File: MolFileStereochem.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (338 lines) | stat: -rw-r--r-- 12,269 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//
//  Copyright (C) 2004-2021 Greg Landrum and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
//
#include <list>
#include <RDGeneral/RDLog.h>
#include <GraphMol/Chirality.h>
#include <GraphMol/FileParsers/MolFileStereochem.h>
#include <Geometry/point.h>
#include <RDGeneral/BoostStartInclude.h>
#include <boost/dynamic_bitset.hpp>
#include <RDGeneral/BoostEndInclude.h>
#include <algorithm>
#include <RDGeneral/Ranking.h>
#include <RDGeneral/FileParseException.h>

namespace RDKit {

void WedgeBond(Bond *bond, unsigned int fromAtomIdx, const Conformer *conf) {
  Chirality::wedgeBond(bond, fromAtomIdx, conf);
}

void WedgeMolBonds(ROMol &mol, const Conformer *conf) {
  return Chirality::wedgeMolBonds(mol, conf);
}

std::vector<Bond *> getBondNeighbors(ROMol &mol, const Bond &bond) {
  std::vector<Bond *> res;
  for (auto nbri :
       boost::make_iterator_range(mol.getAtomBonds(bond.getBeginAtom()))) {
    auto nbrBond = mol[nbri];
    if (nbrBond == &bond) {
      continue;
    }
    res.push_back(nbrBond);
  }
  for (auto nbri :
       boost::make_iterator_range(mol.getAtomBonds(bond.getEndAtom()))) {
    auto nbrBond = mol[nbri];
    if (nbrBond == &bond) {
      continue;
    }
    res.push_back(nbrBond);
  }
  return res;
}

const Atom *getNonsharedAtom(const Bond &bond1, const Bond &bond2) {
  if (bond1.getBeginAtomIdx() == bond2.getBeginAtomIdx() ||
      bond1.getBeginAtomIdx() == bond2.getEndAtomIdx()) {
    return bond1.getEndAtom();
  } else if (bond1.getEndAtomIdx() == bond2.getBeginAtomIdx() ||
             bond1.getEndAtomIdx() == bond2.getEndAtomIdx()) {
    return bond1.getBeginAtom();
  }
  POSTCONDITION(0, "bonds don't share an atom");
}

const unsigned StereoBondThresholds::DBL_BOND_NO_STEREO;
const unsigned StereoBondThresholds::DBL_BOND_SPECIFIED_STEREO;
const unsigned StereoBondThresholds::CHIRAL_ATOM;
const unsigned StereoBondThresholds::DIRECTION_SET;

// a note on the way the StereoBondThresholds are used:
//  the penalties are all 1/10th of the corresponding threshold, so
//  the penalty for being connected to a chiral atom is
//  StereoBondThresholds::CHIRAL_ATOM/10
//  This allows us to just add up the penalties for a particular
//  single bond and still use one set of thresholds - an individual
//  single bond will never have any particular penalty term applied
//  more than a couple of times
//
void addWavyBondsForStereoAny(ROMol &mol, bool clearDoubleBondFlags,
                              unsigned addWhenImpossible) {
  std::vector<int> singleBondScores(mol.getNumBonds(), 0);
  // used to store the double bond neighbors, if any, of each single bond
  std::map<unsigned, std::vector<unsigned>> singleBondNeighbors;
  boost::dynamic_bitset<> doubleBondsToSet(mol.getNumBonds());
  // mark single bonds adjacent to double bonds
  for (const auto dblBond : mol.bonds()) {
    if (dblBond->getBondType() != Bond::BondType::DOUBLE) {
      continue;
    }
    if (dblBond->getStereo() == Bond::BondStereo::STEREOANY) {
      doubleBondsToSet.set(dblBond->getIdx());
    }
    for (auto singleBond : getBondNeighbors(mol, *dblBond)) {
      if (singleBond->getBondType() != Bond::BondType::SINGLE) {
        continue;
      }
      // NOTE: we could make this canonical by initializing scores to the
      // canonical atom ranks
      int score = singleBondScores[singleBond->getIdx()];
      ++score;

      // penalty for having a direction already set
      if (singleBond->getBondDir() != Bond::BondDir::NONE) {
        score += StereoBondThresholds::DIRECTION_SET / 10;
      }

      // penalties from the double bond itself:

      // penalize being adjacent to a double bond with empty stereo:
      if (dblBond->getStereo() == Bond::BondStereo::STEREONONE) {
        score += StereoBondThresholds::DBL_BOND_NO_STEREO / 10;
      } else if (dblBond->getStereo() > Bond::BondStereo::STEREOANY) {
        // penalize being adjacent to a double bond with specified stereo:
        score += StereoBondThresholds::DBL_BOND_SPECIFIED_STEREO / 10;
      }

      // atom-related penalties
      auto otherAtom = getNonsharedAtom(*singleBond, *dblBond);
      // favor atoms with smaller numbers of neighbors:
      score += 10 * otherAtom->getDegree();
      // penalty for being adjacent to an atom with specified stereo
      if (otherAtom->getChiralTag() != Atom::ChiralType::CHI_UNSPECIFIED &&
          otherAtom->getChiralTag() != Atom::ChiralType::CHI_OTHER) {
        score += StereoBondThresholds::CHIRAL_ATOM / 10;
      }
      singleBondScores[singleBond->getIdx()] = score;
      if (dblBond->getStereo() == Bond::BondStereo::STEREOANY) {
        singleBondNeighbors[singleBond->getIdx()].push_back(dblBond->getIdx());
      }
    }
  }
  std::vector<std::tuple<int, unsigned int, size_t>> sortedScores;
  for (size_t i = 0; i < mol.getNumBonds(); ++i) {
    auto score = singleBondScores[i];
    if (!score) {
      continue;
    }
    sortedScores.push_back(
        std::make_tuple(-1 * singleBondNeighbors[i].size(), score, i));
  }
  std::sort(sortedScores.begin(), sortedScores.end());
  for (const auto &tpl : sortedScores) {
    // FIX: check if dir is already set
    for (auto dblBondIdx : singleBondNeighbors[std::get<2>(tpl)]) {
      if (doubleBondsToSet[dblBondIdx]) {
        if (addWhenImpossible) {
          if (std::get<1>(tpl) > addWhenImpossible) {
            continue;
          }
        } else if (std::get<1>(tpl) >
                   StereoBondThresholds::DBL_BOND_NO_STEREO) {
          BOOST_LOG(rdWarningLog)
              << "Setting wavy bond flag on bond " << std::get<2>(tpl)
              << " which may make other stereo info ambiguous" << std::endl;
        }
        mol.getBondWithIdx(std::get<2>(tpl))
            ->setBondDir(Bond::BondDir::UNKNOWN);
        if (clearDoubleBondFlags) {
          auto dblBond = mol.getBondWithIdx(dblBondIdx);
          if (dblBond->getBondDir() == Bond::BondDir::EITHERDOUBLE) {
            dblBond->setBondDir(Bond::BondDir::NONE);
          }
          dblBond->setStereo(Bond::BondStereo::STEREONONE);
        }
        doubleBondsToSet.reset(dblBondIdx);
      }
    }
  }
  if (addWhenImpossible) {
    if (doubleBondsToSet.count()) {
      std::stringstream sstr;
      sstr << " unable to set wavy bonds for double bonds:";
      for (size_t i = 0; i < mol.getNumBonds(); ++i) {
        if (doubleBondsToSet[i]) {
          sstr << " " << i;
        }
      }
      BOOST_LOG(rdWarningLog) << sstr.str() << std::endl;
    }
  }
}
//
// Determine bond wedge state
///
Bond::BondDir DetermineBondWedgeState(const Bond *bond,
                                      unsigned int fromAtomIdx,
                                      const Conformer *conf) {
  return Chirality::detail::determineBondWedgeState(bond, fromAtomIdx, conf);
}
Bond::BondDir DetermineBondWedgeState(
    const Bond *bond,
    const std::map<int, std::unique_ptr<RDKit::Chirality::WedgeInfoBase>>
        &wedgeBonds,
    const Conformer *conf) {
  return Chirality::detail::determineBondWedgeState(bond, wedgeBonds, conf);
}

// handles stereochem markers set by the Mol file parser and
// converts them to the RD standard:

void DetectAtomStereoChemistry(RWMol &mol, const Conformer *conf) {
  PRECONDITION(conf, "no conformer");
  PRECONDITION(&(conf->getOwningMol()) == &mol,
               "conformer does not belong to molecule");
  MolOps::assignChiralTypesFromBondDirs(mol, conf->getId(), true);
}

void ClearSingleBondDirFlags(ROMol &mol) {
  MolOps::clearSingleBondDirFlags(mol);
}

void DetectBondStereoChemistry(ROMol &mol, const Conformer *conf) {
  PRECONDITION(conf, "no conformer");
  PRECONDITION(&(conf->getOwningMol()) == &mol,
               "conformer does not belong to molecule");
  MolOps::detectBondStereochemistry(mol, conf->getId());
}
void reapplyMolBlockWedging(RWMol &mol) {
  RDKit::Chirality::reapplyMolBlockWedging(mol);
}

void clearMolBlockWedgingInfo(RWMol &mol) {
  Chirality::clearMolBlockWedgingInfo(mol);
}

void invertMolBlockWedgingInfo(ROMol &mol) {
  Chirality::invertMolBlockWedgingInfo(mol);
}

void markUnspecifiedStereoAsUnknown(ROMol &mol, int confId) {
  PRECONDITION(mol.getNumConformers(), "no conformer");
  const auto conf = mol.getConformer(confId);
  auto wedgeBonds = RDKit::Chirality::pickBondsToWedge(mol, nullptr, &conf);
  for (auto b : mol.bonds()) {
    if (b->getBondType() == Bond::DOUBLE) {
      int dirCode;
      bool reverse;
      RDKit::Chirality::GetMolFileBondStereoInfo(b, wedgeBonds, &conf, dirCode,
                                                 reverse);
      if (dirCode == 3) {
        b->setStereo(Bond::STEREOANY);
      }
    }
  }
  static int noNbrs = 100;
  auto si = Chirality::findPotentialStereo(mol);
  if (si.size()) {
    std::pair<bool, INT_VECT> retVal =
        Chirality::detail::countChiralNbrs(mol, noNbrs);
    INT_VECT nChiralNbrs = retVal.second;
    for (auto i : si) {
      if (i.type == Chirality::StereoType::Atom_Tetrahedral &&
          i.specified == Chirality::StereoSpecified::Unspecified) {
        i.specified = Chirality::StereoSpecified::Unknown;
        auto atom = mol.getAtomWithIdx(i.centeredOn);
        std::map<int, std::unique_ptr<RDKit::Chirality::WedgeInfoBase>>
            resSoFar;
        int bndIdx = Chirality::detail::pickBondToWedge(atom, mol, nChiralNbrs,
                                                        resSoFar, noNbrs);
        auto bond = mol.getBondWithIdx(bndIdx);
        bond->setBondDir(Bond::UNKNOWN);
      }
    }
  }
}

void translateChiralFlagToStereoGroups(ROMol &mol,
                                       StereoGroupType zeroFlagGroupType) {
  if (!mol.hasProp(common_properties::_MolFileChiralFlag)) {
    return;
  }
  int flagVal = 0;
  mol.getProp(common_properties::_MolFileChiralFlag, flagVal);
  mol.clearProp(common_properties::_MolFileChiralFlag);

  StereoGroupType sgType =
      flagVal ? StereoGroupType::STEREO_ABSOLUTE : zeroFlagGroupType;

  auto sgs = mol.getStereoGroups();

  boost::dynamic_bitset<> sgAtoms(mol.getNumAtoms());
  boost::dynamic_bitset<> sgBonds(mol.getNumBonds());
  const StereoGroup *absGroup = nullptr;
  for (const auto &sg : sgs) {
    for (const auto aptr : sg.getAtoms()) {
      sgAtoms.set(aptr->getIdx());
    }
    for (const auto bptr : sg.getBonds()) {
      sgBonds.set(bptr->getIdx());
    }
    // if we already have an ABS group, we'll add to it
    if (sgType == StereoGroupType::STEREO_ABSOLUTE && !absGroup &&
        sg.getGroupType() == StereoGroupType::STEREO_ABSOLUTE) {
      absGroup = &sg;
    }
  }
  ROMol::ATOM_PTR_VECT stereoAts;
  ROMol::BOND_PTR_VECT stereoBds;
  for (const auto atom : mol.atoms()) {
    if (!sgAtoms[atom->getIdx()] &&
        (atom->getChiralTag() == Atom::ChiralType::CHI_TETRAHEDRAL_CCW ||
         atom->getChiralTag() == Atom::ChiralType::CHI_TETRAHEDRAL_CW)) {
      stereoAts.push_back(atom);
    }
  }
  for (const auto bond : mol.bonds()) {
    if (!sgBonds[bond->getIdx()] &&
        (bond->getStereo() == Bond::BondStereo::STEREOATROPCCW ||
         bond->getStereo() == Bond::BondStereo::STEREOATROPCW)) {
      stereoBds.push_back(bond);
    }
  }
  if (!stereoAts.empty() || !stereoBds.empty()) {
    if (!absGroup) {
      sgs.emplace_back(sgType, stereoAts, stereoBds, 0);
      mol.setStereoGroups(sgs);
    } else {
      std::vector<StereoGroup> newSgs;
      for (const auto &sg : sgs) {
        if (&sg != absGroup) {
          newSgs.push_back(sg);
        } else {
          ROMol::ATOM_PTR_VECT newStereoAtoms = sg.getAtoms();
          newStereoAtoms.insert(newStereoAtoms.end(), stereoAts.begin(),
                                stereoAts.end());
          ROMol::BOND_PTR_VECT newStereoBonds = sg.getBonds();
          newStereoBonds.insert(newStereoBonds.end(), stereoBds.begin(),
                                stereoBds.end());

          newSgs.emplace_back(StereoGroupType::STEREO_ABSOLUTE, newStereoAtoms,
                              newStereoBonds, 0);
        }
      }
      mol.setStereoGroups(newSgs);
    }
  }
}
}  // namespace RDKit