1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
//
// Copyright (C) 2018 Boran Adas, Google Summer of Code
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/Fingerprints/FingerprintGenerator.h>
#include <GraphMol/Fingerprints/AtomPairGenerator.h>
#include <GraphMol/Fingerprints/FingerprintUtil.h>
#include <RDGeneral/hash/hash.hpp>
namespace RDKit {
namespace AtomPair {
using namespace AtomPairs;
AtomPairAtomInvGenerator::AtomPairAtomInvGenerator(
bool includeChirality, bool topologicalTorsionCorrection)
: df_includeChirality(includeChirality),
df_topologicalTorsionCorrection(topologicalTorsionCorrection) {}
std::vector<std::uint32_t> *AtomPairAtomInvGenerator::getAtomInvariants(
const ROMol &mol) const {
auto *atomInvariants = new std::vector<std::uint32_t>(mol.getNumAtoms());
for (ROMol::ConstAtomIterator atomItI = mol.beginAtoms();
atomItI != mol.endAtoms(); ++atomItI) {
(*atomInvariants)[(*atomItI)->getIdx()] =
getAtomCode(*atomItI, 0, df_includeChirality) -
(df_topologicalTorsionCorrection ? 2 : 0);
}
return atomInvariants;
}
std::string AtomPairAtomInvGenerator::infoString() const {
return "AtomPairInvariantGenerator topologicalTorsionCorrection=" +
std::to_string(df_topologicalTorsionCorrection);
}
AtomPairAtomInvGenerator *AtomPairAtomInvGenerator::clone() const {
return new AtomPairAtomInvGenerator(df_includeChirality,
df_topologicalTorsionCorrection);
}
template <typename OutputType>
OutputType AtomPairEnvGenerator<OutputType>::getResultSize() const {
OutputType result = 1;
return (result << (numAtomPairFingerprintBits +
2 * (this->dp_fingerprintArguments->df_includeChirality
? numChiralBits
: 0)));
}
AtomPairArguments::AtomPairArguments(
const bool countSimulation, const bool includeChirality, const bool use2D,
const unsigned int minDistance, const unsigned int maxDistance,
const std::vector<std::uint32_t> countBounds, const std::uint32_t fpSize)
: FingerprintArguments(countSimulation, countBounds, fpSize, 1,
includeChirality),
df_use2D(use2D),
d_minDistance(minDistance),
d_maxDistance(maxDistance) {
PRECONDITION(minDistance <= maxDistance, "bad distances provided");
}
std::string AtomPairArguments::infoString() const {
return "AtomPairArguments use2D=" + std::to_string(df_use2D) +
" minDistance=" + std::to_string(d_minDistance) +
" maxDistance=" + std::to_string(d_maxDistance);
}
template <typename OutputType>
void AtomPairAtomEnv<OutputType>::updateAdditionalOutput(
AdditionalOutput *additionalOutput, size_t bitId) const {
PRECONDITION(additionalOutput, "bad output pointer");
if (additionalOutput->bitInfoMap) {
(*additionalOutput->bitInfoMap)[bitId].emplace_back(d_atomIdFirst,
d_atomIdSecond);
}
if (additionalOutput->atomToBits) {
additionalOutput->atomToBits->at(d_atomIdFirst).push_back(bitId);
additionalOutput->atomToBits->at(d_atomIdSecond).push_back(bitId);
}
if (additionalOutput->atomCounts) {
additionalOutput->atomCounts->at(d_atomIdFirst)++;
additionalOutput->atomCounts->at(d_atomIdSecond)++;
}
}
template <typename OutputType>
OutputType AtomPairAtomEnv<OutputType>::getBitId(
FingerprintArguments *arguments,
const std::vector<std::uint32_t> *atomInvariants,
const std::vector<std::uint32_t> *, // bondInvariants
AdditionalOutput *, // additionalOutput,
const bool hashResults,
const std::uint64_t // fpSize
) const {
PRECONDITION((atomInvariants->size() >= d_atomIdFirst) &&
(atomInvariants->size() >= d_atomIdSecond),
"bad atom invariants size");
auto *atomPairArguments = dynamic_cast<AtomPairArguments *>(arguments);
std::uint32_t codeSizeLimit =
(1 << (codeSize +
(atomPairArguments->df_includeChirality ? numChiralBits : 0))) -
1;
std::uint32_t atomCodeFirst =
(*atomInvariants)[d_atomIdFirst] % codeSizeLimit;
std::uint32_t atomCodeSecond =
(*atomInvariants)[d_atomIdSecond] % codeSizeLimit;
std::uint32_t bitId = 0;
if (hashResults) {
gboost::hash_combine(bitId, std::min(atomCodeFirst, atomCodeSecond));
gboost::hash_combine(bitId, d_distance);
gboost::hash_combine(bitId, std::max(atomCodeFirst, atomCodeSecond));
} else {
bitId = getAtomPairCode(atomCodeFirst, atomCodeSecond, d_distance,
atomPairArguments->df_includeChirality);
}
return bitId;
}
template <typename OutputType>
AtomPairAtomEnv<OutputType>::AtomPairAtomEnv(const unsigned int atomIdFirst,
const unsigned int atomIdSecond,
const unsigned int distance)
: d_atomIdFirst(atomIdFirst),
d_atomIdSecond(atomIdSecond),
d_distance(distance) {}
template <typename OutputType>
std::vector<AtomEnvironment<OutputType> *>
AtomPairEnvGenerator<OutputType>::getEnvironments(
const ROMol &mol, FingerprintArguments *arguments,
const std::vector<std::uint32_t> *fromAtoms,
const std::vector<std::uint32_t> *ignoreAtoms, const int confId,
const AdditionalOutput *additionalOutput,
const std::vector<std::uint32_t> *, // atomInvariants
const std::vector<std::uint32_t> *, // bondInvariants,
const bool // hashResults
) const {
const unsigned int atomCount = mol.getNumAtoms();
PRECONDITION(!additionalOutput || !additionalOutput->atomToBits ||
additionalOutput->atomToBits->size() == atomCount,
"bad atomToBits size in AdditionalOutput");
auto *atomPairArguments = dynamic_cast<AtomPairArguments *>(arguments);
std::vector<AtomEnvironment<OutputType> *> result =
std::vector<AtomEnvironment<OutputType> *>();
const double *distanceMatrix;
if (atomPairArguments->df_use2D) {
distanceMatrix = MolOps::getDistanceMat(mol);
} else {
distanceMatrix = MolOps::get3DDistanceMat(mol, confId);
}
for (ROMol::ConstAtomIterator atomItI = mol.beginAtoms();
atomItI != mol.endAtoms(); ++atomItI) {
unsigned int i = (*atomItI)->getIdx();
if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(), i) !=
ignoreAtoms->end()) {
continue;
}
for (ROMol::ConstAtomIterator atomItJ = atomItI + 1;
atomItJ != mol.endAtoms(); ++atomItJ) {
unsigned int j = (*atomItJ)->getIdx();
if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(),
j) != ignoreAtoms->end()) {
continue;
}
if (fromAtoms &&
(std::find(fromAtoms->begin(), fromAtoms->end(), i) ==
fromAtoms->end()) &&
(std::find(fromAtoms->begin(), fromAtoms->end(), j) ==
fromAtoms->end())) {
continue;
}
auto distance =
static_cast<unsigned int>(floor(distanceMatrix[i * atomCount + j]));
if (distance >= atomPairArguments->d_minDistance &&
distance <= atomPairArguments->d_maxDistance) {
result.push_back(new AtomPairAtomEnv<OutputType>(i, j, distance));
}
}
}
return result;
}
template <typename OutputType>
std::string AtomPairEnvGenerator<OutputType>::infoString() const {
return "AtomPairEnvironmentGenerator";
}
template <typename OutputType>
FingerprintGenerator<OutputType> *getAtomPairGenerator(
const AtomPairArguments &args,
AtomInvariantsGenerator *atomInvariantsGenerator,
const bool ownsAtomInvGen) {
AtomEnvironmentGenerator<OutputType> *atomPairEnvGenerator =
new AtomPair::AtomPairEnvGenerator<OutputType>();
bool ownsAtomInvGenerator = ownsAtomInvGen;
if (!atomInvariantsGenerator) {
atomInvariantsGenerator =
new AtomPairAtomInvGenerator(args.df_includeChirality);
ownsAtomInvGenerator = true;
}
return new FingerprintGenerator<OutputType>(
atomPairEnvGenerator, new AtomPairArguments(args),
atomInvariantsGenerator, nullptr, ownsAtomInvGenerator, false);
}
template <typename OutputType>
FingerprintGenerator<OutputType> *getAtomPairGenerator(
const unsigned int minDistance, const unsigned int maxDistance,
const bool includeChirality, const bool use2D,
AtomInvariantsGenerator *atomInvariantsGenerator,
const bool useCountSimulation, const std::uint32_t fpSize,
const std::vector<std::uint32_t> countBounds, const bool ownsAtomInvGen) {
AtomPair::AtomPairArguments arguments(useCountSimulation, includeChirality,
use2D, minDistance, maxDistance,
countBounds, fpSize);
return getAtomPairGenerator<OutputType>(arguments, atomInvariantsGenerator,
ownsAtomInvGen);
}
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint32_t> *
getAtomPairGenerator(const AtomPairArguments &, AtomInvariantsGenerator *,
const bool);
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint64_t> *
getAtomPairGenerator(const AtomPairArguments &, AtomInvariantsGenerator *,
const bool);
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint32_t> *
getAtomPairGenerator(const unsigned int minDistance,
const unsigned int maxDistance,
const bool includeChirality, const bool use2D,
AtomInvariantsGenerator *atomInvariantsGenerator,
const bool useCountSimulation, const std::uint32_t fpSize,
const std::vector<std::uint32_t> countBounds,
const bool ownsAtomInvGen);
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint64_t> *
getAtomPairGenerator(const unsigned int minDistance,
const unsigned int maxDistance,
const bool includeChirality, const bool use2D,
AtomInvariantsGenerator *atomInvariantsGenerator,
const bool useCountSimulation, const std::uint32_t fpSize,
const std::vector<std::uint32_t> countBounds,
const bool ownsAtomInvGen);
} // namespace AtomPair
} // namespace RDKit
|