else {
      const auto atom = QueryMolecule->getAtomWithIdx(ai);
      if (MCSAtomCompareElements ==
          Parameters.AtomTyper) {  // predefined functor without atom compare
                                   // parameters
        QueryAtomLabels[ai] = atom->getAtomicNum() |
                              (Parameters.AtomCompareParameters.MatchValences
                                   ? (atom->getTotalValence() >> 8)
                                   : 0);
      } else if (MCSAtomCompareIsotopes ==
                 Parameters.AtomTyper) {  // predefined functor without atom
                                          // compare parameters
        QueryAtomLabels[ai] = atom->getAtomicNum() | (atom->getIsotope() >> 8) |
                              (Parameters.AtomCompareParameters.MatchValences
                                   ? (atom->getTotalValence() >> 16)
                                   : 0);
      } else {  // custom user defined functor
        QueryAtomLabels[ai] = NotSet;
        for (auto &label : labels) {
          if (Parameters.AtomTyper(
                  Parameters.AtomCompareParameters, *QueryMolecule,
                  label.ItemIndex, *QueryMolecule, ai,
                  Parameters.CompareFunctionsUserData)) {  // equal items
            QueryAtomLabels[ai] = label.Value;
            break;
          }
        }
        if (NotSet ==
            QueryAtomLabels.at(ai)) {  // not found -> create new label
          QueryAtomLabels[ai] = ++currentLabelValue;
          labels.emplace_back(ai, currentLabelValue);
        }
      }
    }
  }
  labels.clear();
  currentLabelValue = 1;
  nq = QueryMolecule->getNumBonds();
  QueryBondLabels.resize(nq, NotSet);
  for (size_t aj = 0; aj < nq; ++aj) {
    const Bond *bond = QueryMolecule->getBondWithIdx(aj);
    unsigned ring = 0;
    if (!Parameters.CompareFunctionsUserData &&
        (Parameters.BondCompareParameters.CompleteRingsOnly ||
         Parameters.BondCompareParameters.RingMatchesRingOnly)) {
      // is bond in ring
      ring = QueryMolecule->getRingInfo()->numBondRings(aj) ? 0 : 1;
    }
    if (MCSBondCompareAny == Parameters.BondTyper) {
      QueryBondLabels[aj] = 1 | (ring >> 8);
    } else if (MCSBondCompareOrderExact == Parameters.BondTyper) {
      QueryBondLabels[aj] = (bond->getBondType() + 1) | (ring >> 8);
    } else if (MCSBondCompareOrder == Parameters.BondTyper) {
      auto order = bond->getBondType();
      if (Bond::AROMATIC == order ||
          Bond::ONEANDAHALF == order) {  // ignore Aromatization
        order = Bond::SINGLE;
      } else if (Bond::TWOANDAHALF == order) {
        order = Bond::DOUBLE;
      } else if (Bond::THREEANDAHALF == order) {
        order = Bond::TRIPLE;
      } else if (Bond::FOURANDAHALF == order) {
        order = Bond::QUADRUPLE;
      } else if (Bond::FIVEANDAHALF == order) {
        order = Bond::QUINTUPLE;
      }
      QueryBondLabels[aj] = (order + 1) | (ring >> 8);
    } else {  // custom user defined functor
      QueryBondLabels[aj] = NotSet;
      for (const auto &label : labels) {
        if (Parameters.BondTyper(
                Parameters.BondCompareParameters, *QueryMolecule,
                label.ItemIndex, *QueryMolecule, aj,
                Parameters
                    .CompareFunctionsUserData)) {  // equal bonds + ring ...
          QueryBondLabels[aj] = label.Value;
          break;
        }
      }
      if (NotSet == QueryBondLabels.at(aj)) {  // not found -> create new label
        QueryBondLabels[aj] = ++currentLabelValue;
        labels.emplace_back(aj, currentLabelValue);
      }
    }
  }
#endif
  Targets.resize(Molecules.size() - 1);
  size_t i = 0;
  for (auto it = Molecules.begin() + 1; it != Molecules.end(); it++, i++) {
    Targets[i].Molecule = *it;
    // build Target Topology ADD ATOMs
    for (const auto &a : Targets.at(i).Molecule->atoms()) {
      Targets[i].Topology.addAtom(a->getIdx());
    }
    // build Target Topology ADD BONDs
    for (const auto &b : Targets.at(i).Molecule->bonds()) {
      auto ii = b->getBeginAtomIdx();
      auto jj = b->getEndAtomIdx();
      Targets[i].Topology.addBond(b->getIdx(), ii, jj);
    }

    // fill out match tables
    size_t nq = QueryMolecule->getNumAtoms();
    size_t nt = Targets.at(i).Molecule->getNumAtoms();
    Targets[i].AtomMatchTable.resize(nq, nt);

    for (size_t aj = 0; aj < nt; aj++) {
      for (size_t ai = 0; ai < nq; ai++) {
        Targets[i].AtomMatchTable.set(
            ai, aj,
            Parameters.AtomTyper(Parameters.AtomCompareParameters,
                                 *QueryMolecule, ai, *Targets.at(i).Molecule,
                                 aj, Parameters.CompareFunctionsUserData));
      }
    }
    nq = QueryMolecule->getNumBonds();
    nt = Targets.at(i).Molecule->getNumBonds();
    Targets[i].BondMatchTable.resize(nq, nt);
    for (size_t aj = 0; aj < nt; aj++) {
      for (size_t ai = 0; ai < nq; ai++) {
        Targets[i].BondMatchTable.set(
            ai, aj,
            Parameters.BondTyper(Parameters.BondCompareParameters,
                                 *QueryMolecule, ai, *Targets.at(i).Molecule,
                                 aj, Parameters.CompareFunctionsUserData));
      }
    }
  }
}

struct WeightedBond {
  const Bond *BondPtr{nullptr};
  unsigned int Weight{0};
  WeightedBond() {}
  WeightedBond(const Bond *bond) : BondPtr(bond), Weight(0) {
    const auto ringInfo = bond->getOwningMol().getRingInfo();
    // score ((bond.is_in_ring + atom1.is_in_ring + atom2.is_in_ring)
    if (ringInfo->numBondRings(bond->getIdx())) {
      ++Weight;
    }
    if (ringInfo->numAtomRings(bond->getBeginAtomIdx())) {
      ++Weight;
    }
    if (ringInfo->numAtomRings(bond->getEndAtomIdx())) {
      ++Weight;
    }
  }
  bool operator<(const WeightedBond &r) {
    return Weight >= r.Weight;  // sort in Z-A order (Rings first)
  }
};

void MaximumCommonSubgraph::makeInitialSeeds() {
  // build a set of initial seeds as "all" single bonds from query
  // molecule
  boost::dynamic_bitset<> excludedBonds(QueryMolecule->getNumBonds());

  Seeds.clear();
  QueryMoleculeMatchedBonds = 0;
  QueryMoleculeMatchedAtoms = 0;
  QueryMoleculeSingleMatchedAtom = nullptr;
  if (!Parameters.InitialSeed.empty()) {  // make user defined seed
    std::unique_ptr<const ROMol> initialSeedMolecule(
        static_cast<const ROMol *>(SmartsToMol(Parameters.InitialSeed)));
    // make a set of of seed as indices and pointers to current query
    // molecule items based on matching results
    std::vector<MatchVectType> matching_substructs;
    SubstructMatch(*QueryMolecule, *initialSeedMolecule, matching_substructs);
    // loop throw all fragments of Query matched to initial seed
    for (const auto &ms : matching_substructs) {
      Seed seed;
      seed.setStoreAllDegenerateMCS(Parameters.StoreAll);
      seed.ExcludedBonds = excludedBonds;
      seed.MatchResult.resize(Targets.size());
#ifdef VERBOSE_STATISTICS_ON
      {
        ++VerboseStatistics.Seed;
        ++VerboseStatistics.InitialSeed;
      }
#endif
      // add all matched atoms of the matched query fragment
      std::map<unsigned int, unsigned int> initialSeedToQueryAtom;
      for (const auto &msb : ms) {
        unsigned int qai = msb.second;
        unsigned int sai = msb.first;
        seed.addAtom(QueryMolecule->getAtomWithIdx(qai));
        initialSeedToQueryAtom[sai] = qai;
      }
      // add all bonds (existed in initial seed !!!) between all matched
      // atoms in query
      for (const auto &msb : ms) {
        const auto atom = initialSeedMolecule->getAtomWithIdx(msb.first);
        for (const auto &nbri : boost::make_iterator_range(
                 initialSeedMolecule->getAtomBonds(atom))) {
          const auto initialBond = (*initialSeedMolecule)[nbri];
          unsigned int qai1 =
              initialSeedToQueryAtom.at(initialBond->getBeginAtomIdx());
          unsigned int qai2 =
              initialSeedToQueryAtom.at(initialBond->getEndAtomIdx());

          const auto b = QueryMolecule->getBondBetweenAtoms(qai1, qai2);
          CHECK_INVARIANT(b, "bond must not be NULL");
          if (!seed.ExcludedBonds.test(b->getIdx())) {
            seed.addBond(b);
            seed.ExcludedBonds.set(b->getIdx());
          }
        }
      }
      seed.computeRemainingSize(*QueryMolecule);

      if (checkIfMatchAndAppend(seed)) {
        QueryMoleculeMatchedBonds = seed.getNumBonds();
      }
    }
    if (Seeds.empty()) {
      BOOST_LOG(rdWarningLog)
          << "The provided InitialSeed is not an MCS and will be ignored"
          << std::endl;
    }
  }
  if (Seeds.empty()) {  // create a set of seeds from each query bond
    // R1 additional performance OPTIMISATION
    // if(Parameters.BondCompareParameters.CompleteRingsOnly)
    // disable all mismatched rings, and do not generate initial seeds
    // from such disabled bonds
    //  for(  rings .....) for(i......)
    //   if(mismatched) excludedBonds[i.......] = true;
    std::vector<WeightedBond> wbVec;
    wbVec.reserve(QueryMolecule->getNumBonds());
    for (const auto &bond : QueryMolecule->bonds()) {
      wbVec.emplace_back(bond);
    }

    for (const auto &wb : wbVec) {
      // R1 additional performance OPTIMISATION
      // if(excludedBonds[(*bi)->getIdx()])
      //    continue;
      Seed seed;
      seed.setStoreAllDegenerateMCS(Parameters.StoreAll);
      seed.MatchResult.resize(Targets.size());

#ifdef VERBOSE_STATISTICS_ON
      {
        ++VerboseStatistics.Seed;
        ++VerboseStatistics.InitialSeed;
      }
#endif
      seed.addAtom(wb.BondPtr->getBeginAtom());
      seed.addAtom(wb.BondPtr->getEndAtom());
      seed.ExcludedBonds = excludedBonds;  // all bonds from first to current
      seed.addBond(wb.BondPtr);
      excludedBonds.set(wb.BondPtr->getIdx());

      seed.computeRemainingSize(*QueryMolecule);

      if (checkIfMatchAndAppend(seed)) {
        ++QueryMoleculeMatchedBonds;
      } else {
        // optionally remove all such bonds from all targets TOPOLOGY
        // where it exists.
        //..........

        // disable (mark as already processed) mismatched bond in all
        // seeds
        for (auto &Seed : Seeds) {
          Seed.ExcludedBonds.set(wb.BondPtr->getIdx());
        }

#ifdef VERBOSE_STATISTICS_ON
        ++VerboseStatistics.MismatchedInitialSeed;
#endif
      }
    }
  }
  auto nq = QueryMolecule->getNumAtoms();
  MatchVectType singleAtomPairMatch(1);
  MatchVectType emptyBondPairMatch;
  for (size_t i = 0; i < nq; i++) {  // all query's atoms
    const auto queryMolAtom = QueryMolecule->getAtomWithIdx(i);
    bool isQueryMolAtomInRing = queryIsAtomInRing(queryMolAtom);
    unsigned int matched = 0;
    const Atom *candQueryMoleculeSingleMatchedAtom = nullptr;
    for (const auto &tag : Targets) {
      auto nt = tag.Molecule->getNumAtoms();
      for (size_t aj = 0; aj < nt; aj++) {
        if (tag.AtomMatchTable.at(i, aj)) {
          const auto targetMolAtom = tag.Molecule->getAtomWithIdx(aj);
          bool isTargetMolAtomInRing = queryIsAtomInRing(targetMolAtom);
          ++matched;
          if (!(Parameters.BondCompareParameters.CompleteRingsOnly &&
                (isQueryMolAtomInRing || isTargetMolAtomInRing))) {
            bool shouldAccept = !Parameters.ShouldAcceptMCS;
            if (!shouldAccept) {
              singleAtomPairMatch[0] = std::make_pair(i, aj);
              shouldAccept = Parameters.ShouldAcceptMCS(
                  *QueryMolecule, *tag.Molecule, singleAtomPairMatch,
                  emptyBondPairMatch, &Parameters);
            }
            if (shouldAccept) {
              candQueryMoleculeSingleMatchedAtom = queryMolAtom;
            }
          }
          break;
        }
      }
    }
    if (matched && matched >= ThresholdCount) {
      ++QueryMoleculeMatchedAtoms;
      if (candQueryMoleculeSingleMatchedAtom) {
        if (!QueryMoleculeSingleMatchedAtom) {
          QueryMoleculeSingleMatchedAtom = candQueryMoleculeSingleMatchedAtom;
        } else {
          QueryMoleculeSingleMatchedAtom = (std::max)(
              candQueryMoleculeSingleMatchedAtom,
              QueryMoleculeSingleMatchedAtom, [](const Atom *a, const Atom *b) {
                if (a->getDegree() != b->getDegree()) {
                  return (a->getDegree() < b->getDegree());
                } else if (a->getFormalCharge() != b->getFormalCharge()) {
                  return (a->getFormalCharge() < b->getFormalCharge());
                } else if (a->getAtomicNum() != b->getAtomicNum()) {
                  return (a->getAtomicNum() < b->getAtomicNum());
                }
                return (a->getIdx() < b->getIdx());
              });
        }
      }
    }
  }
}

namespace {

bool checkIfRingsAreClosed(const Seed &fs, bool noLoneRingAtoms) {
  if (fs.MoleculeFragment.Bonds.empty() && fs.MoleculeFragment.Atoms.empty()) {
    return true;
  }
  const auto &om = fs.MoleculeFragment.Atoms.front()->getOwningMol();
  const auto ri = om.getRingInfo();
  if (!ri->numRings()) {
    return true;
  }
  boost::dynamic_bitset<> mcsBonds(om.getNumBonds());
  boost::dynamic_bitset<> mcsNonFusedRings(ri->numRings());
  boost::dynamic_bitset<> mcsFusedRings(ri->numRings());
  for (const auto &bond : fs.MoleculeFragment.Bonds) {
    auto bi = bond->getIdx();
    mcsBonds.set(bi);
    if (ri->numBondRings(bi) == 1) {
      mcsNonFusedRings.set(ri->bondMembers(bi).front());
    }
  }
  for (unsigned int ringIdx = 0; ringIdx < mcsNonFusedRings.size(); ++ringIdx) {
    if (!mcsNonFusedRings.test(ringIdx)) {
      continue;
    }
    for (const auto &bi : ri->bondRings().at(ringIdx)) {
      bool keepBond = false;
      for (unsigned int memberOf : ri->bondMembers(bi)) {
        if (memberOf == ringIdx) {
          keepBond = true;
        } else if (mcsNonFusedRings.test(memberOf)) {
          keepBond = false;
          break;
        }
      }
      if (keepBond && !mcsBonds.test(bi)) {
        return false;
      }
    }
  }
  if (noLoneRingAtoms) {
    for (const auto &atom : fs.MoleculeFragment.Atoms) {
      auto ai = atom->getIdx();
      const auto &ringIndices = ri->atomMembers(ai);
      if (!ringIndices.empty() &&
          !std::any_of(ringIndices.begin(), ringIndices.end(),
                       [&mcsNonFusedRings](const auto &ringIdx) {
                         return mcsNonFusedRings.test(ringIdx);
                       })) {
        return false;
      }
    }
  }
  if (mcsNonFusedRings.none()) {
    for (const auto &bond : fs.MoleculeFragment.Bonds) {
      auto bi = bond->getIdx();
      if (ri->numBondRings(bi) > 1) {
        for (auto ringIdx : ri->bondMembers(bi)) {
          mcsFusedRings.set(ringIdx);
        }
      }
    }
  }
  if (mcsFusedRings.any()) {
    for (unsigned int ringIdx = 0; ringIdx < mcsFusedRings.size(); ++ringIdx) {
      if (!mcsFusedRings.test(ringIdx)) {
        continue;
      }
      const auto &ringBondIndices = ri->bondRings().at(ringIdx);
      if (std::all_of(
              ringBondIndices.begin(), ringBondIndices.end(),
              [&mcsBonds](const auto &bi) { return mcsBonds.test(bi); })) {
        return true;
      }
    }
    return false;
  }
  return true;
}

bool checkIfShouldAcceptMCS(const FMCS::MolFragment &f, const ROMol &query,
                            const std::vector<Target> &targets,
                            const MCSParameters &p) {
  if (!p.ShouldAcceptMCS || f.Bonds.empty()) {
    return true;
  }
  Seed seed;  // result MCS
  seed.ExcludedBonds.resize(query.getNumBonds(), false);

  for (const auto &atom : f.Atoms) {
    seed.addAtom(atom);
  }
  for (const auto &bond : f.Bonds) {
    seed.addBond(bond);
  }
  for (const auto &target : targets) {
    match_V_t match;
    bool targetMatched = SubstructMatchCustomTable(
        target.Topology, *target.Molecule, seed.Topology, query,
        target.AtomMatchTable, target.BondMatchTable, &p, &match);
    // it is OK to skip non-matches here as threshold could be < 1.0;
    // we only want to triage matches
    if (!targetMatched) {
      continue;
    }
    MatchVectType atomPairMatch;
    atomPairMatch.reserve(match.size());
    std::vector<unsigned int> queryToTargetAtomIdx(query.getNumAtoms(), NotSet);
    for (const auto &m : match) {
      auto queryAtomIdx = seed.Topology[m.first];
      auto targetAtomIdx = target.Topology[m.second];
      atomPairMatch.emplace_back(queryAtomIdx, targetAtomIdx);
      queryToTargetAtomIdx[queryAtomIdx] = targetAtomIdx;
    }
    MatchVectType bondPairMatch;
    auto numMcsBonds = boost::num_edges(seed.Topology);
    bondPairMatch.reserve(numMcsBonds);
    for (const auto &it :
         boost::make_iterator_range(boost::edges(seed.Topology))) {
      int queryBeginAtomIdx = seed.Topology[boost::source(it, seed.Topology)];
      int queryEndAtomIdx = seed.Topology[boost::target(it, seed.Topology)];
      const auto queryBond =
          query.getBondBetweenAtoms(queryBeginAtomIdx, queryEndAtomIdx);
      CHECK_INVARIANT(queryBond, "");
      const auto targetBeginAtomIdx =
          queryToTargetAtomIdx.at(queryBeginAtomIdx);
      CHECK_INVARIANT(targetBeginAtomIdx != NotSet, "");
      const auto targetEndAtomIdx = queryToTargetAtomIdx.at(queryEndAtomIdx);
      CHECK_INVARIANT(targetEndAtomIdx != NotSet, "");
      const auto targetBond = target.Molecule->getBondBetweenAtoms(
          targetBeginAtomIdx, targetEndAtomIdx);
      CHECK_INVARIANT(targetBond, "");
      bondPairMatch.emplace_back(queryBond->getIdx(), targetBond->getIdx());
    }
    if (!p.ShouldAcceptMCS(query, *target.Molecule, atomPairMatch,
                           bondPairMatch, &p)) {
      return false;
    }
  }
  return true;
}

}  // namespace
bool MaximumCommonSubgraph::growSeeds() {
  bool mcsFound = false;
  bool canceled = false;
  // Find MCS -- SDF Seed growing OPTIMISATION (it works in 3 times
  // faster)
  while (!Seeds.empty()) {
    if (getMaxNumberBonds() == QueryMoleculeMatchedBonds) {  // MCS == Query
      break;
    }
#ifdef VERBOSE_STATISTICS_ON
    VerboseStatistics.TotalSteps++;
#endif
    auto si = Seeds.begin();

    si->grow(*this);
    {
      const Seed &fs = Seeds.front();
      // bigger substructure found
      if (fs.CopyComplete) {
        bool possibleMCS = false;
        if (!Parameters.MaximizeBonds) {
          possibleMCS = (fs.getNumAtoms() > getMaxNumberAtoms() ||
                         (fs.getNumAtoms() == getMaxNumberAtoms() &&
                          fs.getNumBonds() > getMaxNumberBonds()));
        } else {
          possibleMCS = (fs.getNumBonds() > getMaxNumberBonds() ||
                         (fs.getNumBonds() == getMaxNumberBonds() &&
                          fs.getNumAtoms() > getMaxNumberAtoms()));
        }
        bool isDegenerateMCS = (fs.getNumBonds() == getMaxNumberBonds() &&
                                fs.getNumAtoms() == getMaxNumberAtoms());
        if (!possibleMCS && Parameters.StoreAll) {
          possibleMCS = isDegenerateMCS;
        }
        // #945: test here to see if the MCS actually has all rings closed
        if (possibleMCS && Parameters.BondCompareParameters.CompleteRingsOnly) {
          possibleMCS = checkIfRingsAreClosed(
              fs, Parameters.AtomCompareParameters.CompleteRingsOnly);
        }
        if (possibleMCS) {
          possibleMCS = checkIfShouldAcceptMCS(
              fs.MoleculeFragment, *QueryMolecule, Targets, Parameters);
        }
        if (possibleMCS) {
          mcsFound = true;
#ifdef VERBOSE_STATISTICS_ON
          VerboseStatistics.MCSFoundStep = VerboseStatistics.TotalSteps;
          VerboseStatistics.MCSFoundTime = nanoClock();
#endif
          McsIdx.Atoms = fs.MoleculeFragment.Atoms;
          McsIdx.Bonds = fs.MoleculeFragment.Bonds;
          if (Parameters.Verbose) {
            std::cout << VerboseStatistics.TotalSteps
                      << " Seeds:" << Seeds.size() << " MCS "
                      << McsIdx.Atoms.size() << " atoms, "
                      << McsIdx.Bonds.size() << " bonds";
            printf(" for %.4lf seconds. bond[0]=%u\n",
                   double(VerboseStatistics.MCSFoundTime - To) / 1000000.,
                   McsIdx.Bonds.front()->getIdx());
          }
          if (Parameters.StoreAll) {
            if (!isDegenerateMCS) {
              DegenerateMcsMap.clear();
            }
            std::vector<unsigned int> key(McsIdx.Bonds.size());
            std::transform(McsIdx.Bonds.begin(), McsIdx.Bonds.end(),
                           key.begin(),
                           [](const auto bond) { return bond->getIdx(); });
            std::sort(key.begin(), key.end());
            MCS value(McsIdx);
            value.QueryMolecule = QueryMolecule;
            value.Targets = Targets;
            DegenerateMcsMap[key] = value;
          }
        }
      }
    }
    if (NotSet == si->GrowingStage) {  // finished
      Seeds.erase(si);
    }
    if (Parameters.ProgressCallback) {
      Stat.NumAtoms = getMaxNumberAtoms();
      Stat.NumBonds = getMaxNumberBonds();
      if (!Parameters.ProgressCallback(Stat, Parameters,
                                       Parameters.ProgressCallbackUserData)) {
        canceled = true;
        break;
      }
    }
  }

  if (mcsFound) {  // postponed copy of current set of molecules for
                   // threshold < 1.
    McsIdx.QueryMolecule = QueryMolecule;
    McsIdx.Targets = Targets;
  }
  return !canceled;
}  // namespace FMCS

struct AtomMatch {  // for each seed atom (matched)
  unsigned int QueryAtomIdx;
  unsigned int TargetAtomIdx;
  AtomMatch() : QueryAtomIdx(NotSet), TargetAtomIdx(NotSet) {}
};
typedef std::vector<AtomMatch> AtomMatchSet;

std::pair<std::string, ROMOL_SPTR>
MaximumCommonSubgraph::generateResultSMARTSAndQueryMol(
    const MCS &mcsIdx) const {
  // match the result MCS with all targets to check if it is exact match
  // or template
  Seed seed;  // result MCS
  seed.setStoreAllDegenerateMCS(Parameters.StoreAll);
  seed.ExcludedBonds.resize(mcsIdx.QueryMolecule->getNumBonds(), false);
  std::vector<AtomMatchSet> atomMatchResult(mcsIdx.Targets.size());
  std::vector<unsigned int> atomIdxMap(mcsIdx.QueryMolecule->getNumAtoms());
  std::vector<std::map<unsigned int, const Bond *>> bondMatchSet(
      mcsIdx.Bonds.size());  // key is unique BondType
  std::vector<std::map<unsigned int, const Atom *>> atomMatchSet(
      mcsIdx.Atoms.size());  // key is unique atomic number

  for (const auto &atom : mcsIdx.Atoms) {
    atomIdxMap[atom->getIdx()] = seed.getNumAtoms();
    seed.addAtom(atom);
  }
  for (const auto &bond : mcsIdx.Bonds) {
    seed.addBond(bond);
  }

  std::vector<unsigned int> matchedTargetIndices;
  if (!mcsIdx.Bonds.empty()) {
    for (const auto &tag : mcsIdx.Targets) {
      match_V_t match;  // THERE IS NO Bonds match INFO !!!!
      bool target_matched = SubstructMatchCustomTable(
          tag.Topology, *tag.Molecule, seed.Topology, *QueryMolecule,
          tag.AtomMatchTable, tag.BondMatchTable, &Parameters, &match);
      if (!target_matched) {
        continue;
      }
      unsigned int itarget = &tag - &mcsIdx.Targets.front();
      matchedTargetIndices.push_back(itarget);
      atomMatchResult.at(itarget).resize(seed.getNumAtoms());
      for (const auto &m : match) {
        const auto ai = m.first;  // SeedAtomIdx
        atomMatchResult.at(itarget).at(ai).QueryAtomIdx =
            seed.Topology[m.first];
        atomMatchResult.at(itarget).at(ai).TargetAtomIdx =
            tag.Topology[m.second];
        const auto ta = tag.Molecule->getAtomWithIdx(tag.Topology[m.second]);
        if (ta->getAtomicNum() !=
            seed.MoleculeFragment.Atoms.at(ai)->getAtomicNum()) {
          atomMatchSet[ai][ta->getAtomicNum()] = ta;  // add
        }
      }
      // AND BUILD BOND MATCH INFO
      for (const auto &bond : mcsIdx.Bonds) {
        const auto bi = &bond - &mcsIdx.Bonds.front();
        const auto i = atomIdxMap.at(bond->getBeginAtomIdx());
        const auto j = atomIdxMap.at(bond->getEndAtomIdx());
        const auto ti = atomMatchResult.at(itarget).at(i).TargetAtomIdx;
        const auto tj = atomMatchResult.at(itarget).at(j).TargetAtomIdx;
        const auto tb = tag.Molecule->getBondBetweenAtoms(ti, tj);
        if (tb && bond->getBondType() != tb->getBondType()) {
          bondMatchSet[bi][tb->getBondType()] = tb;  // add
        }
      }
    }
  }

  // Generate result's SMARTS

  // create molecule from MCS for MolToSmarts()
  auto mol = new RWMol();
  ROMOL_SPTR molSptr(mol);
  const auto ri = mcsIdx.QueryMolecule->getRingInfo();
  boost::dynamic_bitset<> mcsRingIsComplete;
  bool needAtomRingQueries =
      (Parameters.AtomCompareParameters.RingMatchesRingOnly ||
       Parameters.BondCompareParameters.MatchFusedRingsStrict);
  if (needAtomRingQueries) {
    mcsRingIsComplete.resize(ri->numRings(), true);
    boost::dynamic_bitset<> queryBondInMcs(mcsIdx.QueryMolecule->getNumBonds());
    for (const auto &bond : mcsIdx.Bonds) {
      queryBondInMcs.set(bond->getIdx());
    }
    const auto &bondRings = ri->bondRings();
    for (const auto &bondRing : bondRings) {
      auto ringIdx = &bondRing - &bondRings.front();
      for (const auto &bondIdx : bondRing) {
        if (!queryBondInMcs.test(bondIdx)) {
          mcsRingIsComplete.reset(ringIdx);
          break;
        }
      }
    }
  }
  for (const auto &atom : mcsIdx.Atoms) {
    auto queryAtomIdx = atom->getIdx();
    auto numAtomRings = ri->numAtomRings(queryAtomIdx);
    QueryAtom a;
    const auto ai = &atom - &mcsIdx.Atoms.front();
    if (Parameters.AtomTyper == MCSAtomCompareIsotopes ||
        Parameters.AtomCompareParameters
            .MatchIsotope) {  // do '[0*]-[0*]-[13*]' for CC[13NH2]
      a.setQuery(makeAtomIsotopeQuery(static_cast<int>(atom->getIsotope())));
    } else {
      // generate [#6] instead of C or c !
      a.setQuery(makeAtomNumQuery(atom->getAtomicNum()));
      // for all atomMatchSet[ai] items add atom query to template like
      // [#6,#17,#9, ... ]
      for (const auto &am : atomMatchSet.at(ai)) {
        a.expandQuery(makeAtomNumQuery(am.second->getAtomicNum()),
                      Queries::COMPOSITE_OR);
        if (Parameters.AtomCompareParameters.MatchChiralTag &&
            (am.second->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
             am.second->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW)) {
          a.setChiralTag(am.second->getChiralTag());
        }
      }
    }
    if (needAtomRingQueries) {
      const auto &ringIndicesAtomIsMemberOf = ri->atomMembers(queryAtomIdx);
      auto numCompleteRings = std::count_if(
          ringIndicesAtomIsMemberOf.begin(), ringIndicesAtomIsMemberOf.end(),
          [&mcsRingIsComplete](const auto &ringIdx) {
            return mcsRingIsComplete.test(ringIdx);
          });
      if (Parameters.AtomCompareParameters.RingMatchesRingOnly &&
          !numCompleteRings) {
        auto q = makeAtomInRingQuery();
        q->setNegation(!numAtomRings);
        a.expandQuery(q, Queries::COMPOSITE_AND, true);
      } else if (Parameters.BondCompareParameters.MatchFusedRingsStrict &&
                 numAtomRings == 1 && numCompleteRings == 1) {
        auto ringSize =
            ri->atomRings().at(ringIndicesAtomIsMemberOf.front()).size();
        auto q = new ATOM_OR_QUERY;
        q->setDescription("AtomOr");
        q->addChild(QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(
            makeAtomMinRingSizeQuery(ringSize)));
        auto q2 = makeAtomInNRingsQuery(1);
        q2->setNegation(true);
        q->addChild(QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(q2));
        a.expandQuery(q, Queries::COMPOSITE_AND, true);
      }
    }
    mol->addAtom(&a, true, false);
  }
  for (const auto &bond : mcsIdx.Bonds) {
    QueryBond b;
    const auto bi = &bond - &mcsIdx.Bonds.front();
    const auto beginAtomIdx = atomIdxMap.at(bond->getBeginAtomIdx());
    const auto endAtomIdx = atomIdxMap.at(bond->getEndAtomIdx());
    b.setBeginAtomIdx(beginAtomIdx);
    b.setEndAtomIdx(endAtomIdx);
    b.setQuery(makeBondOrderEqualsQuery(bond->getBondType()));
    // add OR template if need
    for (const auto &bm : bondMatchSet.at(bi)) {
      b.expandQuery(makeBondOrderEqualsQuery(bm.second->getBondType()),
                    Queries::COMPOSITE_OR);
      if (Parameters.BondCompareParameters.MatchStereo &&
          bm.second->getStereo() > Bond::STEREOANY) {
        b.setStereo(bm.second->getStereo());
      }
    }
    if (Parameters.BondCompareParameters.RingMatchesRingOnly ||
        Parameters.BondCompareParameters.MatchFusedRingsStrict) {
      const auto numBondRings = ri->numBondRings(bond->getIdx());
      auto q = makeBondIsInRingQuery();
      q->setNegation(!numBondRings);
      b.expandQuery(q, Queries::COMPOSITE_AND, true);
    }
    mol->addBond(&b, false);
  }
  return std::make_pair(MolToSmarts(*mol, true), molSptr);
}

bool MaximumCommonSubgraph::createSeedFromMCS(size_t newQueryTarget,
                                              Seed &newSeed) {
  Seed mcs;
  mcs.setStoreAllDegenerateMCS(Parameters.StoreAll);
  mcs.ExcludedBonds.resize(McsIdx.QueryMolecule->getNumBonds(), false);
  std::vector<unsigned int> mcsAtomIdxMap(McsIdx.QueryMolecule->getNumAtoms());

  for (const auto &atom : McsIdx.Atoms) {
    mcsAtomIdxMap[atom->getIdx()] = mcs.addAtom(atom);
  }
  for (const auto &bond : McsIdx.Bonds) {
    mcs.addBond(bond);
  }

  const Target &newQuery = McsIdx.Targets.at(newQueryTarget);

  match_V_t match;
  bool target_matched = SubstructMatchCustomTable(
      newQuery.Topology, *newQuery.Molecule, mcs.Topology,
      *McsIdx.QueryMolecule, newQuery.AtomMatchTable, newQuery.BondMatchTable,
      &Parameters, &match);
  if (!target_matched) {
    return false;
  }

  AtomMatchSet atomMatchResult(mcs.getNumAtoms());

  newSeed.ExcludedBonds.resize(newQuery.Molecule->getNumBonds(), false);

  for (const auto &m : match) {
    unsigned int ai = m.first;  // SeedAtomIdx in mcs seed
    atomMatchResult[ai].QueryAtomIdx = mcs.Topology[m.first];
    atomMatchResult[ai].TargetAtomIdx = newQuery.Topology[m.second];
    const auto ta =
        newQuery.Molecule->getAtomWithIdx(newQuery.Topology[m.second]);
    newSeed.addAtom(ta);
  }

  for (const auto &bond : McsIdx.Bonds) {
    unsigned int i = mcsAtomIdxMap.at(bond->getBeginAtomIdx());
    unsigned int j = mcsAtomIdxMap.at(bond->getEndAtomIdx());
    unsigned int ti = atomMatchResult.at(i).TargetAtomIdx;
    unsigned int tj = atomMatchResult.at(j).TargetAtomIdx;
    const auto tb = newQuery.Molecule->getBondBetweenAtoms(ti, tj);
    CHECK_INVARIANT(tb, "tb most not be NULL");
    newSeed.addBond(tb);
  }
  newSeed.computeRemainingSize(*newQuery.Molecule);
  return true;
}

MCSResult MaximumCommonSubgraph::find(const std::vector<ROMOL_SPTR> &src_mols) {
  clear();
  MCSResult res;

  if (src_mols.size() < 2) {
    throw std::runtime_error(
        "FMCS. Invalid argument. mols.size() must be at least 2");
  }
  if (Parameters.Threshold > 1.0) {
    throw std::runtime_error(
        "FMCS. Invalid argument. Parameter Threshold must be 1.0 or "
        "less.");
  }

  // minimal required number of matched targets:
  // at least one target, max all targets
  ThresholdCount = static_cast<unsigned int>(std::min(
      static_cast<int>(src_mols.size()) - 1,
      std::max(1, static_cast<int>(ceil(static_cast<double>(src_mols.size()) *
                                        Parameters.Threshold)) -
                      1)));

  // AtomCompareParameters.CompleteRingsOnly implies
  // BondCompareParameters.CompleteRingsOnly
  if (Parameters.AtomCompareParameters.CompleteRingsOnly) {
    Parameters.BondCompareParameters.CompleteRingsOnly = true;
  }

  // Selecting CompleteRingsOnly option also enables
  // --ring-matches-ring-only. ring--ring and chain bonds only match chain
  // bonds.
  if (Parameters.BondCompareParameters.CompleteRingsOnly) {
    Parameters.BondCompareParameters.RingMatchesRingOnly = true;
  }
  if (Parameters.AtomCompareParameters.CompleteRingsOnly) {
    Parameters.AtomCompareParameters.RingMatchesRingOnly = true;
  }

  unsigned int i = 0;
  boost::dynamic_bitset<> faked_ring_info(src_mols.size());
  for (const auto &src_mol : src_mols) {
    Molecules.push_back(src_mol.get());
    if (!Molecules.back()->getRingInfo()->isInitialized()) {
      Molecules.back()->getRingInfo()->initialize();  // but do not fill out !!!
      faked_ring_info.set(i);
    }
    ++i;
  }

  // sort source set of molecules by their 'size' and assume the smallest
  // molecule as a query
  std::stable_sort(Molecules.begin(), Molecules.end(), molPtr_NumBondLess);
  size_t startIdx = 0;
  size_t endIdx = Molecules.size() - ThresholdCount;
  while (startIdx < endIdx && !Molecules.at(startIdx)->getNumAtoms()) {
    ++startIdx;
  }
  bool areSeedsEmpty = false;
  for (size_t i = startIdx; i < endIdx && !areSeedsEmpty && !res.Canceled;
       ++i) {
    init(startIdx);
    if (Targets.empty()) {
      break;
    }
    MCSFinalMatchCheckFunction tff = Parameters.FinalMatchChecker;
    // skip final match check for initial seed to allow future growing
    Parameters.FinalMatchChecker = nullptr;
    makeInitialSeeds();
    Parameters.FinalMatchChecker = tff;  // restore final functor

    if (Parameters.Verbose) {
      std::cout << "Query " << MolToSmiles(*QueryMolecule) << " "
                << QueryMolecule->getNumAtoms() << "("
                << QueryMoleculeMatchedAtoms << ") atoms, "
                << QueryMolecule->getNumBonds() << "("
                << QueryMoleculeMatchedBonds << ") bonds\n";
    }

    areSeedsEmpty = Seeds.empty();
    res.Canceled = !(areSeedsEmpty || growSeeds());
    // verify what MCS is equal to one of initial seed for chirality match
    if (getMaxNumberBonds() == 0) {
      McsIdx = MCS();      // clear
      makeInitialSeeds();  // check all possible initial seeds
      if (!areSeedsEmpty) {
        const Seed &fs = Seeds.front();
        if ((1 == getMaxNumberBonds() ||
             !(Parameters.BondCompareParameters.CompleteRingsOnly &&
               fs.MoleculeFragment.Bonds.size() == 1 &&
               queryIsBondInRing(fs.MoleculeFragment.Bonds.front()))) &&
            checkIfShouldAcceptMCS(fs.MoleculeFragment, *QueryMolecule, Targets,
                                   Parameters)) {
          McsIdx.QueryMolecule = QueryMolecule;
          McsIdx.Targets = Targets;
          McsIdx.Atoms = fs.MoleculeFragment.Atoms;
          McsIdx.Bonds = fs.MoleculeFragment.Bonds;
        }
      }
      if (!McsIdx.QueryMolecule && QueryMoleculeSingleMatchedAtom) {
        McsIdx.QueryMolecule = QueryMolecule;
        McsIdx.Targets = Targets;
        McsIdx.Atoms =
            std::vector<const Atom *>{QueryMoleculeSingleMatchedAtom};
        McsIdx.Bonds = std::vector<const Bond *>();
      }
    } else if (i + 1 < endIdx) {
      Seed seed;
      if (createSeedFromMCS(i, seed)) {  // MCS is matched with new query
        Seeds.push_back(seed);
      }
      std::swap(
          Molecules.at(startIdx),
          Molecules.at(i + 1));  // change query molecule for threshold < 1.
    }
  }

  res.NumAtoms = getMaxNumberAtoms();
  if (!res.NumAtoms && QueryMoleculeSingleMatchedAtom) {
    res.NumAtoms = 1;
  }
  res.NumBonds = getMaxNumberBonds();

  if (res.NumBonds > 0 || QueryMoleculeSingleMatchedAtom) {
    if (!Parameters.StoreAll) {
      auto smartsQueryMolPair = generateResultSMARTSAndQueryMol(McsIdx);
      res.SmartsString = std::move(smartsQueryMolPair.first);
      res.QueryMol = std::move(smartsQueryMolPair.second);
    } else {
      std::transform(DegenerateMcsMap.begin(), DegenerateMcsMap.end(),
                     std::inserter(res.DegenerateSmartsQueryMolDict,
                                   res.DegenerateSmartsQueryMolDict.end()),
                     [this](const auto &pair) {
                       return generateResultSMARTSAndQueryMol(pair.second);
                     });
    }
  }

#ifdef VERBOSE_STATISTICS_ON
  if (Parameters.Verbose && res.NumAtoms > 0) {
    for (const auto &tag : Targets) {
      unsigned int itarget = &tag - &Targets.front();
      MatchVectType match;

      bool target_matched = SubstructMatch(*tag.Molecule, *res.QueryMol, match);
      if (!target_matched) {
        std::cout << "Target " << itarget + 1
                  << (target_matched ? " matched " : " MISMATCHED ")
                  << MolToSmiles(*tag.Molecule) << "\n";
      }
    }

    std::cout << "STATISTICS:\n";
    std::cout << "Total Growing Steps  = " << VerboseStatistics.TotalSteps
              << ", MCS found on " << VerboseStatistics.MCSFoundStep << " step";
    if (VerboseStatistics.MCSFoundTime - To > 0) {
      printf(", for %.4lf seconds\n",
             double(VerboseStatistics.MCSFoundTime - To) / 1000000.);
    } else {
      std::cout << ", for less than 1 second\n";
    }
    std::cout << "Initial   Seeds      = " << VerboseStatistics.InitialSeed
              << ",  Mismatched " << VerboseStatistics.MismatchedInitialSeed
              << "\n";
    std::cout << "Inspected Seeds      = " << VerboseStatistics.Seed << "\n";
    std::cout << "Rejected by BestSize = "
              << VerboseStatistics.RemainingSizeRejected << "\n";
    std::cout << "IndividualBondExcluded   = "
              << VerboseStatistics.IndividualBondExcluded << "\n";
#ifdef EXCLUDE_WRONG_COMPOSITION
    std::cout << "Rejected by WrongComposition = "
              << VerboseStatistics.WrongCompositionRejected << " [ "
              << VerboseStatistics.WrongCompositionDetected << " Detected ]\n";
#endif
    std::cout << "MatchCheck Seeds     = " << VerboseStatistics.SeedCheck
              << "\n";
    std::cout  //<< "\n"
        << "     MatchCalls = " << VerboseStatistics.MatchCall << "\n"
        << "     MatchFound = " << VerboseStatistics.MatchCallTrue << "\n";
    std::cout << " fastMatchCalls = " << VerboseStatistics.FastMatchCall << "\n"
              << " fastMatchFound = " << VerboseStatistics.FastMatchCallTrue
              << "\n";
    std::cout << " slowMatchCalls = "
              << VerboseStatistics.MatchCall -
                     VerboseStatistics.FastMatchCallTrue
              << "\n"
              << " slowMatchFound = " << VerboseStatistics.SlowMatchCallTrue
              << "\n";

#ifdef VERBOSE_STATISTICS_FASTCALLS_ON
    std::cout << "AtomFunctorCalls = " << VerboseStatistics.AtomFunctorCalls
              << "\n";
    std::cout << "BondCompareCalls = " << VerboseStatistics.BondCompareCalls
              << "\n";
#endif
    std::cout << "  DupCacheFound = " << VerboseStatistics.DupCacheFound
              << "   " << VerboseStatistics.DupCacheFoundMatch << " matched, "
              << VerboseStatistics.DupCacheFound -
                     VerboseStatistics.DupCacheFoundMatch
              << " mismatched\n";
#ifdef FAST_SUBSTRUCT_CACHE
    std::cout << "HashCache size  = " << HashCache.keyssize() << " keys\n";
    std::cout << "HashCache size  = " << HashCache.fullsize() << " entries\n";
    std::cout << "FindHashInCache = " << VerboseStatistics.FindHashInCache
              << "\n";
    std::cout << "HashFoundInCache= " << VerboseStatistics.HashKeyFoundInCache
              << "\n";
    std::cout << "ExactMatchCalls = " << VerboseStatistics.ExactMatchCall
              << "\n"
              << "ExactMatchFound = " << VerboseStatistics.ExactMatchCallTrue
              << "\n";
#endif
  }
#endif

  auto pos = faked_ring_info.find_first();
  while (pos != boost::dynamic_bitset<>::npos) {
    src_mols[pos]->getRingInfo()->reset();
    pos = faked_ring_info.find_next(pos);
  }

  clear();
  return res;
}

bool MaximumCommonSubgraph::checkIfMatchAndAppend(Seed &seed) {
#ifdef VERBOSE_STATISTICS_ON
  ++VerboseStatistics.SeedCheck;
#endif
#ifdef FAST_SUBSTRUCT_CACHE
  SubstructureCache::HashKey cacheKey;
  SubstructureCache::TIndexEntry *cacheEntry = nullptr;
#endif

  bool foundInCache = false;
  bool foundInDupCache = false;

  {
#ifdef DUP_SUBSTRUCT_CACHE
    if (DuplicateCache.find(seed.DupCacheKey, foundInCache)) {
// duplicate found. skip match() but store both seeds, because they will grow by
// different paths !!!
#ifdef VERBOSE_STATISTICS_ON
      VerboseStatistics.DupCacheFound++;
      VerboseStatistics.DupCacheFoundMatch += foundInCache ? 1 : 0;
#endif
      if (!foundInCache) {  // mismatched !!!
        return false;
      }
    }
    foundInDupCache = foundInCache;
#endif
#ifdef FAST_SUBSTRUCT_CACHE
    if (!foundInCache) {
#ifdef VERBOSE_STATISTICS_ON
      ++VerboseStatistics.FindHashInCache;
#endif
      cacheEntry =
          HashCache.find(seed, QueryAtomLabels, QueryBondLabels, cacheKey);
      if (cacheEntry) {  // possibly found. check for hash collision
#ifdef VERBOSE_STATISTICS_ON
        ++VerboseStatistics.HashKeyFoundInCache;
#endif
        // check hash collisions (time +3%):
        for (const auto &g : *cacheEntry) {
          if (g.m_vertices.size() != seed.getNumAtoms() ||
              g.m_edges.size() != seed.getNumBonds()) {
            continue;
          }
#ifdef VERBOSE_STATISTICS_ON
          ++VerboseStatistics.ExactMatchCall;
#endif
          // EXACT MATCH
          foundInCache = SubstructMatchCustomTable(
              g, *QueryMolecule, seed.Topology, *QueryMolecule,
              QueryAtomMatchTable, QueryBondMatchTable, &Parameters);
#ifdef VERBOSE_STATISTICS_ON
          if (foundInCache) {
            ++VerboseStatistics.ExactMatchCallTrue;
          } else {
            break;
          }
#endif
        }
      }
    }
#endif
  }
  bool found = foundInCache;

  if (!found) {
    found = match(seed);
  }

  Seed *newSeed = nullptr;

  {
    if (found) {  // Store new generated seed, if found in cache or in
                  // all(- threshold) targets
      newSeed = &Seeds.add(seed);
      newSeed->CopyComplete = false;

#ifdef DUP_SUBSTRUCT_CACHE
      if (!foundInDupCache &&
          seed.getNumBonds() >= 3) {  // only seed with a ring
                                      // can be duplicated -
                                      // do not store very
                                      // small seed in cache
        DuplicateCache.add(seed.DupCacheKey, true);
      }
#endif
#ifdef FAST_SUBSTRUCT_CACHE
      if (!foundInCache) {
        HashCache.add(seed, cacheKey, cacheEntry);
      }
#endif
    } else {
#ifdef DUP_SUBSTRUCT_CACHE
      if (seed.getNumBonds() > 3) {
        DuplicateCache.add(seed.DupCacheKey,
                           false);  // opt. cache mismatched duplicates too
      }
#endif
    }
  }
  if (newSeed) {
    *newSeed = seed;  // non-blocking copy for MULTI_THREAD and best CPU
                      // utilization
  }

  return found;  // new matched seed has been actually added
}

bool MaximumCommonSubgraph::match(Seed &seed) {
  unsigned int max_miss = Targets.size() - ThresholdCount;
  unsigned int missing = 0;
  unsigned int passed = 0;

  for (const auto &tag : Targets) {
    unsigned int itarget = &tag - &Targets.front();
#ifdef VERBOSE_STATISTICS_ON
    { ++VerboseStatistics.MatchCall; }
#endif
    bool target_matched = false;
    if (!seed.MatchResult.empty() && !seed.MatchResult.at(itarget).empty()) {
      target_matched = matchIncrementalFast(seed, itarget);
    }
    if (!target_matched) {  // slow full match
      match_V_t match;      // THERE IS NO Bonds match INFO !!!!
      target_matched = SubstructMatchCustomTable(
          tag.Topology, *tag.Molecule, seed.Topology, *QueryMolecule,
          tag.AtomMatchTable, tag.BondMatchTable, &Parameters, &match);
      // save current match info
      if (target_matched) {
        if (seed.MatchResult.empty()) {
          seed.MatchResult.resize(Targets.size());
        }
        seed.MatchResult[itarget].init(seed, match, *QueryMolecule, tag);
      } else if (!seed.MatchResult.empty()) {
        seed.MatchResult[itarget].clear();  //.Empty = true; // == fast clear();
      }
#ifdef VERBOSE_STATISTICS_ON
      if (target_matched) {
        ++VerboseStatistics.SlowMatchCallTrue;
      }
#endif
    }

    if (target_matched) {
      if (++passed >= ThresholdCount) {  // it's enough
        break;
      }
    } else {  // mismatched
      if (++missing > max_miss) {
        break;
      }
    }
  }
  if (missing <= max_miss) {
#ifdef VERBOSE_STATISTICS_ON
    ++VerboseStatistics.MatchCallTrue;
#endif
    return true;
  }
  return false;
}

// call it for each target, if failed perform full match check
bool MaximumCommonSubgraph::matchIncrementalFast(Seed &seed,
                                                 unsigned int itarget) {
// use and update results of previous match stored in the seed
#ifdef VERBOSE_STATISTICS_ON
  { ++VerboseStatistics.FastMatchCall; }
#endif
  const auto &target = Targets.at(itarget);
  auto &match = seed.MatchResult.at(itarget);
  if (match.empty()) {
    return false;
  }
  /*
  // CHIRALITY: FinalMatchCheck:
  if(Parameters.AtomCompareParameters.MatchChiralTag ||
  Parameters.FinalMatchChecker) {   // TEMP
          match.clear();
          return false;
  }
  */
  bool matched = false;
  for (unsigned int newBondSeedIdx = match.MatchedBondSize;
       newBondSeedIdx < seed.getNumBonds(); newBondSeedIdx++) {
    matched = false;
    bool atomAdded = false;
    const auto newBond = seed.MoleculeFragment.Bonds.at(newBondSeedIdx);
    unsigned int newBondQueryIdx = newBond->getIdx();

    // seed's index of atom from which new bond was added
    unsigned int newBondSourceAtomSeedIdx;
    // seed's index of atom on other end of the bond
    unsigned int newBondOtherAtomSeedIdx;
    unsigned int i =
        seed.MoleculeFragment.SeedAtomIdxMap.at(newBond->getBeginAtomIdx());
    unsigned int j =
        seed.MoleculeFragment.SeedAtomIdxMap.at(newBond->getEndAtomIdx());
    if (i >= match.MatchedAtomSize) {
      // this is new atom in the seed
      newBondSourceAtomSeedIdx = j;
      newBondOtherAtomSeedIdx = i;
    } else {
      newBondSourceAtomSeedIdx = i;
      newBondOtherAtomSeedIdx = j;
    }
    unsigned int newBondOtherAtomQueryIdx =
        seed.MoleculeFragment.Atoms.at(newBondOtherAtomSeedIdx)->getIdx();
    unsigned int newBondSourceAtomQueryIdx =
        seed.MoleculeFragment.Atoms.at(newBondSourceAtomSeedIdx)->getIdx();
    // matched to newBondSourceAtomSeedIdx
    unsigned int newBondSourceAtomTargetIdx =
        match.TargetAtomIdx.at(newBondSourceAtomQueryIdx);
    const Bond *tb = nullptr;
    unsigned int newBondOtherAtomTargetIdx = NotSet;

    if (newBondOtherAtomSeedIdx < match.MatchedAtomSize) {
      // new bond between old atoms - both are
      // matched to exact atoms in the target
      newBondOtherAtomTargetIdx =
          match.TargetAtomIdx.at(newBondOtherAtomQueryIdx);
      // target bond between Source and Other atom
      tb = target.Molecule->getBondBetweenAtoms(newBondSourceAtomTargetIdx,
                                                newBondOtherAtomTargetIdx);
      if (tb) {
        // bond exists, check match with query molecule
        unsigned int tbi = tb->getIdx();
        unsigned int qbi =
            seed.MoleculeFragment.Bonds.at(newBondSeedIdx)->getIdx();
        if (!match.VisitedTargetBonds.test(tbi)) {
          // false if target bond is already matched
          matched = target.BondMatchTable.at(qbi, tbi);
        }
      }
    } else {
      // enumerate all bonds from source atom in the target
      const auto atom =
          target.Molecule->getAtomWithIdx(newBondSourceAtomTargetIdx);
      for (const auto &nbri :
           boost::make_iterator_range(target.Molecule->getAtomBonds(atom))) {
        tb = (*target.Molecule)[nbri];
        if (match.VisitedTargetBonds.test(tb->getIdx())) {
          continue;
        }
        newBondOtherAtomTargetIdx = tb->getBeginAtomIdx();
        if (newBondSourceAtomTargetIdx == newBondOtherAtomTargetIdx) {
          newBondOtherAtomTargetIdx = tb->getEndAtomIdx();
        }
        if (match.VisitedTargetAtoms.test(newBondOtherAtomTargetIdx)) {
          continue;
        }
        // check OtherAtom and bond
        matched = target.AtomMatchTable.at(newBondOtherAtomQueryIdx,
                                           newBondOtherAtomTargetIdx) &&
                  target.BondMatchTable.at(
                      seed.MoleculeFragment.Bonds.at(newBondSeedIdx)->getIdx(),
                      tb->getIdx());
        if (matched) {
          atomAdded = true;
          break;
        }
      }
    }

    if (matched) {      // update match history
      if (atomAdded) {  // new atom has been added
        match.MatchedAtomSize++;
        match.TargetAtomIdx[newBondOtherAtomQueryIdx] =
            newBondOtherAtomTargetIdx;
        match.VisitedTargetAtoms.set(newBondOtherAtomTargetIdx);
      }
      match.MatchedBondSize++;
      match.TargetBondIdx[newBondQueryIdx] = tb->getIdx();
      match.VisitedTargetBonds.set(tb->getIdx());
    } else {
      match.clear();
      return false;
    }
  }

  if (match.MatchedAtomSize != seed.getNumAtoms() ||
      match.MatchedBondSize !=
          seed.getNumBonds()) {  // number of unique items !!!
    match.clear();
    return false;
  }
  // CHIRALITY: FinalMatchCheck
  if (matched && Parameters.FinalMatchChecker) {
    std::vector<std::uint32_t> c1;
    c1.reserve(seed.getNumAtoms());
    std::vector<std::uint32_t> c2;
    c2.reserve(target.Molecule->getNumAtoms());
    for (unsigned int si = 0; si < seed.getNumAtoms(); ++si) {
      // index in the seed topology
      c1.push_back(si);
      c2.push_back(match.TargetAtomIdx.at(seed.Topology[si]));
    }
    matched = Parameters.FinalMatchChecker(c1.data(), c2.data(), *QueryMolecule,
                                           seed.Topology, *target.Molecule,
                                           target.Topology,
                                           &Parameters);  // check CHIRALITY
    if (!matched) {
      match.clear();
    }
  }
#ifdef VERBOSE_STATISTICS_ON
  if (matched) {
#ifdef MULTI_THREAD
    Guard statlock(StatisticsMutex);
#endif
    ++VerboseStatistics.FastMatchCallTrue;
  }
#endif
  return matched;
}
}  // namespace FMCS
}  // namespace RDKit