File: MolDraw2DDetails.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (422 lines) | stat: -rw-r--r-- 14,323 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
//
//  Copyright (C) 2015-2020 Greg Landrum
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <GraphMol/MolDraw2D/MolDraw2DDetails.h>
#include <GraphMol/MolDraw2D/StringRect.h>
#include <GraphMol/Chirality.h>

#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

// ****************************************************************************

namespace RDKit {
namespace MolDraw2D_detail {
// implementation from $RDBASE/rdkit/sping/pid.py
void arcPoints(const Point2D &cds1, const Point2D &cds2,
               std::vector<Point2D> &res, float startAng, float extent) {
  // Note: this implementation is simple and not particularly efficient.
  float xScale = (cds2.x - cds1.x) / 2.0;
  float yScale = (cds2.y - cds1.y) / 2.0;
  if (xScale < 0) {
    xScale *= -1;
  }
  if (yScale < 0) {
    yScale *= -1;
  }

  float x = std::min(cds1.x, cds2.x) + xScale;
  float y = std::min(cds1.y, cds2.y) + yScale;

  int steps = std::max(static_cast<int>(extent * 2), 5);
  float step = M_PI * extent / (180 * steps);
  float angle = M_PI * startAng / 180;
  for (int i = 0; i <= steps; ++i) {
    Point2D point(x + xScale * cos(angle), y - yScale * sin(angle));
    res.emplace_back(point);
    angle += step;
  }
}

namespace {
// note, this is approximate since we're just using it for drawing
bool lineSegmentsIntersect(const Point2D &s1, const Point2D &s2,
                           const Point2D &s3, const Point2D &s4) {
  auto d1x = (s1.x - s2.x);
  auto d1y = (s1.y - s2.y);
  auto d2x = (s3.x - s4.x);
  auto d2y = (s3.y - s4.y);

  if (fabs(d1x) < 1e-4) {
    // fudge factor, since this isn't super critical
    d1x = 1e-4;
  }
  if (fabs(d2x) < 1e-4) {
    // fudge factor, since this isn't super critical
    d2x = 1e-4;
  }

  auto m1 = d1y / d1x;
  auto m2 = d2y / d2x;
  if (m1 == m2 || m1 == -m2) {
    // parallel
    return false;
  }
  auto b1 = (s1.x * s2.y - s2.x * s1.y) / d1x;
  auto b2 = (s3.x * s4.y - s4.x * s3.y) / d2x;

  auto intersectX = (b2 - b1) / (m1 - m2);
  return ((intersectX < s1.x) ^ (intersectX < s2.x)) &&
         ((intersectX < s3.x) ^ (intersectX < s4.x));
}
}  // namespace

std::vector<Point2D> getBracketPoints(
    const Point2D &p1, const Point2D &p2, const Point2D &refPt,
    const std::vector<std::pair<Point2D, Point2D>> &bondSegments,
    double bracketFrac) {
  std::vector<Point2D> res;
  auto v = p2 - p1;
  Point2D bracketDir{v.y, -v.x};
  bracketDir *= bracketFrac;

  // we'll default to use the refPt
  auto refVect = p2 - refPt;
  // but check if we intersect any of the bonds:
  for (const auto &seg : bondSegments) {
    if (lineSegmentsIntersect(p1, p2, seg.first, seg.second)) {
      refVect = p2 - seg.first;
    }
  }
  if (bracketDir.dotProduct(refVect) > 0) {
    bracketDir *= -1;
  }
  auto p0 = p1 + bracketDir;
  auto p3 = p2 + bracketDir;
  return {p0, p1, p2, p3};
}

// there are a several empirically determined constants here.
std::vector<Point2D> handdrawnLine(Point2D cds1, Point2D cds2, double scale,
                                   bool shiftBegin, bool shiftEnd,
                                   unsigned nSteps, double deviation,
                                   double endShift) {
  // std::cout << "   " << scale << " " << endShift / scale << std::endl;
  while (endShift / scale > 0.02) {
    endShift *= 0.75;
  }
  if (shiftBegin) {
    cds1.x += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
    cds1.y += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
  }
  if (shiftEnd) {
    cds2.x += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
    cds2.y += (std::rand() % 10 >= 5 ? endShift : -endShift) / scale;
  }

  Point2D step = (cds2 - cds1) / nSteps;
  // make sure we aren't adding loads of wiggles to short lines
  while (step.length() < 0.2 && nSteps > 2) {
    --nSteps;
    step = (cds2 - cds1) / nSteps;
  }
  // make sure the wiggles aren't too big
  while (deviation / step.length() > 0.15 || deviation * scale > 0.70) {
    deviation *= 0.75;
  }
  Point2D perp{step.y, -step.x};
  perp.normalize();
  std::vector<Point2D> pts;
  pts.push_back(cds1);
  for (unsigned int i = 1; i < nSteps; ++i) {
    auto tgt = cds1 + step * i;
    tgt += perp * deviation * (std::rand() % 20 - 10) / 10.0;
    pts.push_back(tgt);
  }
  pts.push_back(cds2);
  return pts;
}

// ****************************************************************************
bool doesLineIntersect(const StringRect &rect, const Point2D &end1,
                       const Point2D &end2, double padding) {
  Point2D tl, tr, bl, br;
  rect.calcCorners(tl, tr, br, bl, padding);
  if (doLinesIntersect(end2, end1, tl, tr, nullptr)) {
    return true;
  }
  if (doLinesIntersect(end2, end1, tr, br, nullptr)) {
    return true;
  }
  if (doLinesIntersect(end2, end1, br, bl, nullptr)) {
    return true;
  }
  if (doLinesIntersect(end2, end1, bl, tl, nullptr)) {
    return true;
  }
  return false;
}

// ****************************************************************************
bool doesTriangleIntersect(const StringRect &rect, const Point2D &pt1,
                           const Point2D &pt2, const Point2D &pt3,
                           double padding) {
  // the quick test is for any of the triangle points inside the rectangle.
  if (rect.isPointInside(pt1, padding) || rect.isPointInside(pt2, padding) ||
      rect.isPointInside(pt3, padding)) {
    return true;
  }
  // But if the rectangle is inside the triangle, that's not enough of a test.
  Point2D tl, tr, br, bl;
  rect.calcCorners(tl, tr, br, bl, padding);
  if (isPointInTriangle(tl, pt1, pt2, pt3) ||
      isPointInTriangle(tr, pt1, pt2, pt3) ||
      isPointInTriangle(br, pt1, pt2, pt3) ||
      isPointInTriangle(bl, pt1, pt2, pt3)) {
    return true;
  }
  // and finally all the points in the rectangle can be outside the triangle,
  // but the sides can cross it.  And vice versa.  So see if any of the sides
  // intersect.
  if (doLinesIntersect(tl, tr, pt1, pt2, nullptr) ||
      doLinesIntersect(tl, tr, pt2, pt3, nullptr) ||
      doLinesIntersect(tl, tr, pt3, pt1, nullptr) ||
      doLinesIntersect(tr, br, pt1, pt2, nullptr) ||
      doLinesIntersect(tr, br, pt2, pt3, nullptr) ||
      doLinesIntersect(tr, br, pt3, pt1, nullptr) ||
      doLinesIntersect(br, bl, pt1, pt2, nullptr) ||
      doLinesIntersect(br, bl, pt2, pt3, nullptr) ||
      doLinesIntersect(br, bl, pt3, pt1, nullptr) ||
      doLinesIntersect(bl, tl, pt1, pt2, nullptr) ||
      doLinesIntersect(bl, tl, pt2, pt3, nullptr) ||
      doLinesIntersect(bl, tl, pt3, pt1, nullptr)) {
    return true;
  }
  return false;
}

// ****************************************************************************
bool doesLineIntersectEllipse(const Point2D &centre, double xradius,
                              double yradius, double padding,
                              const Point2D &end1, const Point2D &end2) {
  // using
  // https://math.stackexchange.com/questions/76457/check-if-a-point-is-within-an-ellipse
  // to see if either end1 or end2 are inside the ellipse.
  double xr2 = (xradius + padding) * (xradius + padding);
  double yr2 = (yradius + padding) * (yradius + padding);
  double xdisc = (end1.x - centre.x) * (end1.x - centre.x) / xr2;
  double ydisc = (end1.y - centre.y) * (end1.y - centre.y) / yr2;
  if (xdisc + ydisc <= 1.0) {
    return true;
  }
  xdisc = (end2.x - centre.x) * (end2.x - centre.x) / xr2;
  ydisc = (end2.y - centre.y) * (end2.y - centre.y) / yr2;
  return xdisc + ydisc <= 1.0;
}

// ****************************************************************************
bool doesLineIntersectArc(const Point2D &centre, double xradius, double yradius,
                          double start_ang, double stop_ang, double padding,
                          const Point2D &end1, const Point2D &end2) {
  double xr = xradius + padding;
  double yr = yradius + padding;
  double xr2 = xr * xr;
  double yr2 = yr * yr;

  auto pointInArc = [&](const Point2D &p) -> bool {
    double xdisc = p.x * p.x / xr2;
    double ydisc = p.y * p.y / yr2;
    // start_ang can be more than stop_ang, if, for example, the arc goes from
    // 315 to 45.
    if (xdisc + ydisc <= 1.0) {
      // end1 is inside the whole ellipse.  See if the angle it makes with the
      // x axis lies between start_and and stop_ang.
      double th = atan2(p.x, p.y) * 180.0 / M_PI;
      if (th < 0.0) {
        th += 360.0;
      }
      if (start_ang < stop_ang) {
        // it's pretty straightforward
        if (th >= start_ang && th <= stop_ang) {
          return true;
        }
      } else {
        // the arc crosses 0.
        if (th >= start_ang && th <= 360.0) {
          return true;
        }
        if (th >= 0.0 && th <= stop_ang) {
          return true;
        }
      }
    }
    return false;
  };

  Point2D p1 = end1 - centre;
  if (pointInArc(p1)) {
    return true;
  }
  Point2D p2 = end2 - centre;
  return pointInArc(p2);
}

// ****************************************************************************
bool doLinesIntersect(const Point2D &l1s, const Point2D &l1f,
                      const Point2D &l2s, const Point2D &l2f, Point2D *ip) {
  // using spell from answer 2 of
  // https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
  double s1_x = l1f.x - l1s.x;
  double s1_y = l1f.y - l1s.y;
  double s2_x = l2f.x - l2s.x;
  double s2_y = l2f.y - l2s.y;

  double d = (-s2_x * s1_y + s1_x * s2_y);
  if (d == 0.0) {
    // parallel lines.
    return false;
  }
  double s, t;
  s = (-s1_y * (l1s.x - l2s.x) + s1_x * (l1s.y - l2s.y)) / d;
  t = (s2_x * (l1s.y - l2s.y) - s2_y * (l1s.x - l2s.x)) / d;

  if (s >= 0 && s <= 1 && t >= 0 && t <= 1) {
    if (ip) {
      ip->x = l1s.x + t * s1_x;
      ip->y = l1s.y + t * s1_y;
    }
    return true;
  }

  return false;
}

// ****************************************************************************
bool isPointInTriangle(const Point2D &pt, const Point2D &t1, const Point2D &t2,
                       const Point2D &t3) {
  double d = ((t2.y - t3.y) * (t1.x - t3.x) + (t3.x - t2.x) * (t1.y - t3.y));
  double a =
      ((t2.y - t3.y) * (pt.x - t3.x) + (t3.x - t2.x) * (pt.y - t3.y)) / d;
  double b =
      ((t3.y - t1.y) * (pt.x - t3.x) + (t1.x - t3.x) * (pt.y - t3.y)) / d;
  double c = 1 - a - b;
  return 0 <= a && a <= 1 && 0 <= b && b <= 1 && 0 <= c && c <= 1;
}

std::vector<std::tuple<Point2D, Point2D, Point2D, Point2D>> getWavyLineSegments(
    const Point2D &p1, const Point2D &p2, unsigned int nSegments,
    double vertOffset) {
  std::vector<std::tuple<Point2D, Point2D, Point2D, Point2D>> res;

  PRECONDITION(nSegments > 1, "too few segments");

  if (nSegments % 2) {
    ++nSegments;  // we're going to assume an even number of segments
  }

  Point2D delta = (p2 - p1);
  Point2D perp(delta.y, -delta.x);
  perp.normalize();
  perp *= vertOffset;
  delta /= nSegments;

  for (unsigned int i = 0; i < nSegments; ++i) {
    Point2D startpt = p1 + delta * i;
    Point2D segpt = startpt + delta;
    Point2D cpt1 = startpt + perp * (i % 2 ? -1 : 1);
    Point2D cpt2 = segpt + perp * (i % 2 ? -1 : 1);
    res.emplace_back(startpt, cpt1, cpt2, segpt);
  }
  return res;
}

RDKIT_MOLDRAW2D_EXPORT void calcArrowHead(Point2D &arrowEnd, Point2D &arrow1,
                                          Point2D &arrow2,
                                          const Point2D &arrowBegin,
                                          bool asPolygon, double frac,
                                          double angle) {
  auto delta = arrowBegin - arrowEnd;
  double cos_angle = std::cos(angle), sin_angle = std::sin(angle);
  // to have the arrowhead a consistent fraction of the line length, we need
  // the hypotenuse
  frac /= cos_angle;
  if (asPolygon) {
    // allow for the mitring, using an empirically derived guess.
    arrowEnd += delta * 0.1;
  }
  arrow1 = arrowEnd;
  arrow1.x += frac * (delta.x * cos_angle + delta.y * sin_angle);
  arrow1.y += frac * (delta.y * cos_angle - delta.x * sin_angle);

  arrow2 = arrowEnd;
  arrow2.x += frac * (delta.x * cos_angle - delta.y * sin_angle);
  arrow2.y += frac * (delta.y * cos_angle + delta.x * sin_angle);
}

// ****************************************************************************
void adjustLineEndForEllipse(const Point2D &centre, double xradius,
                             double yradius, Point2D p1, Point2D &p2) {
  // move everything so the ellipse is centred on the origin.
  p1 -= centre;
  p2 -= centre;
  double a2 = xradius * xradius;
  double b2 = yradius * yradius;
  double A =
      (p2.x - p1.x) * (p2.x - p1.x) / a2 + (p2.y - p1.y) * (p2.y - p1.y) / b2;
  double B = 2.0 * p1.x * (p2.x - p1.x) / a2 + 2.0 * p1.y * (p2.y - p1.y) / b2;
  double C = p1.x * p1.x / a2 + p1.y * p1.y / b2 - 1.0;

  auto t_to_point = [&](double t) -> Point2D {
    Point2D ret_val;
    ret_val.x = p1.x + (p2.x - p1.x) * t + centre.x;
    ret_val.y = p1.y + (p2.y - p1.y) * t + centre.y;
    return ret_val;
  };

  double disc = B * B - 4.0 * A * C;
  if (disc < 0.0) {
    // no solutions, leave things as they are.  Bit crap, though.
    p2 += centre;
    return;
  } else if (fabs(disc) < 1.0e-6) {
    // 1 solution
    double t = -B / (2.0 * A);
    p2 = t_to_point(t);
  } else {
    // 2 solutions - take the one nearest p1.
    double disc_rt = sqrt(disc);
    double t1 = (-B + disc_rt) / (2.0 * A);
    double t2 = (-B - disc_rt) / (2.0 * A);
    double t;
    // prefer the t between 0 and 1, as that must be between the original
    // points.  If both are, prefer the lower, as that will be nearest p1,
    // so on the bit of the ellipse the line comes to first.
    bool t1_ok = (t1 >= 0.0 && t1 <= 1.0);
    bool t2_ok = (t2 >= 0.0 && t2 <= 1.0);
    if (t1_ok && !t2_ok) {
      t = t1;
    } else if (t2_ok && !t1_ok) {
      t = t2;
    } else if (t1_ok && t2_ok) {
      t = std::min(t1, t2);
    } else {
      // the intersections are both outside the line between p1 and p2
      // so don't do anything.
      p2 += centre;
      return;
    }
    p2 = t_to_point(t);
  }
}

}  // namespace MolDraw2D_detail
}  // namespace RDKit