1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
//
// Copyright (C) 2015-2020 Greg Landrum
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/MolDraw2D/MolDraw2DDetails.h>
#include <GraphMol/MolDraw2D/StringRect.h>
#include <GraphMol/Chirality.h>
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// ****************************************************************************
namespace RDKit {
namespace MolDraw2D_detail {
// implementation from $RDBASE/rdkit/sping/pid.py
void arcPoints(const Point2D &cds1, const Point2D &cds2,
std::vector<Point2D> &res, float startAng, float extent) {
// Note: this implementation is simple and not particularly efficient.
float xScale = (cds2.x - cds1.x) / 2.0;
float yScale = (cds2.y - cds1.y) / 2.0;
if (xScale < 0) {
xScale *= -1;
}
if (yScale < 0) {
yScale *= -1;
}
float x = std::min(cds1.x, cds2.x) + xScale;
float y = std::min(cds1.y, cds2.y) + yScale;
int steps = std::max(static_cast<int>(extent * 2), 5);
float step = M_PI * extent / (180 * steps);
float angle = M_PI * startAng / 180;
for (int i = 0; i <= steps; ++i) {
Point2D point(x + xScale * cos(angle), y - yScale * sin(angle));
res.emplace_back(point);
angle += step;
}
}
namespace {
// note, this is approximate since we're just using it for drawing
bool lineSegmentsIntersect(const Point2D &s1, const Point2D &s2,
const Point2D &s3, const Point2D &s4) {
auto d1x = (s1.x - s2.x);
auto d1y = (s1.y - s2.y);
auto d2x = (s3.x - s4.x);
auto d2y = (s3.y - s4.y);
if (fabs(d1x) < 1e-4) {
// fudge factor, since this isn't super critical
d1x = 1e-4;
}
if (fabs(d2x) < 1e-4) {
// fudge factor, since this isn't super critical
d2x = 1e-4;
}
auto m1 = d1y / d1x;
auto m2 = d2y / d2x;
if (m1 == m2 || m1 == -m2) {
// parallel
return false;
}
auto b1 = (s1.x * s2.y - s2.x * s1.y) / d1x;
auto b2 = (s3.x * s4.y - s4.x * s3.y) / d2x;
auto intersectX = (b2 - b1) / (m1 - m2);
return ((intersectX < s1.x) ^ (intersectX < s2.x)) &&
((intersectX < s3.x) ^ (intersectX < s4.x));
}
} // namespace
std::vector<Point2D> getBracketPoints(
const Point2D &p1, const Point2D &p2, const Point2D &refPt,
const std::vector<std::pair<Point2D, Point2D>> &bondSegments,
double bracketFrac) {
std::vector<Point2D> res;
auto v = p2 - p1;
Point2D bracketDir{v.y, -v.x};
bracketDir *= bracketFrac;
// we'll default to use the refPt
auto refVect = p2 - refPt;
// but check if we intersect any of the bonds:
for (const auto &seg : bondSegments) {
if (lineSegmentsIntersect(p1, p2, seg.first, seg.second)) {
refVect = p2 - seg.first;
}
}
if (bracketDir.dotProduct(refVect) > 0) {
bracketDir *= -1;
}
auto p0 = p1 + bracketDir;
auto p3 = p2 + bracketDir;
return {p0, p1, p2, p3};
}
// there are a several empirically determined constants here.
std::vector<Point2D> handdrawnLine(Point2D cds1, Point2D cds2, double scale,
bool shiftBegin, bool shiftEnd,
unsigned nSteps, double deviation,
double endShift) {
// std::cout << " " << scale << " " << endShift / scale << std::endl;
while (endShift / scale > 0.02) {
endShift *= 0.75;
}
if (shiftBegin) {
cds1.x += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
cds1.y += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
}
if (shiftEnd) {
cds2.x += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
cds2.y += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
}
Point2D step = (cds2 - cds1) / nSteps;
// make sure we aren't adding loads of wiggles to short lines
while (step.length() < 0.2 && nSteps > 2) {
--nSteps;
step = (cds2 - cds1) / nSteps;
}
// make sure the wiggles aren't too big
while (deviation / step.length() > 0.15 || deviation * scale > 0.70) {
deviation *= 0.75;
}
Point2D perp{step.y, -step.x};
perp.normalize();
std::vector<Point2D> pts;
pts.push_back(cds1);
for (unsigned int i = 1; i < nSteps; ++i) {
auto tgt = cds1 + step * i;
tgt += perp * deviation * (std::rand() % 20 - 10) / 10.0;
pts.push_back(tgt);
}
pts.push_back(cds2);
return pts;
}
// ****************************************************************************
bool doesLineIntersect(const StringRect &rect, const Point2D &end1,
const Point2D &end2, double padding) {
Point2D tl, tr, bl, br;
rect.calcCorners(tl, tr, br, bl, padding);
if (doLinesIntersect(end2, end1, tl, tr, nullptr)) {
return true;
}
if (doLinesIntersect(end2, end1, tr, br, nullptr)) {
return true;
}
if (doLinesIntersect(end2, end1, br, bl, nullptr)) {
return true;
}
if (doLinesIntersect(end2, end1, bl, tl, nullptr)) {
return true;
}
return false;
}
// ****************************************************************************
bool doesTriangleIntersect(const StringRect &rect, const Point2D &pt1,
const Point2D &pt2, const Point2D &pt3,
double padding) {
// the quick test is for any of the triangle points inside the rectangle.
if (rect.isPointInside(pt1, padding) || rect.isPointInside(pt2, padding) ||
rect.isPointInside(pt3, padding)) {
return true;
}
// But if the rectangle is inside the triangle, that's not enough of a test.
Point2D tl, tr, br, bl;
rect.calcCorners(tl, tr, br, bl, padding);
if (isPointInTriangle(tl, pt1, pt2, pt3) ||
isPointInTriangle(tr, pt1, pt2, pt3) ||
isPointInTriangle(br, pt1, pt2, pt3) ||
isPointInTriangle(bl, pt1, pt2, pt3)) {
return true;
}
// and finally all the points in the rectangle can be outside the triangle,
// but the sides can cross it. And vice versa. So see if any of the sides
// intersect.
if (doLinesIntersect(tl, tr, pt1, pt2, nullptr) ||
doLinesIntersect(tl, tr, pt2, pt3, nullptr) ||
doLinesIntersect(tl, tr, pt3, pt1, nullptr) ||
doLinesIntersect(tr, br, pt1, pt2, nullptr) ||
doLinesIntersect(tr, br, pt2, pt3, nullptr) ||
doLinesIntersect(tr, br, pt3, pt1, nullptr) ||
doLinesIntersect(br, bl, pt1, pt2, nullptr) ||
doLinesIntersect(br, bl, pt2, pt3, nullptr) ||
doLinesIntersect(br, bl, pt3, pt1, nullptr) ||
doLinesIntersect(bl, tl, pt1, pt2, nullptr) ||
doLinesIntersect(bl, tl, pt2, pt3, nullptr) ||
doLinesIntersect(bl, tl, pt3, pt1, nullptr)) {
return true;
}
return false;
}
// ****************************************************************************
bool doesLineIntersectEllipse(const Point2D ¢re, double xradius,
double yradius, double padding,
const Point2D &end1, const Point2D &end2) {
// using
// https://math.stackexchange.com/questions/76457/check-if-a-point-is-within-an-ellipse
// to see if either end1 or end2 are inside the ellipse.
double xr2 = (xradius + padding) * (xradius + padding);
double yr2 = (yradius + padding) * (yradius + padding);
double xdisc = (end1.x - centre.x) * (end1.x - centre.x) / xr2;
double ydisc = (end1.y - centre.y) * (end1.y - centre.y) / yr2;
if (xdisc + ydisc <= 1.0) {
return true;
}
xdisc = (end2.x - centre.x) * (end2.x - centre.x) / xr2;
ydisc = (end2.y - centre.y) * (end2.y - centre.y) / yr2;
return xdisc + ydisc <= 1.0;
}
// ****************************************************************************
bool doesLineIntersectArc(const Point2D ¢re, double xradius, double yradius,
double start_ang, double stop_ang, double padding,
const Point2D &end1, const Point2D &end2) {
double xr = xradius + padding;
double yr = yradius + padding;
double xr2 = xr * xr;
double yr2 = yr * yr;
auto pointInArc = [&](const Point2D &p) -> bool {
double xdisc = p.x * p.x / xr2;
double ydisc = p.y * p.y / yr2;
// start_ang can be more than stop_ang, if, for example, the arc goes from
// 315 to 45.
if (xdisc + ydisc <= 1.0) {
// end1 is inside the whole ellipse. See if the angle it makes with the
// x axis lies between start_and and stop_ang.
double th = atan2(p.x, p.y) * 180.0 / M_PI;
if (th < 0.0) {
th += 360.0;
}
if (start_ang < stop_ang) {
// it's pretty straightforward
if (th >= start_ang && th <= stop_ang) {
return true;
}
} else {
// the arc crosses 0.
if (th >= start_ang && th <= 360.0) {
return true;
}
if (th >= 0.0 && th <= stop_ang) {
return true;
}
}
}
return false;
};
Point2D p1 = end1 - centre;
if (pointInArc(p1)) {
return true;
}
Point2D p2 = end2 - centre;
return pointInArc(p2);
}
// ****************************************************************************
bool doLinesIntersect(const Point2D &l1s, const Point2D &l1f,
const Point2D &l2s, const Point2D &l2f, Point2D *ip) {
// using spell from answer 2 of
// https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
double s1_x = l1f.x - l1s.x;
double s1_y = l1f.y - l1s.y;
double s2_x = l2f.x - l2s.x;
double s2_y = l2f.y - l2s.y;
double d = (-s2_x * s1_y + s1_x * s2_y);
if (d == 0.0) {
// parallel lines.
return false;
}
double s, t;
s = (-s1_y * (l1s.x - l2s.x) + s1_x * (l1s.y - l2s.y)) / d;
t = (s2_x * (l1s.y - l2s.y) - s2_y * (l1s.x - l2s.x)) / d;
if (s >= 0 && s <= 1 && t >= 0 && t <= 1) {
if (ip) {
ip->x = l1s.x + t * s1_x;
ip->y = l1s.y + t * s1_y;
}
return true;
}
return false;
}
// ****************************************************************************
bool isPointInTriangle(const Point2D &pt, const Point2D &t1, const Point2D &t2,
const Point2D &t3) {
double d = ((t2.y - t3.y) * (t1.x - t3.x) + (t3.x - t2.x) * (t1.y - t3.y));
double a =
((t2.y - t3.y) * (pt.x - t3.x) + (t3.x - t2.x) * (pt.y - t3.y)) / d;
double b =
((t3.y - t1.y) * (pt.x - t3.x) + (t1.x - t3.x) * (pt.y - t3.y)) / d;
double c = 1 - a - b;
return 0 <= a && a <= 1 && 0 <= b && b <= 1 && 0 <= c && c <= 1;
}
std::vector<std::tuple<Point2D, Point2D, Point2D, Point2D>> getWavyLineSegments(
const Point2D &p1, const Point2D &p2, unsigned int nSegments,
double vertOffset) {
std::vector<std::tuple<Point2D, Point2D, Point2D, Point2D>> res;
PRECONDITION(nSegments > 1, "too few segments");
if (nSegments % 2) {
++nSegments; // we're going to assume an even number of segments
}
Point2D delta = (p2 - p1);
Point2D perp(delta.y, -delta.x);
perp.normalize();
perp *= vertOffset;
delta /= nSegments;
for (unsigned int i = 0; i < nSegments; ++i) {
Point2D startpt = p1 + delta * i;
Point2D segpt = startpt + delta;
Point2D cpt1 = startpt + perp * (i % 2 ? -1 : 1);
Point2D cpt2 = segpt + perp * (i % 2 ? -1 : 1);
res.emplace_back(startpt, cpt1, cpt2, segpt);
}
return res;
}
RDKIT_MOLDRAW2D_EXPORT void calcArrowHead(Point2D &arrowEnd, Point2D &arrow1,
Point2D &arrow2,
const Point2D &arrowBegin,
bool asPolygon, double frac,
double angle) {
auto delta = arrowBegin - arrowEnd;
double cos_angle = std::cos(angle), sin_angle = std::sin(angle);
// to have the arrowhead a consistent fraction of the line length, we need
// the hypotenuse
frac /= cos_angle;
if (asPolygon) {
// allow for the mitring, using an empirically derived guess.
arrowEnd += delta * 0.1;
}
arrow1 = arrowEnd;
arrow1.x += frac * (delta.x * cos_angle + delta.y * sin_angle);
arrow1.y += frac * (delta.y * cos_angle - delta.x * sin_angle);
arrow2 = arrowEnd;
arrow2.x += frac * (delta.x * cos_angle - delta.y * sin_angle);
arrow2.y += frac * (delta.y * cos_angle + delta.x * sin_angle);
}
// ****************************************************************************
void adjustLineEndForEllipse(const Point2D ¢re, double xradius,
double yradius, Point2D p1, Point2D &p2) {
// move everything so the ellipse is centred on the origin.
p1 -= centre;
p2 -= centre;
double a2 = xradius * xradius;
double b2 = yradius * yradius;
double A =
(p2.x - p1.x) * (p2.x - p1.x) / a2 + (p2.y - p1.y) * (p2.y - p1.y) / b2;
double B = 2.0 * p1.x * (p2.x - p1.x) / a2 + 2.0 * p1.y * (p2.y - p1.y) / b2;
double C = p1.x * p1.x / a2 + p1.y * p1.y / b2 - 1.0;
auto t_to_point = [&](double t) -> Point2D {
Point2D ret_val;
ret_val.x = p1.x + (p2.x - p1.x) * t + centre.x;
ret_val.y = p1.y + (p2.y - p1.y) * t + centre.y;
return ret_val;
};
double disc = B * B - 4.0 * A * C;
if (disc < 0.0) {
// no solutions, leave things as they are. Bit crap, though.
p2 += centre;
return;
} else if (fabs(disc) < 1.0e-6) {
// 1 solution
double t = -B / (2.0 * A);
p2 = t_to_point(t);
} else {
// 2 solutions - take the one nearest p1.
double disc_rt = sqrt(disc);
double t1 = (-B + disc_rt) / (2.0 * A);
double t2 = (-B - disc_rt) / (2.0 * A);
double t;
// prefer the t between 0 and 1, as that must be between the original
// points. If both are, prefer the lower, as that will be nearest p1,
// so on the bit of the ellipse the line comes to first.
bool t1_ok = (t1 >= 0.0 && t1 <= 1.0);
bool t2_ok = (t2 >= 0.0 && t2 <= 1.0);
if (t1_ok && !t2_ok) {
t = t1;
} else if (t2_ok && !t1_ok) {
t = t2;
} else if (t1_ok && t2_ok) {
t = std::min(t1, t2);
} else {
// the intersections are both outside the line between p1 and p2
// so don't do anything.
p2 += centre;
return;
}
p2 = t_to_point(t);
}
}
} // namespace MolDraw2D_detail
} // namespace RDKit
|