1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
//
// Copyright (C) 2023 David Cosgrove and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
// This is based on a suggestion and code from Christian Feldmann.
// It was discussion #4607. His Python implementation (which I haven't
// followed to any great extent) is at
// https://github.com/c-feldmann/lassohighlight
#include <vector>
#include <GraphMol/RWMol.h>
#include <GraphMol/MolDraw2D/MolDraw2DDetails.h>
#include <GraphMol/MolDraw2D/DrawMolMCHLasso.h>
namespace RDKit {
namespace MolDraw2D_detail {
// an empirically derived lineWidth.
int LINE_WIDTH = 3;
bool SCALE_LINE_WIDTH = true;
// ****************************************************************************
DrawMolMCHLasso::DrawMolMCHLasso(
const ROMol &mol, const std::string &legend, int width, int height,
MolDrawOptions &drawOptions, DrawText &textDrawer,
const std::map<int, std::vector<DrawColour>> &highlight_atom_map,
const std::map<int, std::vector<DrawColour>> &highlight_bond_map,
const std::map<int, double> &highlight_radii,
const std::map<int, int> &highlight_linewidth_multipliers, int confId)
: DrawMolMCH(mol, legend, width, height, drawOptions, textDrawer,
highlight_atom_map, highlight_bond_map, highlight_radii,
highlight_linewidth_multipliers, confId) {}
// ****************************************************************************
void DrawMolMCHLasso::extractHighlights(double /* scale */) {
extractMCHighlights();
}
// ****************************************************************************
void DrawMolMCHLasso::extractMCHighlights() {
std::vector<DrawColour> colours;
std::vector<std::vector<int>> colourAtoms;
std::vector<std::vector<int>> colourLists;
extractAtomColourLists(colours, colourAtoms, colourLists);
for (const auto &colourList : colourLists) {
for (size_t i = 0U; i < colourList.size(); ++i) {
drawLasso(i, colours[colourList[i]], colourAtoms[colourList[i]]);
}
}
}
// ****************************************************************************
// Get the atoms to lasso in the given colours. Split the lists up into
// different sets that overlap. That way, we won't have a single lasso
// that is larger than ones in a different set that doesn't overlap with it.
void DrawMolMCHLasso::extractAtomColourLists(
std::vector<DrawColour> &colours,
std::vector<std::vector<int>> &colourAtoms,
std::vector<std::vector<int>> &colourLists) const {
std::vector<boost::dynamic_bitset<>> inColourAtoms;
for (const auto &cm : mcHighlightAtomMap_) {
for (const auto &col : cm.second) {
auto cpos = std::find(colours.begin(), colours.end(), col);
if (cpos == colours.end()) {
colours.push_back(col);
colourAtoms.push_back(std::vector<int>(1, cm.first));
inColourAtoms.push_back(
boost::dynamic_bitset<>(drawMol_->getNumAtoms()));
inColourAtoms.back().set(cm.first);
} else {
auto ln = std::distance(colours.begin(), cpos);
// it's important that each atom is only in the list once - Github6749
if (!inColourAtoms[ln][cm.first]) {
colourAtoms[ln].push_back(cm.first);
inColourAtoms[ln].set(cm.first);
}
}
}
}
for (size_t i = 0U; i < colourAtoms.size(); ++i) {
colourLists.push_back(std::vector<int>(1, i));
}
if (colourLists.size() < 2) {
return;
}
// This is pretty inefficient, but the lists should all be small. It doesn't
// seem worth doing anything more sophisticated.
auto listsIntersect =
[](const std::vector<int> &v1, const std::vector<int> &v2,
const std::vector<std::vector<int>> &colourAtoms) -> bool {
for (auto &mv1 : v1) {
for (auto ca : colourAtoms[mv1]) {
for (auto &mv2 : v2) {
if (std::find(colourAtoms[mv2].begin(), colourAtoms[mv2].end(), ca) !=
colourAtoms[mv2].end()) {
return true;
}
}
}
}
return false;
};
bool didSomething = true;
while (didSomething && colourLists.size() > 1) {
didSomething = false;
for (size_t i = 0U; i < colourLists.size() - 1; ++i) {
for (size_t j = i + 1; j < colourLists.size(); ++j) {
if (listsIntersect(colourLists[i], colourLists[j], colourAtoms)) {
colourLists[i].insert(colourLists[i].end(), colourLists[j].begin(),
colourLists[j].end());
colourLists[j].clear();
didSomething = true;
break;
}
}
if (didSomething) {
break;
}
}
colourLists.erase(std::remove_if(colourLists.begin(), colourLists.end(),
[](const std::vector<int> &v) -> bool {
return v.empty();
}),
colourLists.end());
}
}
// ****************************************************************************
void DrawMolMCHLasso::drawLasso(size_t lassoNum, const RDKit::DrawColour &col,
const std::vector<int> &colAtoms) {
// Extract the arcs and lines for the given atoms in the given colour.
// lassoNum is the number of the lasso being done, and hence dictates
// the radii of the arcs and the displacements of the lines.
if (colAtoms.empty()) {
return;
}
std::vector<std::unique_ptr<DrawShapeArc>> arcs;
std::vector<std::unique_ptr<DrawShapeSimpleLine>> lines;
std::vector<std::vector<LinePair>> atomLines(drawMol_->getNumAtoms());
extractBondLines(lassoNum, col, colAtoms, lines, atomLines);
extractAtomArcs(atomLines, arcs);
addNoLineArcs(colAtoms, lassoNum, col, lines, arcs);
for (auto &it : arcs) {
highlights_.push_back(std::move(it));
}
for (auto &it : lines) {
highlights_.emplace_back(std::move(it));
}
}
namespace {
double getLassoWidth(const DrawMolMCH *dm, int atNum, int lassoNum) {
PRECONDITION(dm, "Needs valid DrawMolMCH")
double xrad, yrad;
dm->getAtomRadius(atNum, xrad, yrad);
// Double the area of the circles for successive lassos.
const static double rats[] = {1.0, 1.414, 2, 2.828, 4};
if (lassoNum > 4) {
// It's going to look horrible, probably, but it's a lot of lassos.
return xrad * (1 + lassoNum) * 0.75;
} else {
return xrad * rats[lassoNum];
}
}
} // namespace
namespace {
Point2D arcEnd(const DrawShapeArc &arc, double ang) {
// angles are in degrees
ang *= M_PI / 180.0;
return Point2D{arc.points_[0].x + arc.points_[1].x * cos(ang),
arc.points_[0].y + arc.points_[1].x * sin(ang)};
};
// given 2 points pt1, pt2, assumed to be either side of the line between
// points at1 and at2, compute the angle of the line from at1 to pt1 and
// the x-axis and likewise for pt2 and the mid-point of the line between
// at1 and at2. All angles go anti-clockwise from the x-axis and are in
// degrees ready for plugging straight into a DrawShapeArc. If they
// had to be swapped so that ang1 is less than ang2, swapped is set true.
void calcSubtendedAngles(const Point2D &pt1, const Point2D &pt2,
const Point2D &at1, const Point2D &at2, double &rang1,
double &rang2, double &bang, bool &swapped) {
static const Point2D index{1.0, 0.0};
auto rad1 = at1.directionVector(pt1);
auto rad2 = at1.directionVector(pt2);
auto brad = at1.directionVector(at2);
double ang1 = 360.0 - rad1.signedAngleTo(index) * 180.0 / M_PI;
if (ang1 >= 360.0) {
ang1 -= 360.0;
}
double ang2 = 360.0 - rad2.signedAngleTo(index) * 180.0 / M_PI;
if (ang2 >= 360.0) {
ang2 -= 360.0;
}
bang = 360.0 - brad.signedAngleTo(index) * 180.0 / M_PI;
if (bang >= 360.0) {
bang -= 360.0;
}
double cross = rad1.x * rad2.y - rad1.y * rad2.x;
swapped = false;
if (cross > 0.0) {
std::swap(ang1, ang2);
swapped = true;
}
double minAng = std::min({ang1, ang2, bang});
if (ang1 - minAng < bang - minAng && bang - minAng < ang2 - minAng) {
rang1 = ang1;
rang2 = ang2;
} else {
rang1 = ang2;
rang2 = ang1;
swapped = !swapped;
}
}
} // namespace
// ****************************************************************************
void DrawMolMCHLasso::addNoLineArcs(
const std::vector<int> &colAtoms, size_t lassoNum,
const RDKit::DrawColour &col,
const std::vector<std::unique_ptr<DrawShapeSimpleLine>> &lines,
std::vector<std::unique_ptr<DrawShapeArc>> &arcs) const {
boost::dynamic_bitset<> inColAtoms(drawMol_->getNumAtoms());
for (auto &ca : colAtoms) {
inColAtoms.set(ca);
}
std::vector<boost::dynamic_bitset<>> inLines(
drawMol_->getNumAtoms(),
boost::dynamic_bitset<>(drawMol_->getNumAtoms()));
for (auto &l : lines) {
inLines[l->atom2_].set(l->atom1_);
inLines[l->atom1_].set(l->atom2_);
}
std::vector<std::vector<unsigned int>> intersects(
drawMol_->getNumAtoms(), std::vector<unsigned int>());
for (unsigned int i = 0; i < drawMol_->getNumAtoms(); ++i) {
if (inColAtoms[i] && inLines[i].none()) {
intersects[i].push_back(i);
}
}
for (unsigned int i = 0; i < drawMol_->getNumAtoms() - 1; ++i) {
if (!inColAtoms[i]) {
continue;
}
auto radI = getLassoWidth(this, i, lassoNum);
for (unsigned int j = i + 1; j < drawMol_->getNumAtoms(); ++j) {
if (!inColAtoms[j]) {
continue;
}
auto radJ = getLassoWidth(this, j, lassoNum);
if (!inLines[i][j] && (atCds_[i] - atCds_[j]).length() < radI + radJ) {
if (intersects[i].empty()) {
intersects[i].push_back(i);
}
intersects[i].push_back(j);
if (intersects[j].empty()) {
intersects[j].push_back(j);
}
intersects[j].push_back(i);
}
}
}
std::vector<DrawShapeArc *> newArcs;
makeIntersectingArcs(intersects, lassoNum, col, arcs, newArcs);
for (auto &a : newArcs) {
arcs.emplace_back(a);
}
}
namespace {
void intersectingCirclePointsSameSize(const Point2D &at1Cds,
const Point2D &at2Cds, double rad,
Point2D &isect1, Point2D &isect2) {
// if the radii are the same, the intersection points are where
// the perpendicular at the mid-point between the circles intersects
// with either circle.
Point2D mid = (at1Cds + at2Cds) / 2.0;
auto perp = calcPerpendicular(at1Cds, at2Cds);
isect1 = mid + perp * 2.0 * rad;
adjustLineEndForEllipse(at1Cds, rad, rad, mid, isect1);
isect2 = mid - perp * (mid - isect1).length();
}
void intersectingCirclePointsDiffSize(const Point2D &at1Cds, double rad1,
const Point2D &at2Cds, double rad2,
Point2D &isect1, Point2D &isect2) {
// Using the same approach as for the same size, but having to do some
// extra work because the perpendicular isn't on the mid-point of the
// line between the centres. Code adapted from
// http://ambrnet.com/TrigoCalc/Circles2/circle2intersection/CircleCircleIntersection.htm
// with explanation
// https://math.stackexchange.com/questions/256100/how-can-i-find-the-points-at-which-two-circles-intersect
double dist = (at1Cds - at2Cds).length();
double dist2 = dist * dist;
// We already know the circles intersect, so no need for further
// checks.
// Triangle area via Heron's formula
double a1 = dist + rad1 + rad2;
double a2 = dist + rad1 - rad2;
double a3 = dist - rad1 + rad2;
double a4 = rad1 + rad2 - dist;
double area = sqrt(a1 * a2 * a3 * a4) / 4.0;
double c = (rad1 * rad1 - rad2 * rad2) / (2.0 * dist2);
// x values
double val1 = (at1Cds.x + at2Cds.x) / 2.0 + (at2Cds.x - at1Cds.x) * c;
double val2 = 2.0 * (at1Cds.y - at2Cds.y) * area / dist2;
isect1.x = val1 + val2;
isect2.x = val1 - val2;
// now y
val1 = (at1Cds.y + at2Cds.y) / 2.0 + (at2Cds.y - at1Cds.y) * c;
val2 = 2.0 * (at1Cds.x - at2Cds.x) * area / dist2;
isect1.y = val1 + val2;
isect2.y = val1 - val2;
// Finally, need to check that the 2 combinations of y for x we've taken
// are the correct 2 by making sure isect1 is on the circle
if (fabs((isect1 - at1Cds).length() - rad1 * rad1) > 1.0e-8) {
std::swap(isect1.y, isect2.y);
}
}
// Find the points of intersection of 2 circles.
void intersectingCirclePoints(const Point2D &at1Cds, double rad1,
const Point2D &at2Cds, double rad2,
Point2D &isect1, Point2D &isect2) {
if (fabs(rad1 - rad2) < 1.0e-8) {
intersectingCirclePointsSameSize(at1Cds, at2Cds, rad1, isect1, isect2);
} else {
intersectingCirclePointsDiffSize(at1Cds, rad1, at2Cds, rad2, isect1,
isect2);
}
}
// get the angles for the intersections of the 2 circles given,
// relative to the first one. They are the angles from the x axis
// going anti-clockwise. Also returns the angle for where the line
// between the centres intersects with the circle on at1Cds (bang).
void calcIntersectingArcAngles(const Point2D &at1Cds, double rad1,
const Point2D &at2Cds, double rad2, double &ang1,
double &ang2, double &bang) {
Point2D isect1, isect2;
intersectingCirclePoints(at1Cds, rad1, at2Cds, rad2, isect1, isect2);
bool swapped;
calcSubtendedAngles(isect1, isect2, at1Cds, at2Cds, ang1, ang2, bang,
swapped);
}
// See if the arc defined by the centre, radius etc. has either of its ends
// inside a circle of one of the otherAtoms
bool areArcEndsInOtherCircle(const Point2D ¢re, double radius, double ang1,
double ang2, size_t atNum, const DrawMolMCH *dm,
const std::vector<unsigned int> &otherAtoms,
int lassoNum) {
ang1 *= M_PI / 180.0;
Point2D end1{centre.x + radius * cos(ang1), centre.y + radius * sin(ang1)};
ang2 *= M_PI / 180.0;
Point2D end2{centre.x + radius * cos(ang2), centre.y + radius * sin(ang2)};
for (size_t i = 0; i < otherAtoms.size(); ++i) {
if (otherAtoms[i] == atNum) {
continue;
}
auto otherRad = getLassoWidth(dm, otherAtoms[i], lassoNum);
if ((end1 - dm->atCds_[otherAtoms[i]]).lengthSq() - otherRad * otherRad <
-1.0e-4) {
return true;
}
if ((end2 - dm->atCds_[otherAtoms[i]]).lengthSq() - otherRad * otherRad <
-1.0e-4) {
return true;
}
}
return false;
}
// Find the start of any existing arcs involving atom i, feeding them into
// arcAngs and bangs so as to be able to merge in any new arcs that intersect
// them. Removes the existing arcs if found.
void addExistingArcs(size_t i,
std::vector<std::unique_ptr<DrawShapeArc>> &currArcs,
std::vector<double> &arcAngs,
std::vector<std::pair<double, unsigned int>> &bangs) {
for (auto &arc : currArcs) {
if (arc->atom1_ == static_cast<int>(i)) {
arcAngs.push_back(arc->ang2_);
arcAngs.push_back(arc->ang1_);
if (arc->ang2_ < arc->ang1_) {
bangs.push_back(
std::make_pair((arc->ang2_ + arc->ang1_) / 2.0, bangs.size()));
} else {
double bang = -360.0 + (arc->ang2_ + arc->ang1_ + 360.0) / 2.0;
bangs.push_back(std::make_pair(bang, bangs.size()));
}
arc.reset();
}
}
currArcs.erase(std::remove_if(currArcs.begin(), currArcs.end(),
[](const std::unique_ptr<DrawShapeArc> &arc) {
return !arc;
}),
currArcs.end());
}
} // namespace
// ****************************************************************************
void DrawMolMCHLasso::makeIntersectingArcs(
const std::vector<std::vector<unsigned int>> &intersects, int lassoNum,
const RDKit::DrawColour &col,
std::vector<std::unique_ptr<DrawShapeArc>> &currArcs,
std::vector<DrawShapeArc *> &arcs) const {
for (size_t i = 0; i < intersects.size(); ++i) {
if (intersects[i].empty()) {
continue;
}
auto radI = getLassoWidth(this, i, lassoNum);
if (intersects[i].size() == 1 && intersects[i][0] == i) {
std::vector<Point2D> pts{atCds_[i], Point2D{radI, radI}};
DrawShapeArc *arc = new DrawShapeArc(pts, 0.0, 360.0, LINE_WIDTH,
SCALE_LINE_WIDTH, col, false, i);
arcs.push_back(arc);
} else {
std::vector<double> arcAngs;
std::vector<std::pair<double, unsigned int>> bangs;
addExistingArcs(i, currArcs, arcAngs, bangs);
// the first entry is the atom itself, that's how it's set up
for (size_t j = 1; j < intersects[i].size(); ++j) {
auto radJ = getLassoWidth(this, intersects[i][j], lassoNum);
double ang1, ang2, bang;
calcIntersectingArcAngles(atCds_[i], radI, atCds_[intersects[i][j]],
radJ, ang1, ang2, bang);
arcAngs.push_back(ang1);
arcAngs.push_back(ang2);
bangs.push_back(std::make_pair(bang, bangs.size()));
}
std::sort(bangs.begin(), bangs.end());
std::vector<double> sortedArcAngs;
for (auto &b : bangs) {
sortedArcAngs.push_back(arcAngs[2 * b.second]);
sortedArcAngs.push_back(arcAngs[2 * b.second + 1]);
}
// Now make the arcs from i.second to (i + 1).first, and finally from
// last.first to first.second
for (size_t j = 0; j < sortedArcAngs.size() - 2; j += 2) {
std::vector<Point2D> pts{atCds_[i], Point2D{radI, radI}};
// if either end of this arc we're about to make are inside another
// of the intersecting rings, skip it.
if (!areArcEndsInOtherCircle(atCds_[i], radI, sortedArcAngs[j + 1],
sortedArcAngs[j + 2], i, this,
intersects[i], lassoNum)) {
DrawShapeArc *arc =
new DrawShapeArc(pts, sortedArcAngs[j + 1], sortedArcAngs[j + 2],
LINE_WIDTH, SCALE_LINE_WIDTH, col, false, i);
arcs.push_back(arc);
}
}
// if either end of this arc we're about to make is inside another
// of the intersecting rings, skip it.
std::vector<Point2D> pts{atCds_[i], Point2D{radI, radI}};
if (!areArcEndsInOtherCircle(atCds_[i], radI, sortedArcAngs.back(),
sortedArcAngs.front(), i, this,
intersects[i], lassoNum)) {
DrawShapeArc *arc =
new DrawShapeArc(pts, sortedArcAngs.back(), sortedArcAngs.front(),
LINE_WIDTH, SCALE_LINE_WIDTH, col, false, i);
arcs.push_back(arc);
}
}
}
}
// ****************************************************************************
void DrawMolMCHLasso::extractBondLines(
size_t lassoNum, const RDKit::DrawColour &col,
const std::vector<int> &colAtoms,
std::vector<std::unique_ptr<DrawShapeSimpleLine>> &lines,
std::vector<std::vector<LinePair>> &atomLines) const {
if (colAtoms.size() > 1) {
for (size_t i = 0U; i < colAtoms.size() - 1; ++i) {
if (colAtoms[i] < 0 ||
static_cast<unsigned int>(colAtoms[i]) >= drawMol_->getNumAtoms()) {
// there's an error in the colour map.
continue;
}
auto lassoWidthI = getLassoWidth(this, colAtoms[i], lassoNum);
auto dispI = lassoWidthI * 0.75;
for (size_t j = i + 1; j < colAtoms.size(); ++j) {
if (colAtoms[j] < 0 ||
static_cast<unsigned int>(colAtoms[j]) >= drawMol_->getNumAtoms()) {
// there's an error in the colour map.
continue;
}
auto lassoWidthJ = getLassoWidth(this, colAtoms[j], lassoNum);
auto dispJ = lassoWidthJ * 0.75;
auto bond = drawMol_->getBondBetweenAtoms(colAtoms[i], colAtoms[j]);
if (bond) {
if (!mcHighlightBondMap_.empty()) {
auto bndIt = mcHighlightBondMap_.find(bond->getIdx());
if (bndIt == mcHighlightBondMap_.end()) {
continue;
}
}
auto atCdsI = atCds_[colAtoms[i]];
auto atCdsJ = atCds_[colAtoms[j]];
auto perp = calcPerpendicular(atCdsI, atCdsJ);
LinePair thisPair;
bool skip = false;
for (auto m : {-1.0, +1.0}) {
auto p1 = atCdsI + perp * dispI * m;
auto p2 = atCdsJ + perp * dispJ * m;
// if the mid point of the line is inside one of the circles
// then it gets messy because it's then intersecting arcs to deal
// with. To duck the problem completely, push the line out to just
// less than the radii of the circles (just less, so that they still
// intersect rather than hitting on the tangent)
auto mid = (p1 + p2) / 2.0;
if ((atCdsI - mid).lengthSq() < lassoWidthI * lassoWidthI ||
(atCdsI - mid).lengthSq() < lassoWidthJ * lassoWidthJ) {
skip = true;
continue;
}
adjustLineEndForEllipse(atCds_[colAtoms[i]], lassoWidthI,
lassoWidthI, p2, p1);
adjustLineEndForEllipse(atCds_[colAtoms[j]], lassoWidthJ,
lassoWidthJ, p1, p2);
DrawShapeSimpleLine *pl = new DrawShapeSimpleLine(
{p1, p2}, LINE_WIDTH, SCALE_LINE_WIDTH, col, colAtoms[i],
colAtoms[j], bond->getIdx(), noDash);
lines.emplace_back(pl);
if (m < 0.0) {
thisPair.line1 = pl;
} else {
thisPair.line2 = pl;
}
}
if (!skip) {
thisPair.radius = lassoWidthI;
thisPair.atom = colAtoms[i];
atomLines[colAtoms[i]].push_back(thisPair);
thisPair.radius = lassoWidthJ;
thisPair.atom = colAtoms[j];
atomLines[colAtoms[j]].push_back(thisPair);
}
}
}
}
}
orderAtomLines(atomLines);
}
namespace {
DrawShapeArc *makeArc(LinePair &lp1, LinePair &lp2, const Point2D &atCds) {
// Make an arc between line2 of lp1 and line1 of lp2. If the 2 lines
// intersect outside the radius of the arc, trim them both back to the
// point of intersection and return nullptr.
auto adjustLine = [](DrawShapeSimpleLine *line, const Point2D &pt) -> void {
double d1 = (line->points_[0] - pt).lengthSq();
double d2 = (line->points_[1] - pt).lengthSq();
if (d1 < d2) {
line->points_[0] = pt;
} else {
line->points_[1] = pt;
}
};
Point2D ip;
if (doLinesIntersect(lp1.line2->points_[0], lp1.line2->points_[1],
lp2.line1->points_[0], lp2.line1->points_[1], &ip)) {
adjustLine(lp1.line2, ip);
adjustLine(lp2.line1, ip);
return nullptr;
}
DrawShapeArc *arc = new DrawShapeArc(
{atCds, {lp1.radius, lp1.radius}}, lp1.angle2, lp2.angle1,
lp1.line1->lineWidth_, lp1.line1->scaleLineWidth_, lp1.line1->lineColour_,
false, lp1.atom);
return arc;
}
} // namespace
// ****************************************************************************
void DrawMolMCHLasso::extractAtomArcs(
std::vector<std::vector<LinePair>> &atomLines,
std::vector<std::unique_ptr<DrawShapeArc>> &arcs) const {
for (size_t k = 0; k < atomLines.size(); ++k) {
auto &atomLine = atomLines[k];
if (atomLine.empty()) {
continue;
}
if (atomLine.size() == 1) {
DrawShapeArc *arc = new DrawShapeArc(
{atCds_[atomLine[0].atom], {atomLine[0].radius, atomLine[0].radius}},
atomLine[0].angle2, atomLine[0].angle1, atomLine[0].line1->lineWidth_,
atomLine[0].line1->scaleLineWidth_, atomLine[0].line1->lineColour_,
false, atomLine[0].atom);
arcs.emplace_back(arc);
} else {
for (size_t i = 0; i < atomLine.size() - 1; ++i) {
auto arc =
makeArc(atomLine[i], atomLine[i + 1], atCds_[atomLine[i].atom]);
if (arc) {
arcs.emplace_back(arc);
}
}
auto arc = makeArc(atomLine.back(), atomLine.front(),
atCds_[atomLine.front().atom]);
if (arc) {
arcs.emplace_back(arc);
}
}
}
}
namespace {
Point2D *adjustLineEnd(const DrawShapeArc &arc, DrawShapeSimpleLine &line) {
Point2D *adjEnd = nullptr;
Point2D *fixEnd = nullptr;
if ((arc.points_[0] - line.points_[0]).lengthSq() >
(arc.points_[0] - line.points_[1]).lengthSq()) {
adjEnd = &line.points_[1];
fixEnd = &line.points_[0];
} else {
adjEnd = &line.points_[0];
fixEnd = &line.points_[1];
}
if (fabs((arc.points_[0] - *adjEnd).lengthSq() -
arc.points_[1].x * arc.points_[1].x) < 1.0e-4) {
return nullptr;
}
adjustLineEndForEllipse(arc.points_[0], arc.points_[1].x, arc.points_[1].x,
*fixEnd, *adjEnd);
return adjEnd;
}
// Calculate the angles of the 2 points around the centre, measured from the
// X axis, guaranteeing a consistent rotation around the z axis i.e. always
// clockwise or always anti-clockwise.
void calcAnglesFromXAxis(Point2D ¢re, Point2D &end1, Point2D &end2,
double &ang1, double &ang2) {
static const Point2D index{1.0, 0.0};
Point2D rad1, rad2;
rad1 = centre.directionVector(end1);
ang1 = 360.0 - rad1.signedAngleTo(index) * 180.0 / M_PI;
rad2 = centre.directionVector(end2);
ang2 = 360.0 - rad2.signedAngleTo(index) * 180.0 / M_PI;
// make sure they're going round in the same direction
auto crossZ = rad1.x * rad2.y - rad1.y * rad2.x;
if (crossZ > 0.0) {
std::swap(ang1, ang2);
}
}
} // namespace
// ****************************************************************************
void DrawMolMCHLasso::orderAtomLines(
std::vector<std::vector<LinePair>> &atomLines) const {
for (size_t i = 0; i < drawMol_->getNumAtoms(); ++i) {
if (atomLines[i].empty()) {
continue;
}
std::vector<std::pair<double, size_t>> bondAngles;
double minBondAngle = 720.0;
for (size_t j = 0; j < atomLines[i].size(); ++j) {
// because the same DrawShapeSimpleLine is used for both atoms, the
// points_[0] may not be the nearer point to atom i.
int oatom = atomLines[i][j].line1->atom1_ == static_cast<int>(i)
? atomLines[i][j].line1->atom2_
: atomLines[i][j].line1->atom1_;
int pt = 0;
if ((atCds_[i] - atomLines[i][j].line1->points_[0]).lengthSq() >
(atCds_[i] - atomLines[i][j].line1->points_[1]).lengthSq()) {
pt = 1;
}
double bang;
bool swapped;
calcSubtendedAngles(atomLines[i][j].line1->points_[pt],
atomLines[i][j].line2->points_[pt], atCds_[i],
atCds_[oatom], atomLines[i][j].angle1,
atomLines[i][j].angle2, bang, swapped);
bondAngles.push_back(std::pair(bang, j));
if (bang < minBondAngle) {
minBondAngle = bang;
}
if (swapped) {
std::swap(atomLines[i][j].line1, atomLines[i][j].line2);
}
}
std::for_each(bondAngles.begin(), bondAngles.end(),
[&](std::pair<double, size_t> &ba) -> void {
ba.first -= minBondAngle;
});
std::sort(bondAngles.begin(), bondAngles.end());
std::vector<LinePair> newAtomLine;
for (auto &ba : bondAngles) {
newAtomLine.push_back(atomLines[i][ba.second]);
}
atomLines[i] = newAtomLine;
}
}
namespace {
std::pair<Point2D, Point2D> getArcEnds(const DrawShapeArc &arc) {
std::pair<Point2D, Point2D> retVal;
// for these purposes, it's always a circle, so just use the x
// radius
retVal.first.x =
arc.points_[0].x + arc.points_[1].x * cos(arc.ang1_ * M_PI / 180.0);
retVal.first.y =
arc.points_[0].y + arc.points_[1].x * sin(arc.ang1_ * M_PI / 180.0);
retVal.second.x =
arc.points_[0].x + arc.points_[1].x * cos(arc.ang2_ * M_PI / 180.0);
retVal.second.y =
arc.points_[0].y + arc.points_[1].x * sin(arc.ang2_ * M_PI / 180.0);
return retVal;
}
} // namespace
} // namespace MolDraw2D_detail
} // namespace RDKit
|