File: rdFMCS.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (907 lines) | stat: -rw-r--r-- 38,021 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
//
//  Copyright (C) 2014 Novartis Institutes for BioMedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <RDBoost/python.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/Wrap/substructmethods.h>
#include <RDBoost/Wrap.h>
#include <GraphMol/FMCS/FMCS.h>

#define COMPARE_FUNC_NAME "__call__"
#define CALLBACK_FUNC_NAME "__call__"

namespace python = boost::python;

namespace RDKit {

struct PyMCSWrapper : public boost::python::wrapper<PyMCSWrapper> {
 public:
  PyMCSWrapper() {}
  PyMCSWrapper(PyObject *obj) {
    PRECONDITION(obj, "PyObject* must not be NULL");
    d_pyObject.reset(
        new python::object(python::handle<>(python::borrowed(obj))));
  }
  virtual ~PyMCSWrapper() {}
  virtual const char *subclassName() const {
    throw std::invalid_argument(
        "subclassName() must be overridden in the "
        "derived class");
  }
  const python::object &pyObject() const { return *d_pyObject; }

 protected:
  void failedToExtractPyObject() const {
    std::stringstream ss;
    ss << "Failed to extract object from " << subclassName() << " subclass";
    PyErr_SetString(PyExc_RuntimeError, ss.str().c_str());
    python::throw_error_already_set();
  }
  void errorNotOverridden() const {
    std::stringstream ss;
    ss << "The " COMPARE_FUNC_NAME "() method must be overridden in the rdFMCS."
       << subclassName() << " subclass";
    PyErr_SetString(PyExc_AttributeError, ss.str().c_str());
    python::throw_error_already_set();
  }
  void errorNotDefined() const {
    // should never happen as the method is virtual but not pure in the C++
    // class
    std::stringstream ss;
    ss << "The " CALLBACK_FUNC_NAME
          "() method must be defined "
          "in the "
       << subclassName() << " subclass";
    PyErr_SetString(PyExc_AttributeError, ss.str().c_str());
    python::throw_error_already_set();
  }
  void errorNotCallable() const {
    std::stringstream ss;
    ss << "The " COMPARE_FUNC_NAME " attribute in the " << subclassName()
       << " subclass is not a callable method";
    PyErr_SetString(PyExc_TypeError, ss.str().c_str());
    python::throw_error_already_set();
  }
  virtual bool hasPythonOverride(const char *attrName) const {
    auto obj = get_override(attrName);
    return PyCallable_Check(obj.ptr());
  }
  void extractPyMCSWrapper() {
    d_pyObjectExtractor.reset(new python::extract<PyMCSWrapper *>(*d_pyObject));
    if (d_pyObjectExtractor->check()) {
      PyObject *callable =
          PyObject_GetAttrString(d_pyObject->ptr(), CALLBACK_FUNC_NAME);
      if (!callable) {
        errorNotDefined();
      }
      if (!PyCallable_Check(callable)) {
        errorNotCallable();
      }
      if (!pyObjectExtract()->hasPythonOverride(CALLBACK_FUNC_NAME)) {
        errorNotOverridden();
      }
    } else {
      std::stringstream ss;
      ss << "expected an instance of the rdFMCS." << subclassName()
         << " subclass";
      PyErr_SetString(PyExc_TypeError, ss.str().c_str());
      python::throw_error_already_set();
    }
  }
  PyMCSWrapper *pyObjectExtract() const { return (*d_pyObjectExtractor)(); }

 private:
  std::unique_ptr<python::object> d_pyObject;
  std::unique_ptr<python::extract<PyMCSWrapper *>> d_pyObjectExtractor;
};

struct PyMCSAtomCompare : public PyMCSWrapper {
 public:
  PyMCSAtomCompare() {}
  PyMCSAtomCompare(PyObject *obj) : PyMCSWrapper(obj) {}
  ~PyMCSAtomCompare() {}
  bool extractAtomComparator(AtomComparator &ac) {
    bool res = false;
    python::extract<AtomComparator> predefinedAtomComparator(pyObject());
    if (predefinedAtomComparator.check()) {
      ac = predefinedAtomComparator();
      res = true;
    } else {
      extractPyMCSWrapper();
    }
    return res;
  }
  PyMCSAtomCompare *extractPyObject() const {
    auto res = dynamic_cast<PyMCSAtomCompare *>(pyObjectExtract());
    if (!res) {
      failedToExtractPyObject();
    }
    return res;
  }
  inline bool checkAtomRingMatch(const MCSAtomCompareParameters &p,
                                 const ROMol &mol1, unsigned int atom1,
                                 const ROMol &mol2, unsigned int atom2) const {
    return RDKit::checkAtomRingMatch(p, mol1, atom1, mol2, atom2);
  }
  inline bool checkAtomCharge(const MCSAtomCompareParameters &p,
                              const ROMol &mol1, unsigned int atom1,
                              const ROMol &mol2, unsigned int atom2) const {
    return RDKit::checkAtomCharge(p, mol1, atom1, mol2, atom2);
  }
  inline bool checkAtomChirality(const MCSAtomCompareParameters &p,
                                 const ROMol &mol1, unsigned int atom1,
                                 const ROMol &mol2, unsigned int atom2) const {
    return RDKit::checkAtomChirality(p, mol1, atom1, mol2, atom2);
  }
  inline const char *subclassName() const { return "MCSAtomCompare"; }
  virtual bool operator()(const MCSAtomCompareParameters &, const ROMol &,
                          unsigned int, const ROMol &, unsigned int) const {
    errorNotOverridden();
    return false;
  }
};

struct PyMCSBondCompare : public PyMCSWrapper {
  PyMCSBondCompare() {}
  PyMCSBondCompare(PyObject *obj) : PyMCSWrapper(obj) {}
  ~PyMCSBondCompare() {}
  bool extractBondComparator(BondComparator &bc) {
    bool res = false;
    python::extract<BondComparator> predefinedBondComparator(pyObject());
    if (predefinedBondComparator.check()) {
      bc = predefinedBondComparator();
      res = true;
    } else {
      extractPyMCSWrapper();
    }
    return res;
  }
  PyMCSBondCompare *extractPyObject() const {
    auto res = dynamic_cast<PyMCSBondCompare *>(pyObjectExtract());
    if (!res) {
      failedToExtractPyObject();
    }
    return res;
  }
  inline bool checkBondStereo(const MCSBondCompareParameters &p,
                              const ROMol &mol1, unsigned int bond1,
                              const ROMol &mol2, unsigned int bond2) const {
    return RDKit::checkBondStereo(p, mol1, bond1, mol2, bond2);
  }
  inline bool checkBondRingMatch(const MCSBondCompareParameters &p,
                                 const ROMol &mol1, unsigned int bond1,
                                 const ROMol &mol2, unsigned int bond2) {
    return RDKit::checkBondRingMatch(p, mol1, bond1, mol2, bond2);
  }
  inline const char *subclassName() const { return "MCSBondCompare"; }
  virtual bool operator()(const MCSBondCompareParameters &, const ROMol &,
                          unsigned int, const ROMol &, unsigned int) const {
    errorNotOverridden();
    return false;
  }
  const MCSParameters *mcsParameters;
};

struct PyAtomBondCompData {
  python::object pyAtomComp;
  python::object pyBondComp;
  MCSBondCompareFunction standardBondTyperFunc = nullptr;
};

struct PyBaseUserData {
  PyAtomBondCompData pyAtomBondCompData;
};

struct PyCompareFunctionUserData : public PyBaseUserData {
  const MCSParameters *mcsParameters;
};

struct PyProgressCallbackUserData : public PyBaseUserData {
  const MCSProgressData *mcsProgressData;
  python::object pyMCSProgress;
};

struct PyMCSFinalMatchCheckFunctionUserData : public PyBaseUserData {
  python::object pyMCSFinalMatchCheck;
};

struct PyMCSAcceptanceFunctionUserData : public PyBaseUserData {
  python::object pyMCSAcceptance;
};

struct PyMCSProgress : public PyMCSWrapper {
  PyMCSProgress() {}
  PyMCSProgress(PyObject *obj) : PyMCSWrapper(obj) { extractPyMCSWrapper(); }
  ~PyMCSProgress() {}
  PyMCSProgress *extractPyObject() const {
    auto res = dynamic_cast<PyMCSProgress *>(pyObjectExtract());
    if (!res) {
      failedToExtractPyObject();
    }
    return res;
  }
  inline const char *subclassName() const { return "MCSProgress"; }
  virtual bool operator()(const MCSProgressData &,
                          const MCSParameters &) const {
    errorNotOverridden();
    return false;
  }
};

class PyMCSProgressData {
 public:
  PyMCSProgressData()
      : pd(new MCSProgressData()), pcud(new PyProgressCallbackUserData()) {
    pcud->mcsProgressData = pd.get();
  }
  PyMCSProgressData(const MCSProgressData &other) : PyMCSProgressData() {
    *pd = other;
  }
  unsigned int getNumAtoms() const { return pd->NumAtoms; }
  unsigned int getNumBonds() const { return pd->NumBonds; }
  unsigned int getSeedProcessed() const { return pd->SeedProcessed; }

 private:
  std::unique_ptr<MCSProgressData> pd;
  std::unique_ptr<PyProgressCallbackUserData> pcud;
};

struct PyMCSFinalMatchCheck : public PyMCSWrapper {
  PyMCSFinalMatchCheck() {}
  PyMCSFinalMatchCheck(PyObject *obj) : PyMCSWrapper(obj) {
    extractPyMCSWrapper();
  }
  ~PyMCSFinalMatchCheck() {}
  PyMCSFinalMatchCheck *extractPyObject() const {
    auto res = dynamic_cast<PyMCSFinalMatchCheck *>(pyObjectExtract());
    if (!res) {
      failedToExtractPyObject();
    }
    return res;
  }
  inline const char *subclassName() const { return "MCSFinalMatchCheck"; }
  virtual bool operator()() const {
    errorNotOverridden();
    return false;
  }
};

struct PyMCSAcceptance : public PyMCSWrapper {
  PyMCSAcceptance() {}
  PyMCSAcceptance(PyObject *obj) : PyMCSWrapper(obj) { extractPyMCSWrapper(); }
  ~PyMCSAcceptance() {}
  PyMCSAcceptance *extractPyObject() const {
    auto res = dynamic_cast<PyMCSAcceptance *>(pyObjectExtract());
    if (!res) {
      failedToExtractPyObject();
    }
    return res;
  }
  virtual bool operator()() const {
    errorNotOverridden();
    return false;
  }
};

class PyMCSParameters : public boost::noncopyable {
 public:
  PyMCSParameters() : p(new MCSParameters()) {
    cfud.mcsParameters = p.get();
    pcud.mcsProgressData = nullptr;
  }
  PyMCSParameters(const MCSParameters &other) : PyMCSParameters() {
    *p = other;
  }
  PyMCSParameters(const MCSParameters &other,
                  const PyProgressCallbackUserData &pcudOther)
      : PyMCSParameters(other) {
    pcud.pyMCSProgress = pcudOther.pyMCSProgress;
    cfud.pyAtomBondCompData = pcudOther.pyAtomBondCompData;
  }
  PyMCSParameters(const MCSParameters &other,
                  const PyMCSFinalMatchCheckFunctionUserData &fmudOther)
      : PyMCSParameters(other) {
    fmud.pyMCSFinalMatchCheck = fmudOther.pyMCSFinalMatchCheck;
    cfud.pyAtomBondCompData = fmudOther.pyAtomBondCompData;
  }
  PyMCSParameters(const MCSParameters &other,
                  const PyMCSAcceptanceFunctionUserData &afudOther)
      : PyMCSParameters(other) {
    afud.pyMCSAcceptance = afudOther.pyMCSAcceptance;
    cfud.pyAtomBondCompData = afudOther.pyAtomBondCompData;
  }
  const MCSParameters *get() const { return p.get(); }
  bool getMaximizeBonds() const { return p->MaximizeBonds; }
  void setMaximizeBonds(bool value) { p->MaximizeBonds = value; }
  double getThreshold() const { return p->Threshold; }
  void setThreshold(double value) { p->Threshold = value; }
  unsigned int getTimeout() const { return p->Timeout; }
  void setTimeout(unsigned int value) { p->Timeout = value; }
  bool getVerbose() const { return p->Verbose; }
  void setVerbose(bool value) { p->Verbose = value; }
  const MCSAtomCompareParameters &getAtomCompareParameters() const {
    return p->AtomCompareParameters;
  }
  void setAtomCompareParameters(const MCSAtomCompareParameters &value) {
    p->AtomCompareParameters = value;
  }
  const MCSBondCompareParameters &getBondCompareParameters() const {
    return p->BondCompareParameters;
  }
  void setBondCompareParameters(const MCSBondCompareParameters &value) {
    p->BondCompareParameters = value;
  }
  std::string getInitialSeed() const { return p->InitialSeed; }
  void setInitialSeed(const std::string &value) { p->InitialSeed = value; }
  bool getStoreAll() const { return p->StoreAll; }
  void setStoreAll(bool value) { p->StoreAll = value; }
  void setMCSAtomTyper(PyObject *atomComp) {
    PyMCSAtomCompare pyMCSAtomCompare(atomComp);
    AtomComparator ac;
    if (pyMCSAtomCompare.extractAtomComparator(ac)) {
      p->setMCSAtomTyperFromEnum(ac);
    } else {
      p->CompareFunctionsUserData = &cfud;
      p->AtomTyper = MCSAtomComparePyFunc;
      cfud.pyAtomBondCompData.pyAtomComp = pyMCSAtomCompare.pyObject();
      cfud.mcsParameters = p.get();
    }
  }
  python::object getMCSAtomTyper() const {
    static const std::map<RDKit::MCSAtomCompareFunction, RDKit::AtomComparator>
        atomTyperToComp = {
            {MCSAtomCompareAny, AtomCompareAny},
            {MCSAtomCompareElements, AtomCompareElements},
            {MCSAtomCompareIsotopes, AtomCompareIsotopes},
            {MCSAtomCompareAnyHeavyAtom, AtomCompareAnyHeavyAtom}};
    if (!cfud.pyAtomBondCompData.pyAtomComp.is_none()) {
      return cfud.pyAtomBondCompData.pyAtomComp;
    }
    python::object res;
    try {
      res = python::object(atomTyperToComp.at(p->AtomTyper));
    } catch (const std::out_of_range &) {
      PyErr_SetString(PyExc_TypeError, "Unknown AtomTyper");
      python::throw_error_already_set();
    }
    return res;
  }
  void setMCSBondTyper(PyObject *bondComp) {
    PyMCSBondCompare pyMCSBondCompare(bondComp);
    BondComparator bc;
    if (pyMCSBondCompare.extractBondComparator(bc)) {
      p->setMCSBondTyperFromEnum(bc);
    } else {
      p->CompareFunctionsUserData = &cfud;
      p->BondTyper = MCSBondComparePyFunc;
      cfud.pyAtomBondCompData.pyBondComp = pyMCSBondCompare.pyObject();
      auto bc = pyMCSBondCompare.extractPyObject();
      bc->mcsParameters = p.get();
      cfud.mcsParameters = p.get();
    }
  }
  python::object getMCSBondTyper() const {
    static const std::map<RDKit::MCSBondCompareFunction, RDKit::BondComparator>
        bondTyperToComp = {{MCSBondCompareAny, BondCompareAny},
                           {MCSBondCompareOrder, BondCompareOrder},
                           {MCSBondCompareOrderExact, BondCompareOrderExact}};
    if (!cfud.pyAtomBondCompData.pyBondComp.is_none()) {
      return cfud.pyAtomBondCompData.pyBondComp;
    }
    python::object res;
    try {
      res = python::object(bondTyperToComp.at(p->BondTyper));
    } catch (const std::out_of_range &) {
      PyErr_SetString(PyExc_TypeError, "Unknown BondTyper");
      python::throw_error_already_set();
    }
    return res;
  }
  void setMCSProgressCallback(PyObject *progress) {
    PyMCSProgress pyMCSProgress(progress);
    p->ProgressCallbackUserData = &pcud;
    p->ProgressCallback = MCSProgressCallbackPyFunc;
    pcud.pyMCSProgress = pyMCSProgress.pyObject();
    pcud.pyAtomBondCompData = cfud.pyAtomBondCompData;
  }
  python::object getMCSProgressCallback() {
    if (!pcud.pyMCSProgress.is_none()) {
      return pcud.pyMCSProgress;
    }
    return python::object();
  }
  void setFinalMatchCheck(PyObject *finalMatchCheck) {
    PyMCSFinalMatchCheck pyMCSFinalMatchCheck(finalMatchCheck);
    p->FinalMatchChecker = MCSFinalMatchCheckPyFunc;
    p->FinalMatchCheckerUserData = &fmud;
    fmud.pyMCSFinalMatchCheck = pyMCSFinalMatchCheck.pyObject();
    fmud.pyAtomBondCompData = cfud.pyAtomBondCompData;
  }
  python::object getFinalMatchCheck() const {
    if (!fmud.pyMCSFinalMatchCheck.is_none()) {
      return fmud.pyMCSFinalMatchCheck;
    }
    return python::object();
  }
  void setShouldAcceptMCS(PyObject *mcsAcceptance) {
    PyMCSAcceptance pyMCSAcceptance(mcsAcceptance);
    p->ShouldAcceptMCS = MCSAcceptancePyFunc;
    p->ShouldAcceptMCSUserData = &afud;
    afud.pyMCSAcceptance = pyMCSAcceptance.pyObject();
    afud.pyAtomBondCompData = cfud.pyAtomBondCompData;
  }
  python::object getShouldAcceptMCS() const {
    if (!afud.pyMCSAcceptance.is_none()) {
      return afud.pyMCSAcceptance;
    }
    return python::object();
  }

 private:
  static bool MCSAtomComparePyFunc(const MCSAtomCompareParameters &p,
                                   const ROMol &mol1, unsigned int atom1,
                                   const ROMol &mol2, unsigned int atom2,
                                   void *userData) {
    PRECONDITION(userData, "userData must not be NULL");
    PyCompareFunctionUserData *cfud =
        static_cast<PyCompareFunctionUserData *>(userData);
    CHECK_INVARIANT(cfud, "");
    bool res = false;
    {
      PyGILStateHolder h;
      res = python::call_method<bool>(
          cfud->pyAtomBondCompData.pyAtomComp.ptr(), COMPARE_FUNC_NAME,
          boost::ref(p), boost::ref(mol1), atom1, boost::ref(mol2), atom2);
    }
    return res;
  }
  static bool MCSBondComparePyFunc(const MCSBondCompareParameters &p,
                                   const ROMol &mol1, unsigned int bond1,
                                   const ROMol &mol2, unsigned int bond2,
                                   void *userData) {
    PRECONDITION(userData, "userData must not be NULL");
    PyCompareFunctionUserData *cfud =
        static_cast<PyCompareFunctionUserData *>(userData);
    CHECK_INVARIANT(cfud, "");
    bool res = false;
    {
      PyGILStateHolder h;
      res = python::call_method<bool>(
          cfud->pyAtomBondCompData.pyBondComp.ptr(), COMPARE_FUNC_NAME,
          boost::ref(p), boost::ref(mol1), bond1, boost::ref(mol2), bond2);
    }
    return res;
  }
  static bool MCSProgressCallbackPyFunc(const MCSProgressData &stat,
                                        const MCSParameters &params,
                                        void *userData) {
    PRECONDITION(userData, "userData must not be NULL");
    PyProgressCallbackUserData *pcud =
        static_cast<PyProgressCallbackUserData *>(userData);
    bool res = false;
    CHECK_INVARIANT(pcud, "");
    MCSParameters paramsCopy(params);
    if (pcud->pyAtomBondCompData.standardBondTyperFunc) {
      paramsCopy.BondTyper = pcud->pyAtomBondCompData.standardBondTyperFunc;
    }
    {
      PyGILStateHolder h;
      PyMCSParameters ps(paramsCopy, *pcud);
      PyMCSProgressData pd(stat);
      res = python::call_method<bool>(pcud->pyMCSProgress.ptr(),
                                      CALLBACK_FUNC_NAME, boost::ref(pd),
                                      boost::ref(ps));
    }
    return res;
  }
  static bool MCSFinalMatchCheckPyFunc(
      const std::uint32_t c1[], const std::uint32_t c2[], const ROMol &mol1,
      const FMCS::Graph &query, const ROMol &mol2, const FMCS::Graph &target,
      const MCSParameters *params) {
    PRECONDITION(params, "params must not be NULL");
    PyMCSFinalMatchCheckFunctionUserData *fmud =
        static_cast<PyMCSFinalMatchCheckFunctionUserData *>(
            params->FinalMatchCheckerUserData);
    CHECK_INVARIANT(fmud, "");
    bool res = false;
    {
      PyGILStateHolder h;
      PyMCSParameters ps(*params, *fmud);
      auto numMcsAtoms = boost::num_vertices(query);
      PyObject *pyAtomIdxMatch = PyTuple_New(numMcsAtoms);
      for (unsigned int i = 0; i < numMcsAtoms; ++i) {
        PyObject *pyPair = PyTuple_New(2);
        PyTuple_SetItem(pyPair, 0,
                        PyInt_FromLong(query[c1[boost::vertex(i, query)]]));
        PyTuple_SetItem(pyPair, 1,
                        PyInt_FromLong(target[c2[boost::vertex(i, query)]]));
        PyTuple_SetItem(pyAtomIdxMatch, i, pyPair);
      }
      auto numMcsBonds = boost::num_edges(query);
      auto queryBondIt = boost::edges(query).first;
      PyObject *pyBondIdxMatch = PyTuple_New(numMcsBonds);
      for (unsigned int i = 0; i < numMcsBonds; ++i, ++queryBondIt) {
        const auto queryBond = mol1.getBondBetweenAtoms(
            query[c1[boost::source(*queryBondIt, query)]],
            query[c1[boost::target(*queryBondIt, query)]]);
        CHECK_INVARIANT(queryBond, "");
        const auto targetBond = mol2.getBondBetweenAtoms(
            target[c2[boost::source(*queryBondIt, query)]],
            target[c2[boost::target(*queryBondIt, query)]]);
        CHECK_INVARIANT(targetBond, "");
        PyObject *pyPair = PyTuple_New(2);
        PyTuple_SetItem(pyPair, 0, PyInt_FromLong(queryBond->getIdx()));
        PyTuple_SetItem(pyPair, 1, PyInt_FromLong(targetBond->getIdx()));
        PyTuple_SetItem(pyBondIdxMatch, i, pyPair);
      }
      res = python::call_method<bool>(
          fmud->pyMCSFinalMatchCheck.ptr(), CALLBACK_FUNC_NAME,
          boost::ref(mol1), boost::ref(mol2), python::handle<>(pyAtomIdxMatch),
          python::handle<>(pyBondIdxMatch), boost::ref(ps));
    }
    return res;
  }
  static bool MCSAcceptancePyFunc(
      const ROMol &query, const ROMol &target,
      const std::vector<std::pair<int, int>> &atomIdxMatch,
      const std::vector<std::pair<int, int>> &bondIdxMatch,
      const MCSParameters *params) {
    PRECONDITION(params, "params must not be NULL");
    PyMCSAcceptanceFunctionUserData *afud =
        static_cast<PyMCSAcceptanceFunctionUserData *>(
            params->ShouldAcceptMCSUserData);
    CHECK_INVARIANT(afud, "");
    bool res = false;
    {
      PyGILStateHolder h;
      PyMCSParameters ps(*params, *afud);
      auto pyAtomIdxMatch = convertMatchesToTupleOfPairs(atomIdxMatch);
      auto pyBondIdxMatch = convertMatchesToTupleOfPairs(bondIdxMatch);
      res = python::call_method<bool>(
          afud->pyMCSAcceptance.ptr(), CALLBACK_FUNC_NAME, boost::ref(query),
          boost::ref(target), python::handle<>(pyAtomIdxMatch),
          python::handle<>(pyBondIdxMatch), boost::ref(ps));
    }
    return res;
  }
  std::unique_ptr<MCSParameters> p;
  PyCompareFunctionUserData cfud;
  PyProgressCallbackUserData pcud;
  PyMCSFinalMatchCheckFunctionUserData fmud;
  PyMCSAcceptanceFunctionUserData afud;
};

MCSResult *FindMCSWrapper(python::object mols, bool maximizeBonds,
                          double threshold, unsigned int timeout, bool verbose,
                          bool matchValences, bool ringMatchesRingOnly,
                          bool completeRingsOnly, bool matchChiralTag,
                          AtomComparator atomComp, BondComparator bondComp,
                          RingComparator ringComp, std::string seedSmarts) {
  std::vector<ROMOL_SPTR> ms;
  unsigned int nElems = python::extract<unsigned int>(mols.attr("__len__")());
  ms.resize(nElems);
  for (unsigned int i = 0; i < nElems; ++i) {
    if (!mols[i]) {
      throw_value_error("molecule is None");
    }
    ms[i] = python::extract<ROMOL_SPTR>(mols[i]);
  }
  MCSParameters p;
  p.Threshold = threshold;
  p.MaximizeBonds = maximizeBonds;
  p.Timeout = timeout;
  p.Verbose = verbose;
  p.InitialSeed = seedSmarts;
  p.AtomCompareParameters.MatchValences = matchValences;
  p.AtomCompareParameters.MatchChiralTag = matchChiralTag;
  p.AtomCompareParameters.RingMatchesRingOnly = ringMatchesRingOnly;
  p.setMCSAtomTyperFromEnum(atomComp);
  p.setMCSBondTyperFromEnum(bondComp);
  p.BondCompareParameters.RingMatchesRingOnly = ringMatchesRingOnly;
  p.BondCompareParameters.CompleteRingsOnly = completeRingsOnly;
  p.BondCompareParameters.MatchFusedRings = (ringComp != IgnoreRingFusion);
  p.BondCompareParameters.MatchFusedRingsStrict =
      (ringComp == StrictRingFusion);

  MCSResult *res = nullptr;
  {
    NOGIL gil;
    res = new MCSResult(findMCS(ms, &p));
  }
  return res;
}

MCSResult *FindMCSWrapper2(python::object mols, PyMCSParameters &pyMcsParams) {
  std::vector<ROMOL_SPTR> ms;
  unsigned int nElems = python::extract<unsigned int>(mols.attr("__len__")());
  ms.resize(nElems);
  for (unsigned int i = 0; i < nElems; ++i) {
    if (!mols[i]) {
      throw_value_error("molecule is None");
    }
    ms[i] = python::extract<ROMOL_SPTR>(mols[i]);
  }

  MCSResult *res = nullptr;
  {
    NOGIL gil;
    res = new MCSResult(findMCS(ms, pyMcsParams.get()));
  }
  return res;
}
}  // namespace RDKit
namespace {
python::object degenerateSmartsQueryMolDictHelper(
    const RDKit::MCSResult &self) {
  python::dict res;
  for (const auto &pair : self.DegenerateSmartsQueryMolDict) {
    res[pair.first] = pair.second;
  }
  return res;
}
struct mcsresult_wrapper {
  static void wrap() {
    python::class_<RDKit::MCSResult>("MCSResult", "used to return MCS results",
                                     python::no_init)
        .def_readonly("numAtoms", &RDKit::MCSResult::NumAtoms,
                      "number of atoms in MCS")
        .def_readonly("numBonds", &RDKit::MCSResult::NumBonds,
                      "number of bonds in MCS")
        .def_readonly("queryMol", &RDKit::MCSResult::QueryMol,
                      "query molecule for the MCS")
        .def_readonly("smartsString", &RDKit::MCSResult::SmartsString,
                      "SMARTS string for the MCS")
        .def_readonly("canceled", &RDKit::MCSResult::Canceled,
                      "if True, the MCS calculation did not finish")
        .add_property(
            "degenerateSmartsQueryMolDict", degenerateSmartsQueryMolDictHelper,
            "Dictionary collecting all degenerate (SMARTS, queryMol) pairs "
            "(empty if MCSParameters.StoreAll is False)");
  }
};
}  // namespace

BOOST_PYTHON_MODULE(rdFMCS) {
  python::scope().attr("__doc__") =
      "Module containing a C++ implementation of the FMCS algorithm";
  mcsresult_wrapper::wrap();

  python::enum_<RDKit::AtomComparator>("AtomCompare")
      .value("CompareAny", RDKit::AtomCompareAny)
      .value("CompareElements", RDKit::AtomCompareElements)
      .value("CompareIsotopes", RDKit::AtomCompareIsotopes)
      .value("CompareAnyHeavyAtom", RDKit::AtomCompareAnyHeavyAtom);
  python::enum_<RDKit::BondComparator>("BondCompare")
      .value("CompareAny", RDKit::BondCompareAny)
      .value("CompareOrder", RDKit::BondCompareOrder)
      .value("CompareOrderExact", RDKit::BondCompareOrderExact);
  python::enum_<RDKit::RingComparator>("RingCompare")
      .value("IgnoreRingFusion", RDKit::IgnoreRingFusion)
      .value("PermissiveRingFusion", RDKit::PermissiveRingFusion)
      .value("StrictRingFusion", RDKit::StrictRingFusion);

  std::string docString = "Find the MCS for a set of molecules";
  python::def(
      "FindMCS", RDKit::FindMCSWrapper,
      (python::arg("mols"), python::arg("maximizeBonds") = true,
       python::arg("threshold") = 1.0, python::arg("timeout") = 3600,
       python::arg("verbose") = false, python::arg("matchValences") = false,
       python::arg("ringMatchesRingOnly") = false,
       python::arg("completeRingsOnly") = false,
       python::arg("matchChiralTag") = false,
       python::arg("atomCompare") = RDKit::AtomCompareElements,
       python::arg("bondCompare") = RDKit::BondCompareOrder,
       python::arg("ringCompare") = RDKit::IgnoreRingFusion,
       python::arg("seedSmarts") = ""),
      python::return_value_policy<python::manage_new_object>(),
      docString.c_str());

  python::class_<RDKit::PyMCSParameters, boost::noncopyable>(
      "MCSParameters", "Parameters controlling how the MCS is constructed")
      .add_property("MaximizeBonds", &RDKit::PyMCSParameters::getMaximizeBonds,
                    &RDKit::PyMCSParameters::setMaximizeBonds,
                    "toggles maximizing the number of bonds (instead of the "
                    "number of atoms)")
      .add_property("Threshold", &RDKit::PyMCSParameters::getThreshold,
                    &RDKit::PyMCSParameters::setThreshold,
                    "fraction of the dataset that must contain the MCS")
      .add_property("Timeout", &RDKit::PyMCSParameters::getTimeout,
                    &RDKit::PyMCSParameters::setTimeout,
                    "timeout (in seconds) for the calculation")
      .add_property("Verbose", &RDKit::PyMCSParameters::getVerbose,
                    &RDKit::PyMCSParameters::setVerbose, "toggles verbose mode")
      .add_property("AtomCompareParameters",
                    python::make_function(
                        &RDKit::PyMCSParameters::getAtomCompareParameters,
                        python::return_internal_reference<>()),
                    &RDKit::PyMCSParameters::setAtomCompareParameters,
                    "parameters for comparing atoms")
      .add_property("BondCompareParameters",
                    python::make_function(
                        &RDKit::PyMCSParameters::getBondCompareParameters,
                        python::return_internal_reference<>()),
                    &RDKit::PyMCSParameters::setBondCompareParameters,
                    "parameters for comparing bonds")
      .add_property("AtomTyper", &RDKit::PyMCSParameters::getMCSAtomTyper,
                    &RDKit::PyMCSParameters::setMCSAtomTyper,
                    "atom typer to be used. Must be one of the "
                    "members of the rdFMCS.AtomCompare class or "
                    "an instance of a user-defined subclass of "
                    "rdFMCS.MCSAtomCompare")
      .add_property("BondTyper", &RDKit::PyMCSParameters::getMCSBondTyper,
                    &RDKit::PyMCSParameters::setMCSBondTyper,
                    "bond typer to be used. Must be one of the "
                    "members of the rdFMCS.BondCompare class or "
                    "an instance of a user-defined subclass of "
                    "rdFMCS.MCSBondCompare")
      .add_property("ProgressCallback",
                    &RDKit::PyMCSParameters::getMCSProgressCallback,
                    &RDKit::PyMCSParameters::setMCSProgressCallback,
                    "progress callback class. Must be a "
                    "user-defined subclass of rdFMCS.Progress")
      .add_property("FinalMatchChecker",
                    &RDKit::PyMCSParameters::getFinalMatchCheck,
                    &RDKit::PyMCSParameters::setFinalMatchCheck,
                    "seed final match checker callback class. Must be a "
                    "user-defined subclass of rdFMCS.MCSFinalMatchCheck")
      .add_property("ShouldAcceptMCS",
                    &RDKit::PyMCSParameters::getShouldAcceptMCS,
                    &RDKit::PyMCSParameters::setShouldAcceptMCS,
                    "MCS acceptance callback class. Must be a "
                    "user-defined subclass of rdFMCS.MCSAcceptance")
      .add_property("InitialSeed", &RDKit::PyMCSParameters::getInitialSeed,
                    &RDKit::PyMCSParameters::setInitialSeed,
                    "SMILES string to be used as the seed of the MCS")
      .add_property("StoreAll", &RDKit::PyMCSParameters::getStoreAll,
                    &RDKit::PyMCSParameters::setStoreAll,
                    "toggles storage of degenerate MCSs");

  python::class_<RDKit::MCSAtomCompareParameters, boost::noncopyable>(
      "MCSAtomCompareParameters",
      "Parameters controlling how atom-atom matching is done")
      .def_readwrite("MatchValences",
                     &RDKit::MCSAtomCompareParameters::MatchValences,
                     "include atom valences in the match")
      .def_readwrite("MatchChiralTag",
                     &RDKit::MCSAtomCompareParameters::MatchChiralTag,
                     "include atom chirality in the match")
      .def_readwrite("MaxDistance",
                     &RDKit::MCSAtomCompareParameters::MaxDistance,
                     "Require atoms to be within this many angstroms in 3D")
      .def_readwrite("MatchFormalCharge",
                     &RDKit::MCSAtomCompareParameters::MatchFormalCharge,
                     "include formal charge in the match")
      .def_readwrite("RingMatchesRingOnly",
                     &RDKit::MCSAtomCompareParameters::RingMatchesRingOnly,
                     "ring atoms are only allowed to match other ring atoms")
      .def_readwrite("CompleteRingsOnly",
                     &RDKit::MCSAtomCompareParameters::CompleteRingsOnly,
                     "results cannot include lone ring atoms")
      .def_readwrite("MatchIsotope",
                     &RDKit::MCSAtomCompareParameters::MatchIsotope,
                     "use isotope atom queries in MCSResults");

  python::class_<RDKit::MCSBondCompareParameters, boost::noncopyable>(
      "MCSBondCompareParameters",
      "Parameters controlling how bond-bond matching is done")
      .def_readwrite("RingMatchesRingOnly",
                     &RDKit::MCSBondCompareParameters::RingMatchesRingOnly,
                     "ring bonds are only allowed to match other ring bonds")
      .def_readwrite("CompleteRingsOnly",
                     &RDKit::MCSBondCompareParameters::CompleteRingsOnly,
                     "results cannot include partial rings")
      .def_readwrite(
          "MatchFusedRings", &RDKit::MCSBondCompareParameters::MatchFusedRings,
          "enforce check on ring fusion, i.e. alpha-methylnaphthalene "
          "won't match beta-methylnaphtalene, but decalin "
          "will match cyclodecane unless MatchFusedRingsStrict is True")
      .def_readwrite(
          "MatchFusedRingsStrict",
          &RDKit::MCSBondCompareParameters::MatchFusedRingsStrict,
          "only enforced if MatchFusedRings is True; the ring fusion "
          "must be the same in both query and target, i.e. decalin "
          "won't match cyclodecane")
      .def_readwrite("MatchStereo",
                     &RDKit::MCSBondCompareParameters::MatchStereo,
                     "include bond stereo in the comparison");

  python::class_<RDKit::PyMCSProgress, boost::noncopyable>(
      "MCSProgress",
      "Base class. Subclass and override "
      "MCSProgress." CALLBACK_FUNC_NAME
      "() "
      "to define a custom callback function")
      .def(
          CALLBACK_FUNC_NAME, &RDKit::PyMCSProgress::operator(),
          (python::arg("self"), python::arg("stat"), python::arg("parameters")),
          "override to implement a custom progress callback");

  python::class_<RDKit::PyMCSProgressData, boost::noncopyable>(
      "MCSProgressData", "Information about the MCS progress")
      .add_property("numAtoms", &RDKit::PyMCSProgressData::getNumAtoms,
                    "number of atoms in MCS")
      .add_property("numBonds", &RDKit::PyMCSProgressData::getNumBonds,
                    "number of bonds in MCS")
      .add_property("seedProcessed",
                    &RDKit::PyMCSProgressData::getSeedProcessed,
                    "number of processed seeds");

  python::class_<RDKit::PyMCSAtomCompare, boost::noncopyable>(
      "MCSAtomCompare",
      "Base class. Subclass and override "
      "MCSAtomCompare." COMPARE_FUNC_NAME
      "() to define custom "
      "atom compare functions, then set MCSParameters.AtomTyper "
      "to an instance of the subclass")
      .def("CheckAtomRingMatch", &RDKit::PyMCSAtomCompare::checkAtomRingMatch,
           (python::arg("self"), python::arg("parameters"), python::arg("mol1"),
            python::arg("atom1"), python::arg("mol2"), python::arg("atom2")),
           "Return True if both atoms are, or are not, in a ring")
      .def("CheckAtomCharge", &RDKit::PyMCSAtomCompare::checkAtomCharge,
           (python::arg("self"), python::arg("parameters"), python::arg("mol1"),
            python::arg("atom1"), python::arg("mol2"), python::arg("atom2")),
           "Return True if both atoms have the same formal charge")
      .def("CheckAtomChirality", &RDKit::PyMCSAtomCompare::checkAtomChirality,
           (python::arg("self"), python::arg("parameters"), python::arg("mol1"),
            python::arg("atom1"), python::arg("mol2"), python::arg("atom2")),
           "Return True if both atoms have, or have not, a chiral tag")
      .def(COMPARE_FUNC_NAME, &RDKit::PyMCSAtomCompare::operator(),
           (python::arg("self"), python::arg("parameters"), python::arg("mol1"),
            python::arg("atom1"), python::arg("mol2"), python::arg("atom2")),
           "override to implement custom atom comparison");

  python::class_<RDKit::PyMCSBondCompare, boost::noncopyable>(
      "MCSBondCompare",
      "Base class. Subclass and override "
      "MCSBondCompare." COMPARE_FUNC_NAME
      "() to define custom "
      "bond compare functions, then set MCSParameters.BondTyper "
      "to an instance of the subclass")
      .def("CheckBondStereo", &RDKit::PyMCSBondCompare::checkBondStereo,
           (python::arg("self"), python::arg("parameters"), python::arg("mol1"),
            python::arg("bond1"), python::arg("mol2"), python::arg("bond2")),
           "Return True if both bonds have, or have not, a stereo descriptor")
      .def("CheckBondRingMatch", &RDKit::PyMCSBondCompare::checkBondRingMatch,
           (python::arg("self"), python::arg("parameters"), python::arg("mol1"),
            python::arg("bond1"), python::arg("mol2"), python::arg("bond2")),
           "Return True if both bonds are, or are not, part of a ring")
      .def(COMPARE_FUNC_NAME, &RDKit::PyMCSBondCompare::operator(),
           (python::arg("self"), python::arg("parameters"), python::arg("mol1"),
            python::arg("bond1"), python::arg("mol2"), python::arg("bond2")),
           "override to implement custom bond comparison");

  python::class_<RDKit::PyMCSFinalMatchCheck, boost::noncopyable>(
      "MCSFinalMatchCheck",
      "Base class. Subclass and override "
      "MCSFinalMatchCheck." CALLBACK_FUNC_NAME
      "() "
      "to define a custom boolean callback function. "
      "Returning True will cause the growing seed to be accepted, "
      "False to be rejected")
      .def(CALLBACK_FUNC_NAME, &RDKit::PyMCSFinalMatchCheck::operator(),
           (python::arg("self")),
           "override to implement a custom seed final match checker callback");

  python::class_<RDKit::PyMCSAcceptance, boost::noncopyable>(
      "MCSAcceptance",
      "Base class. Subclass and override "
      "MCSAcceptance." CALLBACK_FUNC_NAME
      "() "
      "to define a custom boolean callback function. "
      "Returning True will cause the MCS candidate to be accepted, "
      "False to be rejected")
      .def(CALLBACK_FUNC_NAME, &RDKit::PyMCSAcceptance::operator(),
           (python::arg("self")),
           "override to implement a custom MCS acceptance callback");

  python::def("FindMCS", RDKit::FindMCSWrapper2,
              (python::arg("mols"), python::arg("parameters")),
              python::return_value_policy<python::manage_new_object>(),
              docString.c_str());
}