1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
//
// Copyright (c) 2014-2024, Novartis Institutes for BioMedical Research and
// other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <RDBoost/Wrap.h>
#include <RDBoost/PySequenceHolder.h>
#include <boost/python.hpp>
#include <ForceField/MMFF/Nonbonded.h>
#include <GraphMol/MolInteractionFields/MIFDescriptors.h>
#include <Geometry/UniformRealValueGrid3D.h>
#include <Geometry/point.h>
#include <RDBoost/boost_numpy.h>
namespace python = boost::python;
using namespace RDMIF;
void wrap_mif();
BOOST_PYTHON_MODULE(rdMIF) {
python::scope().attr("__doc__") =
"Module containing functions for calculating molecular interaction fields (MIFs)\n\
NOTE: This functionality is experimental and the API and/or results may change in future releases.";
python::register_exception_translator<IndexErrorException>(
&translate_index_error);
python::register_exception_translator<ValueErrorException>(
&translate_value_error);
wrap_mif();
}
namespace RDMIF {
RDGeom::UniformRealValueGrid3D *constructGridHelper(const RDKit::ROMol &mol,
int confId, double margin,
double spacing) {
return constructGrid(mol, confId, margin, spacing).release();
}
std::pair<std::vector<double>, std::vector<RDGeom::Point3D>>
extractChargesAndPositions(const python::object &charges,
const python::object &positions) {
const auto pyPos = positions.ptr();
const auto pyCharges = charges.ptr();
if (!pyPos || !PySequence_Check(pyPos)) {
throw_value_error("positions argument must be a sequence");
}
if (!pyCharges || !PySequence_Check(pyCharges)) {
throw_value_error("charges argument must be a sequence");
}
auto nrows = PySequence_Size(pyPos);
if (nrows != PySequence_Size(pyCharges)) {
throw_value_error("positions and charges must have the same length");
}
auto extract_double = [](PyObject *obj, size_t i) {
const auto dblObj = PySequence_GetItem(obj, i);
double value = python::extract<double>(dblObj);
Py_DecRef(dblObj);
return value;
};
std::vector<RDGeom::Point3D> pos(nrows);
std::vector<double> ch(nrows);
for (unsigned int i = 0; i < nrows; ++i) {
const auto pyXyz = PySequence_GetItem(pyPos, i);
if (!pyXyz || !PySequence_Check(pyXyz) || PySequence_Size(pyXyz) != 3) {
if (pyXyz) {
Py_DecRef(pyXyz);
}
throw_value_error(
"all elements in positions argument must be x,y,z sequences");
}
pos[i].x = extract_double(pyXyz, 0);
pos[i].y = extract_double(pyXyz, 1);
pos[i].z = extract_double(pyXyz, 2);
ch[i] = extract_double(pyCharges, i);
Py_DecRef(pyXyz);
}
return std::make_pair(std::move(ch), std::move(pos));
}
boost::shared_ptr<Coulomb> makeAltCoulomb(const python::object &charges,
const python::object &positions,
double probecharge, bool absVal,
double alpha, double cutoff) {
const auto [ch, pos] = extractChargesAndPositions(charges, positions);
return boost::make_shared<Coulomb>(ch, pos, probecharge, absVal, alpha,
cutoff);
}
boost::shared_ptr<CoulombDielectric> makeAltCoulombDielectric(
const python::object &charges, const python::object &positions,
double probecharge, bool absVal, double alpha, double cutoff,
double epsilon, double xi) {
const auto [ch, pos] = extractChargesAndPositions(charges, positions);
return boost::make_shared<CoulombDielectric>(ch, pos, probecharge, absVal,
alpha, cutoff, epsilon, xi);
}
python::tuple readCubeFile(const std::string &filename) {
std::unique_ptr<RDGeom::UniformRealValueGrid3D> grd(
new RDGeom::UniformRealValueGrid3D());
auto res = readFromCubeFile(*grd, filename);
boost::python::manage_new_object::apply<
RDGeom::UniformRealValueGrid3D *>::type grdConverter;
boost::python::manage_new_object::apply<RDKit::ROMol *>::type molConverter;
return python::make_tuple(python::handle<>(grdConverter(grd.release())),
python::handle<>(molConverter(
static_cast<RDKit::ROMol *>(res.release()))));
}
struct mif_wrapper {
static void wrap() {
std::string docStringClass =
"Class for calculation of electrostatic interaction (Coulomb energy) between probe and molecule in\n\
vacuum (no dielectric).\n\n";
std::string docStringConst =
"Constructor for Coulomb class.\n\n\
ARGUMENTS:\n\
- mol: the molecule of interest\n\
- confId: the ID of the conformer to be used (defaults to -1)\n\
- probeCharge charge of probe [e] (defaults to 1.0 e)\n\
- absVal: if True, absolute values of interactions are calculated (defaults to False)\n\
- chargeKey property key for retrieving partial charges of atoms from molecule (defaults to '_GasteigerCharge')\n\
- softcoreParam softcore interaction parameter [A^2], if zero, a minimum cutoff distance is used (defaults to 0.0)\n\
- cutoff minimum cutoff distance [A] (defaults to 1.0)\n";
std::string docStringConstAlt =
"Alternative constructor for Coulomb class.\n\n\
ARGUMENTS:\n\
- charges: array of partial charges of a molecule's atoms\n\
- positions: array of positions of a molecule's atoms\n\
- probeCharge charge of probe [e] (defaults to 1.0 e)\n\
- absVal: if True, absolute values of interactions are calculated (defaults to False)\n\
- softcoreParam softcore interaction parameter [A^2], if zero, a minimum cutoff distance is used (defaults to 0.0)\n\
- cutoff minimum cutoff distance [A] (defaults to 1.0)\n";
std::string docString =
"Calculates the electrostatic interaction (Coulomb energy) between probe and molecule in\n\
vacuum (no dielectric).\n\n\
ARGUMENTS:\n\
- x, y, z: coordinates of probe position for energy calculation\n\
- threshold: maximal distance until which interactions are calculated\n\
RETURNS:\n\
- electrostatic potential in [kJ mol^-1]\n";
python::class_<Coulomb, boost::shared_ptr<Coulomb>>(
"Coulomb", docStringClass.c_str(),
python::init<const RDKit::ROMol &, int, double, bool,
const std::string &, double, double>(
(python::arg("mol"), python::arg("confId") = -1,
python::arg("probeCharge") = 1.0, python::arg("absVal") = false,
python::arg("chargeKey") = "_GasteigerCharge",
python::arg("softcoreParam") = 0.0, python::arg("cutoff") = 1.0),
docStringConst.c_str()))
.def("__init__",
python::make_constructor(
makeAltCoulomb, python::default_call_policies(),
(python::arg("charges"), python::arg("positions"),
python::arg("probeCharge") = 1.0,
python::arg("absVal") = false,
python::arg("softcoreParam") = 0.0,
python::arg("cutoff") = 1.0)),
docStringConstAlt.c_str())
.def("__call__", &Coulomb::operator(),
(python::arg("x"), python::arg("y"), python::arg("z"),
python::arg("threshold")),
docString.c_str());
docStringClass =
"Class for calculation of electrostatic interaction (Coulomb energy) between probe and molecule in\n\
by taking a distance-dependent dielectric into account.\n\
Same energy term as used in GRID MIFs.\n\
References:\n\
- J. Med. Chem. 1985, 28, 849.\n\
- J. Comp. Chem. 1983, 4, 187.\n\n";
docStringConst =
"Constructor for CoulombDielectric class.\n\n\
ARGUMENTS:\n\
- mol: the molecule of interest\n\
- confId: the ID of the conformer to be used (defaults to -1)\n\
- probeCharge charge of probe [e] (defaults to 1.0 e)\n\
- absVal: if True, absolute values of interactions are calculated (defaults to False)\n\
- chargeKey property key for retrieving partial charges of atoms from molecule (defaults to '_GasteigerCharge')\n\
- softcoreParam softcore interaction parameter [A^2], if zero, a minimum cutoff distance is used (defaults to 0.0)\n\
- cutoff minimum cutoff distance [A] (defaults to 1.0)\n\
- epsilon relative permittivity of solvent (defaults to 80.0)\n\
- xi relative permittivity of solute (defaults to 4.0)\n";
docStringConstAlt =
"Alternative constructor for CoulombDielectric class.\n\n\
ARGUMENTS:\n\
- charges: array of partial charges of a molecule's atoms\n\
- positions: array of positions of a molecule's atoms\n\
- probeCharge charge of probe [e] (defaults to 1.0 e)\n\
- absVal: if True, absolute values of interactions are calculated (defaults to False)\n\
- softcoreParam softcore interaction parameter [A^2], if zero, a minimum cutoff distance is used (defaults to 0.0)\n\
- cutoff minimum cutoff distance [A] (defaults to 1.0)\n\
- epsilon relative permittivity of solvent (defaults to 80.0)\n\
- xi relative permittivity of solute (defaults to 4.0)\n";
docString =
"Calculates the electrostatic interaction (Coulomb energy) between probe and molecule in\n\
by taking a distance-dependent dielectric into account.\n\n\
ARGUMENTS:\n\
- x, y, z: coordinates of probe position for energy calculation\n\
- threshold: maximal distance until which interactions are calculated\n\
RETURNS:\n\
- electrostatic potential in [kJ mol^-1]\n";
python::class_<CoulombDielectric, boost::shared_ptr<CoulombDielectric>>(
"CoulombDielectric", docStringClass.c_str(),
python::init<const RDKit::ROMol &, int, double, bool,
const std::string &, double, double, double, double>(
(python::arg("mol"), python::arg("confId") = -1,
python::arg("probeCharge") = 1.0, python::arg("absVal") = false,
python::arg("chargeKey") = "_GasteigerCharge",
python::arg("softcoreParam") = 0.0, python::arg("cutoff") = 1.0,
python::arg("epsilon") = 80.0, python::arg("xi") = 4.0),
docStringConst.c_str()))
.def("__init__",
python::make_constructor(
makeAltCoulombDielectric, python::default_call_policies(),
(python::arg("charges"), python::arg("positions"),
python::arg("probeCharge") = 1.0,
python::arg("absVal") = false,
python::arg("softcoreParam") = 0.0,
python::arg("cutoff") = 1.0, python::arg("epsilon") = 80.0,
python::arg("xi") = 4.0)),
docStringConstAlt.c_str())
.def(python::init<const std::string &>(
python::args("self", "pklString")))
.def("__call__", &CoulombDielectric::operator(),
(python::arg("x"), python::arg("y"), python::arg("z"),
python::arg("threshold")),
docString.c_str());
docStringClass =
"Class for calculating van der Waals interactions between molecule and a probe at a gridpoint\
based on the MMFF forcefield.\n";
docStringConst =
"ARGUMENTS:\n\
- mol molecule object\n\
- confId conformation id which is used to get positions of atoms (default=-1)\n\
- probeAtomType MMFF94 atom type for the probe atom (default=6, sp3 oxygen)\n\
- cutoff minimum cutoff distance [A] (default:1.0)\n\
- scaling scaling of VdW parameters to take hydrogen bonds into account (default=False)\n";
docString =
"Calculates the van der Waals interaction between molecule and a probe at a gridpoint.\n\n\
ARGUMENTS:\n\
- x, y, z: coordinates of probe position for energy calculation\n\
- threshold: maximal distance until which interactions are calculated\n\
RETURNS:\n\
- van der Waals potential in [kJ mol^-1]\n";
python::class_<MMFFVdWaals, boost::shared_ptr<MMFFVdWaals>,
boost::noncopyable>(
"MMFFVdWaals", docStringClass.c_str(),
python::init<const RDKit::ROMol &, int, unsigned int, bool, double>(
(python::arg("self"), python::arg("mol"),
python::arg("confId") = -1, python::arg("probeAtomType") = 6,
python::arg("scaling") = false, python::arg("cutoff") = 1.0),
docStringConst.c_str()))
.def("__call__", &MMFFVdWaals::operator(),
(python::arg("x"), python::arg("y"), python::arg("z"),
python::arg("threshold")),
docString.c_str());
docStringClass =
"Class for calculating van der Waals interactions between molecule and a probe at a gridpoint\
based on the UFF forcefield.\n";
docStringConst =
"ARGUMENTS:\n\
- mol molecule object\n\
- confId conformation id which is used to get positions of atoms (default=-1)\n\
- probeAtomType UFF atom type for the probe atom (default='O_3', sp3 oxygen)\n\
- cutoff minimum cutoff distance [A] (default:1.0)\n";
python::class_<UFFVdWaals, boost::shared_ptr<UFFVdWaals>,
boost::noncopyable>(
"UFFVdWaals", docStringClass.c_str(),
python::init<const RDKit::ROMol &, int, const std::string &, double>(
(python::arg("self"), python::arg("mol"),
python::arg("confId") = -1, python::arg("probeAtomType") = "O_3",
python::arg("cutoff") = 1.0),
docStringConst.c_str()))
.def("__call__", &UFFVdWaals::operator(),
(python::arg("x"), python::arg("y"), python::arg("z"),
python::arg("threshold")),
docString.c_str());
docStringClass =
"Class for calculation of hydrogen bonding energy between a probe and a molecule.\n\n\
Similar to GRID hydrogen bonding descriptors.\n\
References:\n\
- J.Med.Chem. 1989, 32, 1083.\n\
- J.Med.Chem. 1993, 36, 140.\n\
- J.Med.Chem. 1993, 36, 148.\n";
docStringConst =
"Constructor for HBond class.\n\n\
ARGUMENTS:\n\
- mol: the molecule of interest\n\
- confId: the ID of the conformer to be used (defaults to -1)\n\
- probeAtomType: atom type for the probe atom (either 'OH', 'O', 'NH' or 'N') (defaults to 'OH')\n\
- fixed: for some groups, two different angle dependencies are defined:\n\
one which takes some flexibility of groups (rotation/swapping of lone pairs and hydrogen)\n\
into account and one for strictly fixed conformations\n\
if True, strictly fixed conformations (defaults to True)\n\
- cutoff minimum cutoff distance [A] (defaults to 1.0)\n";
docString =
"Calculates the hydrogen bonding energy between probe and molecule in\n\n\
ARGUMENTS:\n\
- x, y, z: coordinates of probe position for energy calculation\n\
- threshold: maximal distance until which interactions are calculated\n\
RETURNS:\n\
hydrogen bonding energy in [kJ mol^-1]\n";
python::class_<HBond, boost::shared_ptr<HBond>>(
"HBond", docStringClass.c_str(),
python::init<RDKit::ROMol &, int, const std::string &, bool, double>(
(python::arg("mol"), python::arg("confId") = -1,
python::arg("probeAtomType") = "OH", python::arg("fixed") = true,
python::arg("cutoff") = 1.0),
docStringConst.c_str()))
.def("__call__", &HBond::operator(),
(python::arg("x"), python::arg("y"), python::arg("z"),
python::arg("threshold")),
docString.c_str());
docStringClass =
"Class for calculation of a hydrophilic potential of a molecule at a point.\n\n\
The interaction energy of hydrogen and oxygen of water is calculated at each point as a \n\
hydrogen bond interaction (either OH or O probe). The favored interaction is returned.\n";
docStringConst =
"Constructor for Hydrophilic class.\n\n\
ARGUMENTS:\n\
- mol: the molecule of interest\n\
- confId: the ID of the conformer to be used (defaults to -1)\n\
- fixed: for some groups, two different angle dependencies are defined:\n\
one which takes some flexibility of groups (rotation/swapping of lone pairs and hydrogen)\n\
into account and one for strictly fixed conformations\n\
if True, strictly fixed conformations (defaults to True)\n\
- cutoff minimum cutoff distance [A] (default:1.0)\n";
docString =
"Calculates the hydrophilic field energy at a point.\n\n\
ARGUMENTS:\n\
- x, y, z: coordinates of probe position for energy calculation\n\
- threshold: maximal distance until which interactions are calculated\n\
RETURNS:\n\
hydrophilic field energy in [kJ mol^-1]\n";
python::class_<Hydrophilic, boost::shared_ptr<Hydrophilic>>(
"Hydrophilic", docStringClass.c_str(),
python::init<RDKit::ROMol &, int, bool, double>(
(python::arg("mol"), python::arg("confId") = -1,
python::arg("fixed") = true, python::arg("cutoff") = 1.0),
docStringConst.c_str()))
.def("__call__", &Hydrophilic::operator(),
(python::arg("x"), python::arg("y"), python::arg("z"),
python::arg("threshold")),
docString.c_str());
docString =
"Constructs a UniformRealValueGrid3D (3D grid with real values at gridpoints) fitting to a molecule.\n\n\
ARGUMENTS:\n\
- mol: molecule of interest\n\
- confId: the ID of the conformer to be used (defaults to -1)\n\
- margin: minimum distance of molecule to surface of grid [A] (defaults to 5.0 A)\n\
- spacing: grid spacing [A] (defaults to 0.5 A)\n";
python::def("ConstructGrid", constructGridHelper,
(python::arg("mol"), python::arg("confId") = -1,
python::arg("margin") = 5.0, python::arg("spacing") = 0.5),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
docString =
"Calculates descriptors (to be specified as parameter) of a molecule at every gridpoint of a grid.\n\n\
ARGUMENTS:\n\
- grid: UniformRealValueGrid3D which get the MIF values\n\
- descriptor: Descriptor class which is used to calculate values\n";
python::def("CalculateDescriptors", calculateDescriptors<Coulomb>,
(python::arg("grid"), python::arg("descriptor"),
python::arg("threshold") = -1.0),
docString.c_str());
python::def("CalculateDescriptors", calculateDescriptors<CoulombDielectric>,
(python::arg("grid"), python::arg("descriptor"),
python::arg("threshold") = -1.0),
docString.c_str());
python::def("CalculateDescriptors", calculateDescriptors<MMFFVdWaals>,
(python::arg("grid"), python::arg("descriptor"),
python::arg("threshold") = -1.0),
docString.c_str());
python::def("CalculateDescriptors", calculateDescriptors<UFFVdWaals>,
(python::arg("grid"), python::arg("descriptor"),
python::arg("threshold") = -1.0),
docString.c_str());
python::def("CalculateDescriptors", calculateDescriptors<HBond>,
(python::arg("grid"), python::arg("descriptor"),
python::arg("threshold") = -1.0),
docString.c_str());
python::def("CalculateDescriptors", calculateDescriptors<Hydrophilic>,
(python::arg("grid"), python::arg("descriptor"),
python::arg("threshold") = -1.0),
docString.c_str());
docString =
"Writes Grid to a file in Gaussian CUBE format.\n\n\
ARGUMENTS:\n\
- grid: UniformRealValueGrid3D to be stored\n\
- filename: filename of file to be written\n\
- mol: associated molecule (defaults to None)\n\
- confId: the ID of the conformer to be used (defaults to -1)\n";
python::def(
"WriteToCubeFile", writeToCubeFile,
(python::arg("grid"), python::arg("filename"),
python::arg("mol") = python::object(), python::arg("confId") = -1),
docString.c_str());
docString =
"Reads Grid from a file in Gaussian CUBE format.\n\n\
ARGUMENTS:\n\
- filename: filename of file to be read\n\
RETURNS:\n\
a tuple where the first element is the grid and\n\
the second element is the molecule object associated to the grid\n\
(only atoms and coordinates, no bonds;\n\
None if no molecule was associated to the grid)\n";
python::def("ReadFromCubeFile", readCubeFile, (python::arg("filename")),
docString.c_str());
}
};
} // namespace RDMIF
void wrap_mif() { mif_wrapper::wrap(); }
|