File: MorganGenerator.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (450 lines) | stat: -rw-r--r-- 17,482 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//
//  Copyright (C) 2018-2024 Boran Adas and other RDKit contributors
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <GraphMol/RDKitBase.h>
#include <GraphMol/Fingerprints/FingerprintGenerator.h>
#include <GraphMol/Fingerprints/MorganGenerator.h>
#include <RDGeneral/hash/hash.hpp>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/Substruct/SubstructMatch.h>

#include <RDGeneral/BoostStartInclude.h>
#include <boost/dynamic_bitset.hpp>
#include <tuple>
#include <RDGeneral/BoostEndInclude.h>

#include <GraphMol/Fingerprints/FingerprintUtil.h>

namespace RDKit {
namespace MorganFingerprint {

using namespace MorganFingerprints;

MorganAtomInvGenerator::MorganAtomInvGenerator(const bool includeRingMembership)
    : df_includeRingMembership(includeRingMembership) {}

std::vector<std::uint32_t> *MorganAtomInvGenerator::getAtomInvariants(
    const ROMol &mol) const {
  unsigned int nAtoms = mol.getNumAtoms();
  std::unique_ptr<std::vector<std::uint32_t>> atomInvariants(
      new std::vector<std::uint32_t>(nAtoms));
  getConnectivityInvariants(mol, *atomInvariants, df_includeRingMembership);
  return atomInvariants.release();
}

std::string MorganAtomInvGenerator::infoString() const {
  return "MorganInvariantGenerator includeRingMembership=" +
         std::to_string(df_includeRingMembership);
}

MorganAtomInvGenerator *MorganAtomInvGenerator::clone() const {
  return new MorganAtomInvGenerator(df_includeRingMembership);
}

MorganFeatureAtomInvGenerator::MorganFeatureAtomInvGenerator(
    std::vector<const ROMol *> *patterns) {
  dp_patterns = patterns;
}

std::string MorganFeatureAtomInvGenerator::infoString() const {
  return "MorganFeatureInvariantGenerator";
}

MorganFeatureAtomInvGenerator *MorganFeatureAtomInvGenerator::clone() const {
  return new MorganFeatureAtomInvGenerator(dp_patterns);
}

std::vector<std::uint32_t> *MorganFeatureAtomInvGenerator::getAtomInvariants(
    const ROMol &mol) const {
  unsigned int nAtoms = mol.getNumAtoms();
  std::vector<std::uint32_t> *result = new std::vector<std::uint32_t>(nAtoms);

  getFeatureInvariants(mol, *result, dp_patterns);
  return result;
}

MorganBondInvGenerator::MorganBondInvGenerator(const bool useBondTypes,
                                               const bool useChirality)
    : df_useBondTypes(useBondTypes), df_useChirality(useChirality) {}

std::vector<std::uint32_t> *MorganBondInvGenerator::getBondInvariants(
    const ROMol &mol) const {
  std::vector<std::uint32_t> *result =
      new std::vector<std::uint32_t>(mol.getNumBonds());
  for (unsigned int i = 0; i < mol.getNumBonds(); ++i) {
    Bond const *bond = mol.getBondWithIdx(i);
    int32_t bondInvariant = 1;
    if (df_useBondTypes) {
      if (!df_useChirality || bond->getBondType() != Bond::DOUBLE ||
          bond->getStereo() == Bond::STEREONONE) {
        bondInvariant = static_cast<int32_t>(bond->getBondType());
      } else {
        const int32_t stereoOffset = 100;
        const int32_t bondTypeOffset = 10;
        bondInvariant =
            stereoOffset +
            bondTypeOffset * static_cast<int32_t>(bond->getBondType()) +
            static_cast<int32_t>(bond->getStereo());
      }
    }
    (*result)[bond->getIdx()] = static_cast<int32_t>(bondInvariant);
  }
  return result;
}

std::string MorganBondInvGenerator::infoString() const {
  return "MorganInvariantGenerator useBondTypes=" +
         std::to_string(df_useBondTypes) +
         " useChirality=" + std::to_string(df_useChirality);
}

MorganBondInvGenerator *MorganBondInvGenerator::clone() const {
  return new MorganBondInvGenerator(df_useBondTypes, df_useChirality);
}

template <typename OutputType>
OutputType MorganEnvGenerator<OutputType>::getResultSize() const {
  return std::numeric_limits<OutputType>::max();
}

std::string MorganArguments::infoString() const {
  return "MorganArguments onlyNonzeroInvariants=" +
         std::to_string(df_onlyNonzeroInvariants) +
         " radius=" + std::to_string(d_radius);
}

template <typename OutputType>
void MorganAtomEnv<OutputType>::updateAdditionalOutput(
    AdditionalOutput *additionalOutput, size_t bitId) const {
  PRECONDITION(additionalOutput, "bad output pointer");
  if (additionalOutput->bitInfoMap) {
    (*additionalOutput->bitInfoMap)[bitId].emplace_back(d_atomId, d_layer);
  }
  if (additionalOutput->atomCounts) {
    (*additionalOutput->atomCounts)[d_atomId]++;
  }
  if (additionalOutput->atomToBits) {
    (*additionalOutput->atomToBits)[d_atomId].push_back(bitId);
  }
}

template <typename OutputType>
OutputType MorganAtomEnv<OutputType>::getBitId(
    FingerprintArguments *,              // arguments
    const std::vector<std::uint32_t> *,  // atomInvariants
    const std::vector<std::uint32_t> *,  // bondInvariants
    AdditionalOutput *,                  // additional Output
    const bool,                          // hashResults
    const std::uint64_t                  // fpSize
) const {
  return d_code;
}  // namespace MorganFingerprint

template <typename OutputType>
MorganAtomEnv<OutputType>::MorganAtomEnv(const std::uint32_t code,
                                         const unsigned int atomId,
                                         const unsigned int layer)
    : d_code(code), d_atomId(atomId), d_layer(layer) {}

template <typename OutputType>
std::vector<AtomEnvironment<OutputType> *>
MorganEnvGenerator<OutputType>::getEnvironments(
    const ROMol &mol, FingerprintArguments *arguments,
    const std::vector<std::uint32_t> *fromAtoms,
    const std::vector<std::uint32_t> *,  // ignoreAtoms
    const int,                           // confId
    const AdditionalOutput *,            // additionalOutput
    const std::vector<std::uint32_t> *atomInvariants,
    const std::vector<std::uint32_t> *bondInvariants,
    const bool  // hashResults
) const {
  PRECONDITION(atomInvariants && (atomInvariants->size() >= mol.getNumAtoms()),
               "bad atom invariants size");
  PRECONDITION(bondInvariants && (bondInvariants->size() >= mol.getNumBonds()),
               "bad bond invariants size");
  unsigned int nAtoms = mol.getNumAtoms();

  auto *morganArguments = dynamic_cast<MorganArguments *>(arguments);
  const unsigned int maxNumResults = (morganArguments->d_radius + 1) * nAtoms;

  std::vector<AtomEnvironment<OutputType> *> result =
      std::vector<AtomEnvironment<OutputType> *>();
  result.reserve(maxNumResults);

  std::vector<OutputType> currentInvariants(atomInvariants->size());
  std::copy(atomInvariants->begin(), atomInvariants->end(),
            currentInvariants.begin());
  // will hold bit ids calculated this round to be used as invariants next
  // round
  std::vector<OutputType> nextLayerInvariants(nAtoms);

  // will hold up to date invariants of neighboring atoms with bond
  // types, these invariants hold information from atoms around radius
  // as big as current layer around the current atom
  std::vector<std::pair<int32_t, uint32_t>> neighborhoodInvariants;
  // Max number of neighbors expected.
  neighborhoodInvariants.reserve(8);

  boost::dynamic_bitset<> includeAtoms(nAtoms);
  if (fromAtoms) {
    for (auto idx : *fromAtoms) {
      includeAtoms.set(idx, 1);
    }
  } else {
    includeAtoms.set();
  }

  boost::dynamic_bitset<> chiralAtoms(nAtoms);

  // these are the neighborhoods that have already been added
  // to the fingerprint
  std::unordered_set<boost::dynamic_bitset<>> neighborhoods;
  neighborhoods.reserve(maxNumResults);
  // these are the environments around each atom:
  std::vector<boost::dynamic_bitset<>> atomNeighborhoods(
      nAtoms, boost::dynamic_bitset<>(mol.getNumBonds()));
  // holds atoms in the environment (neighborhood) for the current layer for
  // each atom, starts with the immediate neighbors of atoms and expands
  // with every iteration
  std::vector<boost::dynamic_bitset<>> roundAtomNeighborhoods =
      atomNeighborhoods;
  boost::dynamic_bitset<> deadAtoms(nAtoms);

  // if df_onlyNonzeroInvariants is set order the atoms to make sure atoms
  // with zero invariants are processed last so that in case of duplicate
  // environments atoms with non-zero invariants are used
  std::vector<unsigned int> atomOrder(nAtoms);
  if (morganArguments->df_onlyNonzeroInvariants) {
    std::vector<std::pair<int32_t, uint32_t>> ordering;
    for (unsigned int i = 0; i < nAtoms; ++i) {
      if (!currentInvariants[i]) {
        ordering.emplace_back(1, i);
      } else {
        ordering.emplace_back(0, i);
      }
    }
    std::sort(ordering.begin(), ordering.end());
    for (unsigned int i = 0; i < nAtoms; ++i) {
      atomOrder[i] = ordering[i].second;
    }
  } else {
    for (unsigned int i = 0; i < nAtoms; ++i) {
      atomOrder[i] = i;
    }
  }

  // add the round 0 invariants to the result
  for (unsigned int i = 0; i < nAtoms; ++i) {
    if (includeAtoms[i]) {
      if (!morganArguments->df_onlyNonzeroInvariants || currentInvariants[i]) {
        result.push_back(
            new MorganAtomEnv<OutputType>(currentInvariants[i], i, 0));
      }
    }
  }

  // now do our subsequent rounds:
  for (unsigned int layer = 0; layer < morganArguments->d_radius; ++layer) {
    std::vector<AccumTuple> allNeighborhoodsThisRound;
    for (auto atomIdx : atomOrder) {
      // skip atoms which will not generate unique environments
      // (neighborhoods) anymore
      if (!deadAtoms[atomIdx]) {
        const Atom *tAtom = mol.getAtomWithIdx(atomIdx);
        if (!tAtom->getDegree()) {
          deadAtoms.set(atomIdx, 1);
          continue;
        }

        ROMol::OEDGE_ITER beg, end;
        boost::tie(beg, end) = mol.getAtomBonds(tAtom);

        // add up to date invariants of neighbors
        // This should keep capacity, so reallocation only triggers if we
        // haven't seen a molecule of this size.
        neighborhoodInvariants.clear();

        while (beg != end) {
          const Bond *bond = mol[*beg];
          roundAtomNeighborhoods[atomIdx][bond->getIdx()] = 1;

          unsigned int oIdx = bond->getOtherAtomIdx(atomIdx);
          roundAtomNeighborhoods[atomIdx] |= atomNeighborhoods[oIdx];

          auto bt = static_cast<int32_t>((*bondInvariants)[bond->getIdx()]);
          neighborhoodInvariants.push_back(
              std::make_pair(bt, currentInvariants[oIdx]));

          ++beg;
        }

        // sort the neighbor list:
        std::sort(neighborhoodInvariants.begin(), neighborhoodInvariants.end());
        // and now calculate the new invariant and test if the atom is newly
        // "chiral"
        std::uint32_t invar = layer;
        gboost::hash_combine(invar, currentInvariants[atomIdx]);
        bool looksChiral = (tAtom->getChiralTag() != Atom::CHI_UNSPECIFIED);
        for (std::vector<std::pair<int32_t, uint32_t>>::const_iterator it =
                 neighborhoodInvariants.begin();
             it != neighborhoodInvariants.end(); ++it) {
          // add the contribution to the new invariant:
          gboost::hash_combine(invar, *it);

          // check our "chirality":
          if (morganArguments->df_includeChirality && looksChiral &&
              !chiralAtoms[atomIdx]) {
            if (it->first != static_cast<int32_t>(Bond::SINGLE)) {
              looksChiral = false;
            } else if (it != neighborhoodInvariants.begin() &&
                       it->second == (it - 1)->second) {
              looksChiral = false;
            }
          }
        }

        if (morganArguments->df_includeChirality && looksChiral) {
          chiralAtoms[atomIdx] = 1;
          // add an extra value to the invariant to reflect chirality:
          std::string cip = "";
          tAtom->getPropIfPresent(common_properties::_CIPCode, cip);
          if (cip == "R") {
            gboost::hash_combine(invar, 3);
          } else if (cip == "S") {
            gboost::hash_combine(invar, 2);
          } else {
            gboost::hash_combine(invar, 1);
          }
        }

        // this rounds bit id will be next rounds atom invariant, so we save
        // it here
        nextLayerInvariants[atomIdx] = static_cast<OutputType>(invar);

        // store the environment that generated this bit id along with the bit
        // id and the atom id
        allNeighborhoodsThisRound.push_back(
            std::make_tuple(roundAtomNeighborhoods[atomIdx],
                            static_cast<OutputType>(invar), atomIdx));
      }
    }

    std::sort(allNeighborhoodsThisRound.begin(),
              allNeighborhoodsThisRound.end());
    for (std::vector<AccumTuple>::const_iterator iter =
             allNeighborhoodsThisRound.begin();
         iter != allNeighborhoodsThisRound.end(); ++iter) {
      // if we haven't seen this exact environment before, add it to the
      // result
      if (morganArguments->df_includeRedundantEnvironments ||
          neighborhoods.count(std::get<0>(*iter)) == 0) {
        if (!morganArguments->df_onlyNonzeroInvariants ||
            (*atomInvariants)[std::get<2>(*iter)]) {
          if (includeAtoms[std::get<2>(*iter)]) {
            result.push_back(new MorganAtomEnv<OutputType>(
                std::get<1>(*iter), std::get<2>(*iter), layer + 1));
            neighborhoods.insert(std::get<0>(*iter));
          }
        }
      } else {
        // we have seen this exact environment before, this atom
        // is now out of consideration:
        deadAtoms[std::get<2>(*iter)] = 1;
      }
    }

    // the invariants from this round become the next round invariants:
    currentInvariants.swap(nextLayerInvariants);
    std::fill(nextLayerInvariants.begin(), nextLayerInvariants.end(), 0);

    // this rounds calculated neighbors will be next rounds initial neighbors,
    // so the radius can grow every iteration
    atomNeighborhoods = roundAtomNeighborhoods;
  }

  return result;
}

template <typename OutputType>
std::string MorganEnvGenerator<OutputType>::infoString() const {
  return "MorganEnvironmentGenerator";
}

template <typename OutputType>
FingerprintGenerator<OutputType> *getMorganGenerator(
    const MorganArguments &args,
    AtomInvariantsGenerator *atomInvariantsGenerator,
    BondInvariantsGenerator *bondInvariantsGenerator, bool ownsAtomInvGen,
    bool ownsBondInvGen) {
  AtomEnvironmentGenerator<OutputType> *morganEnvGenerator =
      new MorganEnvGenerator<OutputType>();

  bool ownsAtomInvGenerator = ownsAtomInvGen;
  if (!atomInvariantsGenerator) {
    atomInvariantsGenerator = new MorganAtomInvGenerator();
    ownsAtomInvGenerator = true;
  }

  bool ownsBondInvGenerator = ownsBondInvGen;
  if (!bondInvariantsGenerator) {
    bondInvariantsGenerator = new MorganBondInvGenerator(
        args.df_useBondTypes, args.df_includeChirality);
    ownsBondInvGenerator = true;
  }

  return new FingerprintGenerator<OutputType>(
      morganEnvGenerator, new MorganArguments(args), atomInvariantsGenerator,
      bondInvariantsGenerator, ownsAtomInvGenerator, ownsBondInvGenerator);
}

template <typename OutputType>
FingerprintGenerator<OutputType> *getMorganGenerator(
    unsigned int radius, bool countSimulation, bool includeChirality,
    bool useBondTypes, bool onlyNonzeroInvariants,
    bool includeRedundantEnvironments,
    AtomInvariantsGenerator *atomInvariantsGenerator,
    BondInvariantsGenerator *bondInvariantsGenerator, std::uint32_t fpSize,
    std::vector<std::uint32_t> countBounds, bool ownsAtomInvGen,
    bool ownsBondInvGen) {
  MorganArguments arguments(radius, countSimulation, includeChirality,
                            onlyNonzeroInvariants, countBounds, fpSize,
                            includeRedundantEnvironments, useBondTypes);

  return getMorganGenerator<OutputType>(arguments, atomInvariantsGenerator,
                                        bondInvariantsGenerator, ownsAtomInvGen,
                                        ownsBondInvGen);
}

template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint32_t> *
getMorganGenerator(const MorganArguments &, AtomInvariantsGenerator *,
                   BondInvariantsGenerator *, bool, bool);

template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint32_t> *
getMorganGenerator(unsigned int radius, bool countSimulation,
                   bool includeChirality, bool useBondTypes,
                   bool onlyNonzeroInvariants,
                   bool includeRedundantEnvironments,
                   AtomInvariantsGenerator *atomInvariantsGenerator,
                   BondInvariantsGenerator *bondInvariantsGenerator,
                   std::uint32_t fpSize, std::vector<std::uint32_t> countBounds,
                   bool ownsAtomInvGen, bool ownsBondInvGen);

template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint64_t> *
getMorganGenerator(unsigned int radius, bool countSimulation,
                   bool includeChirality, bool useBondTypes,
                   bool onlyNonzeroInvariants,
                   bool includeRedundantEnvironments,
                   AtomInvariantsGenerator *atomInvariantsGenerator,
                   BondInvariantsGenerator *bondInvariantsGenerator,
                   std::uint32_t fpSize, std::vector<std::uint32_t> countBounds,
                   bool ownsAtomInvGen, bool ownsBondInvGen);

}  // namespace MorganFingerprint
}  // namespace RDKit