1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
//
// Copyright (C) 2018-2022 Boran Adas and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <DataStructs/SparseIntVect.h>
#include <DataStructs/ExplicitBitVect.h>
#include <DataStructs/SparseBitVect.h>
#include <GraphMol/Fingerprints/FingerprintGenerator.h>
#include <RDGeneral/hash/hash.hpp>
#include <cstdint>
#include <GraphMol/Fingerprints/AtomPairGenerator.h>
#include <GraphMol/Fingerprints/MorganGenerator.h>
#include <GraphMol/Fingerprints/RDKitFPGenerator.h>
#include <GraphMol/Fingerprints/TopologicalTorsionGenerator.h>
#include <RDGeneral/RDThreads.h>
#ifdef RDK_BUILD_THREADSAFE_SSS
#include <thread>
#include <future>
#endif
namespace RDKit {
FingerprintArguments::FingerprintArguments(
const bool countSimulation, const std::vector<std::uint32_t> countBounds,
std::uint32_t fpSize, std::uint32_t numBitsPerFeature,
bool includeChirality)
: df_countSimulation(countSimulation),
df_includeChirality(includeChirality),
d_countBounds(countBounds),
d_fpSize(fpSize),
d_numBitsPerFeature(numBitsPerFeature) {
PRECONDITION(!countSimulation || !countBounds.empty(),
"bad count bounds provided");
PRECONDITION(d_numBitsPerFeature > 0, "numBitsPerFeature must be >0");
}
std::string FingerprintArguments::commonArgumentsString() const {
return "Common arguments : countSimulation=" +
std::to_string(df_countSimulation) +
" fpSize=" + std::to_string(d_fpSize) +
" bitsPerFeature=" + std::to_string(d_numBitsPerFeature) +
" includeChirality=" + std::to_string(df_includeChirality);
}
template <typename OutputType>
FingerprintGenerator<OutputType>::FingerprintGenerator(
AtomEnvironmentGenerator<OutputType> *atomEnvironmentGenerator,
FingerprintArguments *fingerprintArguments,
AtomInvariantsGenerator *atomInvariantsGenerator,
BondInvariantsGenerator *bondInvariantsGenerator, bool ownsAtomInvGenerator,
bool ownsBondInvGenerator)
: df_ownsAtomInvGenerator(ownsAtomInvGenerator),
df_ownsBondInvGenerator(ownsBondInvGenerator) {
this->dp_atomEnvironmentGenerator = atomEnvironmentGenerator;
this->dp_atomEnvironmentGenerator->dp_fingerprintArguments =
fingerprintArguments;
this->dp_fingerprintArguments = fingerprintArguments;
this->dp_atomInvariantsGenerator = atomInvariantsGenerator;
this->dp_bondInvariantsGenerator = bondInvariantsGenerator;
}
template FingerprintGenerator<std::uint32_t>::FingerprintGenerator(
AtomEnvironmentGenerator<std::uint32_t> *atomEnvironmentGenerator,
FingerprintArguments *fingerprintArguments,
AtomInvariantsGenerator *atomInvariantsGenerator,
BondInvariantsGenerator *bondInvariantsGenerator, bool ownsAtomInvGenerator,
bool ownsBondInvGenerator);
template FingerprintGenerator<std::uint64_t>::FingerprintGenerator(
AtomEnvironmentGenerator<std::uint64_t> *atomEnvironmentGenerator,
FingerprintArguments *fingerprintArguments,
AtomInvariantsGenerator *atomInvariantsGenerator,
BondInvariantsGenerator *bondInvariantsGenerator, bool ownsAtomInvGenerator,
bool ownsBondInvGenerator);
template <typename OutputType>
FingerprintGenerator<OutputType>::~FingerprintGenerator() {
delete dp_atomEnvironmentGenerator;
delete dp_fingerprintArguments;
if (df_ownsAtomInvGenerator) {
delete dp_atomInvariantsGenerator;
}
if (df_ownsBondInvGenerator) {
delete dp_bondInvariantsGenerator;
}
}
namespace {
void reinitAdditionalOutput(AdditionalOutput &ao, size_t numAtoms) {
if (ao.atomCounts) {
ao.atomCounts->resize(numAtoms);
std::fill(ao.atomCounts->begin(), ao.atomCounts->end(), 0);
}
if (ao.atomToBits) {
ao.atomToBits->resize(numAtoms);
std::fill(ao.atomToBits->begin(), ao.atomToBits->end(),
std::vector<std::uint64_t>());
}
if (ao.bitInfoMap) {
ao.bitInfoMap->clear();
}
if (ao.bitPaths) {
ao.bitPaths->clear();
}
}
} // namespace
template FingerprintGenerator<std::uint32_t>::~FingerprintGenerator();
template FingerprintGenerator<std::uint64_t>::~FingerprintGenerator();
template std::string FingerprintGenerator<std::uint32_t>::infoString() const;
template std::string FingerprintGenerator<std::uint64_t>::infoString() const;
template <typename OutputType>
std::string FingerprintGenerator<OutputType>::infoString() const {
std::string separator = " --- ";
return dp_fingerprintArguments->commonArgumentsString() + separator +
dp_fingerprintArguments->infoString() + separator +
dp_atomEnvironmentGenerator->infoString() + separator +
(dp_atomInvariantsGenerator
? (dp_atomInvariantsGenerator->infoString() + separator)
: ("No atom invariants generator" + separator)) +
(dp_bondInvariantsGenerator
? (dp_bondInvariantsGenerator->infoString())
: "No bond invariants generator");
}
template <typename OutputType>
std::unique_ptr<SparseIntVect<OutputType>>
FingerprintGenerator<OutputType>::getFingerprintHelper(
const ROMol &mol, FingerprintFuncArguments &args,
const std::uint64_t fpSize) const {
const ROMol *lmol = &mol;
std::unique_ptr<ROMol> tmol;
if (dp_fingerprintArguments->df_includeChirality &&
!mol.hasProp(common_properties::_StereochemDone)) {
tmol = std::unique_ptr<ROMol>(new ROMol(mol));
MolOps::assignStereochemistry(*tmol);
lmol = tmol.get();
}
if (args.additionalOutput) {
reinitAdditionalOutput(*args.additionalOutput, mol.getNumAtoms());
}
bool hashResults = false;
if (fpSize != 0) {
hashResults = true;
}
std::unique_ptr<std::vector<std::uint32_t>> atomInvariants = nullptr;
if (args.customAtomInvariants) {
atomInvariants.reset(
new std::vector<std::uint32_t>(*args.customAtomInvariants));
} else if (dp_atomInvariantsGenerator) {
atomInvariants.reset(dp_atomInvariantsGenerator->getAtomInvariants(mol));
}
std::unique_ptr<std::vector<std::uint32_t>> bondInvariants = nullptr;
if (args.customBondInvariants) {
bondInvariants.reset(
new std::vector<std::uint32_t>(*args.customBondInvariants));
} else if (dp_bondInvariantsGenerator) {
bondInvariants.reset(dp_bondInvariantsGenerator->getBondInvariants(mol));
}
// create all atom environments that will generate the bit-ids that will make
// up the fingerprint
auto atomEnvironments = dp_atomEnvironmentGenerator->getEnvironments(
*lmol, dp_fingerprintArguments, args.fromAtoms, args.ignoreAtoms,
args.confId, args.additionalOutput, atomInvariants.get(),
bondInvariants.get(), hashResults);
// allocate the result
auto res = std::make_unique<SparseIntVect<OutputType>>(
fpSize ? fpSize : dp_atomEnvironmentGenerator->getResultSize());
// define a mersenne twister with customized parameters.
// The standard parameters (used to create boost::mt19937)
// result in an RNG that's much too computationally intensive
// to seed.
// These are the parameters that have been used for the RDKit fingerprint.
typedef boost::random::mersenne_twister<std::uint32_t, 32, 4, 2, 31,
0x9908b0df, 11, 7, 0x9d2c5680, 15,
0xefc60000, 18, 3346425566U>
rng_type;
typedef boost::uniform_int<> distrib_type;
typedef boost::variate_generator<rng_type &, distrib_type> source_type;
std::unique_ptr<rng_type> generator;
//
// if we generate arbitrarily sized ints then mod them down to the
// appropriate size, we can guarantee that a fingerprint of
// size x has the same bits set as one of size 2x that's been folded
// in half. This is a nice guarantee to have.
//
std::unique_ptr<distrib_type> dist;
std::unique_ptr<source_type> randomSource;
if (dp_fingerprintArguments->d_numBitsPerFeature > 1) {
// we will only create the RNG if we're going to need it
generator.reset(new rng_type(42u));
dist.reset(new distrib_type(0, INT_MAX));
randomSource.reset(new source_type(*generator, *dist));
}
// iterate over every atom environment and generate bit-ids that will make up
// the fingerprint
for (const auto env : atomEnvironments) {
OutputType seed = env->getBitId(dp_fingerprintArguments,
atomInvariants.get(), bondInvariants.get(),
args.additionalOutput, hashResults, fpSize);
auto bitId = seed;
if (fpSize != 0) {
bitId %= fpSize;
}
res->setVal(bitId, res->getVal(bitId) + 1);
if (args.additionalOutput) {
env->updateAdditionalOutput(args.additionalOutput, bitId);
}
// do the additional bits if required:
if (dp_fingerprintArguments->d_numBitsPerFeature > 1) {
generator->seed(static_cast<rng_type::result_type>(seed));
for (boost::uint32_t bitN = 1;
bitN < dp_fingerprintArguments->d_numBitsPerFeature; ++bitN) {
bitId = (*randomSource)();
if (fpSize != 0) {
bitId %= fpSize;
}
res->setVal(bitId, res->getVal(bitId) + 1);
if (args.additionalOutput) {
env->updateAdditionalOutput(args.additionalOutput, bitId);
}
}
}
delete env;
}
return res;
}
namespace {
template <typename OutputType>
void duplicateAdditionalOutputBit(AdditionalOutput &oldAO,
AdditionalOutput &newAO, OutputType origBitId,
OutputType newBitId) {
PRECONDITION(!((oldAO.bitInfoMap != nullptr) ^ (newAO.bitInfoMap != nullptr)),
"bitInfoMap not allocated");
PRECONDITION(!((oldAO.atomToBits != nullptr) ^ (newAO.atomToBits != nullptr)),
"atomToBits not allocated");
PRECONDITION(!((oldAO.bitPaths != nullptr) ^ (newAO.bitPaths != nullptr)),
"bitPaths not allocated");
// we don't need to do anything with atomCounts
if (oldAO.atomToBits) {
if (newAO.atomToBits->empty()) {
newAO.atomToBits->resize(oldAO.atomToBits->size());
}
for (unsigned int i = 0; i < oldAO.atomToBits->size(); ++i) {
const auto &nv = oldAO.atomToBits->at(i);
if (std::find(nv.begin(), nv.end(), origBitId) != nv.end()) {
newAO.atomToBits->at(i).push_back(newBitId);
}
}
}
if (oldAO.bitInfoMap) {
const auto v = oldAO.bitInfoMap->find(origBitId);
if (v != oldAO.bitInfoMap->end()) {
(*newAO.bitInfoMap)[newBitId] = v->second;
}
}
if (oldAO.bitPaths) {
const auto v = oldAO.bitPaths->find(origBitId);
if (v != oldAO.bitPaths->end()) {
(*newAO.bitPaths)[newBitId] = v->second;
}
}
}
void setupTempAdditionalOutput(RDKit::FingerprintFuncArguments &args,
AdditionalOutput &countSimulationOutput,
size_t numAtoms) {
if (args.additionalOutput->atomToBits) {
countSimulationOutput.allocateAtomToBits();
}
if (args.additionalOutput->atomCounts) {
countSimulationOutput.allocateAtomCounts();
}
if (args.additionalOutput->bitInfoMap) {
countSimulationOutput.allocateBitInfoMap();
}
if (args.additionalOutput->bitPaths) {
countSimulationOutput.allocateBitPaths();
}
reinitAdditionalOutput(*args.additionalOutput, numAtoms);
}
} // namespace
template <typename OutputType>
std::unique_ptr<SparseIntVect<OutputType>>
FingerprintGenerator<OutputType>::getSparseCountFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const {
return getFingerprintHelper(mol, args);
}
// todo getSparseFingerprint does not completely produce the same output as
// getSparseCountFingerprint. Count simulation and potential 64 bit outputs
// makes size limiting necessary for getSparseFingerprint. This can be
// changed if there is another way to avoid the size limitation of SparseBitVect
template <typename OutputType>
std::unique_ptr<SparseBitVect>
FingerprintGenerator<OutputType>::getSparseFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const {
// make sure the result will fit into SparseBitVect
std::uint32_t resultSize =
std::min((std::uint64_t)std::numeric_limits<std::uint32_t>::max(),
(std::uint64_t)dp_atomEnvironmentGenerator->getResultSize());
std::uint32_t effectiveSize = resultSize;
if (dp_fingerprintArguments->df_countSimulation) {
// effective size needs to be smaller than result size to compansate for
// count simulation
effectiveSize /= dp_fingerprintArguments->d_countBounds.size();
}
AdditionalOutput countSimulationOutput;
AdditionalOutput *origAO = nullptr;
if (dp_fingerprintArguments->df_countSimulation && args.additionalOutput) {
setupTempAdditionalOutput(args, countSimulationOutput, mol.getNumAtoms());
origAO = args.additionalOutput;
args.additionalOutput = &countSimulationOutput;
}
auto tempResult = getFingerprintHelper(mol, args, effectiveSize);
auto result = std::make_unique<SparseBitVect>(resultSize);
for (auto val : tempResult->getNonzeroElements()) {
if (dp_fingerprintArguments->df_countSimulation) {
for (unsigned int i = 0;
i < dp_fingerprintArguments->d_countBounds.size(); ++i) {
// for every bound in the d_countBounds in dp_fingerprintArguments, set
// a bit if the occurrence count is equal or higher than the bound for
// that bit
const auto &bounds_count = dp_fingerprintArguments->d_countBounds;
if (val.second >= static_cast<int>(bounds_count[i])) {
OutputType nBitId = val.first * bounds_count.size() + i;
result->setBit(nBitId);
if (args.additionalOutput) {
duplicateAdditionalOutputBit(*args.additionalOutput, *origAO,
static_cast<OutputType>(val.first),
nBitId);
}
}
}
} else {
result->setBit(val.first);
}
}
if (origAO) {
if (origAO->atomCounts) {
*origAO->atomCounts = *countSimulationOutput.atomCounts;
}
args.additionalOutput = origAO;
}
return result;
}
template <typename OutputType>
std::unique_ptr<SparseIntVect<std::uint32_t>>
FingerprintGenerator<OutputType>::getCountFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const {
auto tempResult =
getFingerprintHelper(mol, args, dp_fingerprintArguments->d_fpSize);
auto result = std::make_unique<SparseIntVect<std::uint32_t>>(
dp_fingerprintArguments->d_fpSize);
for (auto val : tempResult->getNonzeroElements()) {
result->setVal(val.first, val.second);
}
return result;
}
template <typename OutputType>
std::unique_ptr<ExplicitBitVect>
FingerprintGenerator<OutputType>::getFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const {
std::uint32_t effectiveSize = dp_fingerprintArguments->d_fpSize;
if (dp_fingerprintArguments->df_countSimulation) {
if (dp_fingerprintArguments->d_countBounds.empty()) {
throw ValueErrorException("Count bounds are empty");
}
if (dp_fingerprintArguments->d_countBounds.size() >= effectiveSize) {
throw ValueErrorException("Count bounds size is >= fingerprint size");
}
// effective size needs to be smaller than result size to compensate for
// count simulation
effectiveSize /= dp_fingerprintArguments->d_countBounds.size();
}
AdditionalOutput countSimulationOutput;
AdditionalOutput *origAO = nullptr;
if (dp_fingerprintArguments->df_countSimulation && args.additionalOutput) {
setupTempAdditionalOutput(args, countSimulationOutput, mol.getNumAtoms());
origAO = args.additionalOutput;
args.additionalOutput = &countSimulationOutput;
}
auto tempResult = getFingerprintHelper(mol, args, effectiveSize);
auto result =
std::make_unique<ExplicitBitVect>(dp_fingerprintArguments->d_fpSize);
for (auto val : tempResult->getNonzeroElements()) {
if (dp_fingerprintArguments->df_countSimulation) {
for (unsigned int i = 0;
i < dp_fingerprintArguments->d_countBounds.size(); ++i) {
// for every bound in the d_countBounds in dp_fingerprintArguments,
// set a bit if the occurrence count is equal or higher than the bound
// for that bit
const auto &bounds_count = dp_fingerprintArguments->d_countBounds;
if (val.second >= static_cast<int>(bounds_count[i])) {
OutputType nBitId = val.first * bounds_count.size() + i;
result->setBit(nBitId);
if (args.additionalOutput) {
duplicateAdditionalOutputBit(*args.additionalOutput, *origAO,
static_cast<OutputType>(val.first),
nBitId);
}
}
}
} else {
result->setBit(val.first);
}
}
if (origAO) {
if (origAO->atomCounts) {
*origAO->atomCounts = *countSimulationOutput.atomCounts;
}
args.additionalOutput = origAO;
}
return result;
}
namespace {
template <typename ReturnType, typename FuncType>
std::vector<std::unique_ptr<ReturnType>> mtgetFingerprints(
FuncType func, const std::vector<const ROMol *> &mols, int numThreads) {
std::vector<std::uint32_t> *fromAtoms = nullptr;
std::vector<std::uint32_t> *ignoreAtoms = nullptr;
std::vector<std::uint32_t> *customAtomInvariants = nullptr;
std::vector<std::uint32_t> *customBondInvariants = nullptr;
int confId = -1;
AdditionalOutput *additionalOutput = nullptr;
FingerprintFuncArguments args(fromAtoms, ignoreAtoms, confId,
additionalOutput, customAtomInvariants,
customBondInvariants);
std::vector<std::unique_ptr<ReturnType>> result;
auto numThreadsToUse = getNumThreadsToUse(numThreads);
unsigned int nmols = mols.size();
result.reserve(nmols);
if (numThreadsToUse == 1) {
for (auto i = 0u; i < nmols; ++i) {
if (!mols[i]) {
result.emplace_back(std::unique_ptr<ReturnType>());
} else {
result.emplace_back(std::move(func(*mols[i], args)));
}
}
}
#ifdef RDK_BUILD_THREADSAFE_SSS
else {
std::vector<std::vector<std::unique_ptr<ReturnType>>> accum(
numThreadsToUse);
std::vector<std::thread> tg;
for (auto ti = 0u; ti < numThreadsToUse; ++ti) {
auto lfunc = [&](unsigned int tidx) {
for (auto midx = tidx; midx < mols.size(); midx += numThreadsToUse) {
if (!mols[midx]) {
accum[tidx].emplace_back(std::unique_ptr<ReturnType>());
} else {
accum[tidx].emplace_back(std::move(func(*mols[midx], args)));
}
}
};
tg.emplace_back(std::thread(lfunc, ti));
}
for (auto &thread : tg) {
if (thread.joinable()) {
thread.join();
}
}
for (auto midx = 0u; midx < mols.size(); ++midx) {
auto tidx = midx % numThreadsToUse;
auto jidx = midx / numThreadsToUse;
result.emplace_back(std::move(accum[tidx][jidx]));
}
}
#endif
return result;
}
} // namespace
template <typename OutputType>
std::vector<std::unique_ptr<ExplicitBitVect>>
FingerprintGenerator<OutputType>::getFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const {
auto fpfunc = [&](const ROMol &mol, FingerprintFuncArguments &args) {
return this->getFingerprint(mol, args);
};
return mtgetFingerprints<ExplicitBitVect, decltype(fpfunc)>(fpfunc, mols,
numThreads);
}
template <typename OutputType>
std::vector<std::unique_ptr<SparseBitVect>>
FingerprintGenerator<OutputType>::getSparseFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const {
auto fpfunc = [&](const ROMol &mol, FingerprintFuncArguments &args) {
return this->getSparseFingerprint(mol, args);
};
return mtgetFingerprints<SparseBitVect, decltype(fpfunc)>(fpfunc, mols,
numThreads);
}
template <typename OutputType>
std::vector<std::unique_ptr<SparseIntVect<std::uint32_t>>>
FingerprintGenerator<OutputType>::getCountFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const {
auto fpfunc = [&](const ROMol &mol, FingerprintFuncArguments &args) {
return this->getCountFingerprint(mol, args);
};
return mtgetFingerprints<SparseIntVect<std::uint32_t>, decltype(fpfunc)>(
fpfunc, mols, numThreads);
}
template <typename OutputType>
std::vector<std::unique_ptr<SparseIntVect<OutputType>>>
FingerprintGenerator<OutputType>::getSparseCountFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const {
auto fpfunc = [&](const ROMol &mol, FingerprintFuncArguments &args) {
return this->getSparseCountFingerprint(mol, args);
};
return mtgetFingerprints<SparseIntVect<OutputType>, decltype(fpfunc)>(
fpfunc, mols, numThreads);
}
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<SparseIntVect<std::uint32_t>>
FingerprintGenerator<std::uint32_t>::getSparseCountFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<SparseIntVect<std::uint64_t>>
FingerprintGenerator<std::uint64_t>::getSparseCountFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<SparseBitVect>
FingerprintGenerator<std::uint32_t>::getSparseFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<SparseBitVect>
FingerprintGenerator<std::uint64_t>::getSparseFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<SparseIntVect<std::uint32_t>>
FingerprintGenerator<std::uint32_t>::getCountFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<SparseIntVect<std::uint32_t>>
FingerprintGenerator<std::uint64_t>::getCountFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<ExplicitBitVect>
FingerprintGenerator<std::uint32_t>::getFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::unique_ptr<ExplicitBitVect>
FingerprintGenerator<std::uint64_t>::getFingerprint(
const ROMol &mol, FingerprintFuncArguments &args) const;
template RDKIT_FINGERPRINTS_EXPORT std::vector<std::unique_ptr<ExplicitBitVect>>
FingerprintGenerator<std::uint32_t>::getFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
template RDKIT_FINGERPRINTS_EXPORT std::vector<std::unique_ptr<ExplicitBitVect>>
FingerprintGenerator<std::uint64_t>::getFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
template RDKIT_FINGERPRINTS_EXPORT std::vector<std::unique_ptr<SparseBitVect>>
FingerprintGenerator<std::uint32_t>::getSparseFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
template RDKIT_FINGERPRINTS_EXPORT std::vector<std::unique_ptr<SparseBitVect>>
FingerprintGenerator<std::uint64_t>::getSparseFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
template RDKIT_FINGERPRINTS_EXPORT
std::vector<std::unique_ptr<SparseIntVect<std::uint32_t>>>
FingerprintGenerator<std::uint32_t>::getCountFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
template RDKIT_FINGERPRINTS_EXPORT
std::vector<std::unique_ptr<SparseIntVect<std::uint32_t>>>
FingerprintGenerator<std::uint64_t>::getCountFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
template RDKIT_FINGERPRINTS_EXPORT
std::vector<std::unique_ptr<SparseIntVect<std::uint32_t>>>
FingerprintGenerator<std::uint32_t>::getSparseCountFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
template RDKIT_FINGERPRINTS_EXPORT
std::vector<std::unique_ptr<SparseIntVect<std::uint64_t>>>
FingerprintGenerator<std::uint64_t>::getSparseCountFingerprints(
const std::vector<const ROMol *> &mols, int numThreads) const;
SparseIntVect<std::uint64_t> *getSparseCountFP(const ROMol &mol,
FPType fPType) {
std::vector<const ROMol *> tempVect(1, &mol);
return (*getSparseCountFPBulk(tempVect, fPType))[0];
}
SparseBitVect *getSparseFP(const ROMol &mol, FPType fPType) {
std::vector<const ROMol *> tempVect(1, &mol);
return (*getSparseFPBulk(tempVect, fPType))[0];
}
SparseIntVect<std::uint32_t> *getCountFP(const ROMol &mol, FPType fPType) {
std::vector<const ROMol *> tempVect(1, &mol);
return (*getCountFPBulk(tempVect, fPType))[0];
}
ExplicitBitVect *getFP(const ROMol &mol, FPType fPType) {
std::vector<const ROMol *> tempVect(1, &mol);
return (*getFPBulk(tempVect, fPType))[0];
}
std::vector<SparseIntVect<std::uint64_t> *> *getSparseCountFPBulk(
const std::vector<const ROMol *> molVector, FPType fPType) {
FingerprintGenerator<std::uint64_t> *generator = nullptr;
switch (fPType) {
case FPType::AtomPairFP: {
generator = AtomPair::getAtomPairGenerator<std::uint64_t>();
break;
}
case FPType::MorganFP: {
generator = MorganFingerprint::getMorganGenerator<std::uint64_t>(2);
break;
}
case FPType::RDKitFP: {
generator = RDKitFP::getRDKitFPGenerator<std::uint64_t>();
break;
}
case FPType::TopologicalTorsionFP: {
generator =
TopologicalTorsion::getTopologicalTorsionGenerator<std::uint64_t>();
break;
}
default: {
throw UnimplementedFPException(
"Fingerprint type not implemented for getSparseCountFP");
}
}
auto *res = new std::vector<SparseIntVect<std::uint64_t> *>();
for (const auto *mol : molVector) {
res->push_back(generator->getSparseCountFingerprint(*mol));
}
delete generator;
return res;
}
std::vector<SparseBitVect *> *getSparseFPBulk(
const std::vector<const ROMol *> molVector, FPType fPType) {
FingerprintGenerator<std::uint64_t> *generator = nullptr;
switch (fPType) {
case FPType::AtomPairFP: {
generator = AtomPair::getAtomPairGenerator<std::uint64_t>();
break;
}
case FPType::MorganFP: {
generator = MorganFingerprint::getMorganGenerator<std::uint64_t>(2);
break;
}
case FPType::RDKitFP: {
generator = RDKitFP::getRDKitFPGenerator<std::uint64_t>();
break;
}
case FPType::TopologicalTorsionFP: {
generator =
TopologicalTorsion::getTopologicalTorsionGenerator<std::uint64_t>();
break;
}
default: {
throw UnimplementedFPException(
"Fingerprint type not implemented for getSparseFP");
}
}
auto *res = new std::vector<SparseBitVect *>();
for (const auto *mol : molVector) {
res->push_back(generator->getSparseFingerprint(*mol));
}
delete generator;
return res;
}
std::vector<SparseIntVect<std::uint32_t> *> *getCountFPBulk(
const std::vector<const ROMol *> molVector, FPType fPType) {
FingerprintGenerator<std::uint64_t> *generator = nullptr;
switch (fPType) {
case FPType::AtomPairFP: {
generator = AtomPair::getAtomPairGenerator<std::uint64_t>();
break;
}
case FPType::MorganFP: {
generator = MorganFingerprint::getMorganGenerator<std::uint64_t>(2);
break;
}
case FPType::RDKitFP: {
generator = RDKitFP::getRDKitFPGenerator<std::uint64_t>();
break;
}
case FPType::TopologicalTorsionFP: {
generator =
TopologicalTorsion::getTopologicalTorsionGenerator<std::uint64_t>();
break;
}
default: {
throw UnimplementedFPException(
"Fingerprint type not implemented for getCountFP");
}
}
auto *res = new std::vector<SparseIntVect<std::uint32_t> *>();
for (const auto *mol : molVector) {
res->push_back(generator->getCountFingerprint(*mol));
}
delete generator;
return res;
}
std::vector<ExplicitBitVect *> *getFPBulk(
const std::vector<const ROMol *> molVector, FPType fPType) {
FingerprintGenerator<std::uint64_t> *generator = nullptr;
switch (fPType) {
case FPType::AtomPairFP: {
generator = AtomPair::getAtomPairGenerator<std::uint64_t>();
break;
}
case FPType::MorganFP: {
generator = MorganFingerprint::getMorganGenerator<std::uint64_t>(2);
break;
}
case FPType::RDKitFP: {
generator = RDKitFP::getRDKitFPGenerator<std::uint64_t>();
break;
}
case FPType::TopologicalTorsionFP: {
generator =
TopologicalTorsion::getTopologicalTorsionGenerator<std::uint64_t>();
break;
}
default: {
throw UnimplementedFPException(
"Fingerprint type not implemented for getFP");
}
}
auto *res = new std::vector<ExplicitBitVect *>();
for (const auto *mol : molVector) {
res->push_back(generator->getFingerprint(*mol));
}
delete generator;
return res;
}
} // namespace RDKit
|