1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
//
// Copyright (c) 2017-2021, Novartis Institutes for BioMedical Research Inc.
// and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "RGroupCore.h"
#include "GraphMol/SmilesParse/SmilesWrite.h"
#include "GraphMol/ChemTransforms/ChemTransforms.h"
#include "GraphMol/Substruct/SubstructUtils.h"
#include "GraphMol/TautomerQuery/TautomerQuery.h"
namespace RDKit {
namespace {
// From answer 12 in
// https://stackoverflow.com/questions/5279051/how-can-i-create-cartesian-product-of-vector-of-vectors
// by anumi
// modified to exclude duplicates
static std::vector<std::vector<int>> cartesianProduct(
const std::vector<std::vector<int>> &v, bool allowDuplicates) {
std::vector<std::vector<int>> s = {{}};
for (const auto &u : v) {
std::vector<std::vector<int>> r;
for (const auto &x : s) {
for (const auto y : u) {
// check for duplicates
if (allowDuplicates || std::find(x.begin(), x.end(), y) == x.end()) {
r.push_back(x);
r.back().push_back(y);
}
}
}
if (r.empty()) {
// unable to extend
return r;
}
s = std::move(r);
}
return s;
}
} // namespace
// move this to constructor if the create new core path can be removed from
// RGroupDecomposition::add
void RCore::init() {
findIndicesWithRLabel();
countUserRGroups();
buildMatchingMol();
}
void RCore::findIndicesWithRLabel() {
// Find all the core atoms that have user
// label and set their indices to 1 in core_atoms_with_user_labels
core_atoms_with_user_labels.resize(core->getNumAtoms());
for (const auto atom : core->atoms()) {
int label;
if (atom->getPropIfPresent(RLABEL, label) && label > 0) {
core_atoms_with_user_labels.set(atom->getIdx());
}
}
}
RWMOL_SPTR RCore::extractCoreFromMolMatch(
const ROMol &mol, const MatchVectType &match,
const RGroupDecompositionParameters ¶ms) const {
auto extractedCore = boost::make_shared<RWMol>(mol);
boost::dynamic_bitset<> atomIndicesToKeep(mol.getNumAtoms());
std::vector<Bond *> newBonds;
std::map<Atom *, int> dummyAtomMap;
std::map<const Atom *, Atom *> molAtomMap;
for (const auto &pair : match) {
const auto queryAtom = core->getAtomWithIdx(pair.first);
const auto targetAtom = extractedCore->getAtomWithIdx(pair.second);
if (int rLabel; queryAtom->getPropIfPresent(RLABEL, rLabel)) {
targetAtom->setProp(RLABEL, rLabel);
}
if (int rLabelType; queryAtom->getPropIfPresent(RLABEL_TYPE, rLabelType)) {
targetAtom->setProp(RLABEL_TYPE, rLabelType);
}
if (queryAtom->getAtomicNum() == 0 && queryAtom->hasProp(RLABEL) &&
queryAtom->getDegree() == 1) {
continue;
} else {
atomIndicesToKeep.set(pair.second);
molAtomMap[mol.getAtomWithIdx(pair.second)] = targetAtom;
int neighborNumber = -1;
#ifdef VERBOSE
std::cerr << "Atom Chirality In " << targetAtom->getChiralTag()
<< std::endl;
#endif
bool isChiral = targetAtom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW ||
targetAtom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW;
if (isChiral && !params.substructmatchParams.useChirality) {
// if we're not doing chiral matching don't copy chirality to the
// extracted core.
targetAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
isChiral = false;
}
// collect neighbors in vector, so we can add atoms while looping
std::vector<Atom *> targetNeighborAtoms;
for (auto targetNeighborAtom : extractedCore->atomNeighbors(targetAtom)) {
targetNeighborAtoms.push_back(targetNeighborAtom);
}
// explicit hydrogens to keep in extracted core to preserve chiralty
std::vector<int> hydrogensToAdd;
for (const auto targetNeighborAtom : targetNeighborAtoms) {
++neighborNumber;
auto targetNeighborIndex = targetNeighborAtom->getIdx();
auto queryNeighborMapping = std::find_if(
match.begin(), match.end(),
[this, targetNeighborIndex, pair](const auto &p) {
return p.second == static_cast<int>(targetNeighborIndex) &&
core->getBondBetweenAtoms(pair.first, p.first);
});
if (queryNeighborMapping == match.end()) {
if (targetNeighborAtom->getAtomicNum() == 1) {
// Hydrogen needed to define chirality is present in target but
// not mapped to core. Copy it to the extracted core
hydrogensToAdd.push_back(static_cast<int>(targetNeighborIndex));
molAtomMap[mol.getAtomWithIdx(targetNeighborIndex)] =
targetNeighborAtom;
} else if (isChiral) {
// There is a heavy sidechain in the decomp that is connected to
// the core by an unknown bond (onlyMatchAtRGroups = False and
// allowMultipleRGroupsOnUnlabelled = False).
// As there is no explicit target bond chriality is not preserved.
// In some cases we could handle chirality, but that has not been
// implemented (if there is only one free bond on the query that
// would be easy- or we could arbitrarily assign bonds).
isChiral = false;
targetAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
}
continue;
}
const auto queryNeighbor =
core->getAtomWithIdx((*queryNeighborMapping).first);
if (queryNeighbor->getAtomicNum() == 0 &&
queryNeighbor->hasProp(RLABEL) && queryNeighbor->getDegree() == 1) {
auto newDummy = new Atom(*queryNeighbor);
dummyAtomMap[newDummy] = static_cast<int>(targetNeighborIndex);
newDummy->clearComputedProps();
const auto newDummyIdx =
extractedCore->addAtom(newDummy, false, true);
if (newDummyIdx >= atomIndicesToKeep.size()) {
atomIndicesToKeep.resize(newDummyIdx + 1);
}
atomIndicesToKeep.set(newDummyIdx);
auto connectingBond =
extractedCore
->getBondBetweenAtoms(pair.second, targetNeighborIndex)
->copy();
if (connectingBond->getStereo() > Bond::BondStereo::STEREOANY) {
// stereo double bonds
connectingBond->setStereo(Bond::BondStereo::STEREOANY);
}
if (connectingBond->getBeginAtomIdx() == targetNeighborIndex) {
connectingBond->setBeginAtomIdx(newDummyIdx);
} else {
connectingBond->setEndAtomIdx(newDummyIdx);
}
newBonds.push_back(connectingBond);
// Check to see if we are breaking a stereo bond definition, by
// removing one of the stereo atoms. If so, set to the new atom
for (auto bond : extractedCore->atomBonds(targetAtom)) {
if (bond->getIdx() == connectingBond->getIdx()) {
continue;
}
if (bond->getStereo() > Bond::STEREOANY) {
auto &stereoAtoms = bond->getStereoAtoms();
for (int &stereoAtom : stereoAtoms) {
if (stereoAtom == static_cast<int>(targetNeighborIndex)) {
stereoAtom = static_cast<int>(newDummyIdx);
}
}
}
}
// Chirality parity stuff see RDKit::replaceCore in
// Code/GraphMol/ChemTransforms/ChemTransforms.cpp
if (isChiral) {
bool switchIt = false;
switch (extractedCore->getAtomDegree(targetAtom)) {
case 4:
if (!(neighborNumber % 2)) {
switchIt = true;
}
break;
case 3:
if (neighborNumber == 1) {
switchIt = true;
}
break;
}
// because this neighbor will be moved at the end of the neighbor
// list, we need to decrement the neighbor number in case additional
// dummy atoms are to be connected to the targetAtom
--neighborNumber;
if (switchIt) {
targetAtom->invertChirality();
}
}
}
}
for (const auto index : hydrogensToAdd) {
atomIndicesToKeep.set(index);
}
#ifdef VERBOSE
std::cerr << "Atom Chirality Out " << targetAtom->getChiralTag()
<< std::endl;
#endif
}
}
for (const auto newBond : newBonds) {
extractedCore->addBond(newBond, true);
}
// Now delete atom's that are not in the core.
extractedCore->beginBatchEdit();
boost::dynamic_bitset<> removedAtoms(extractedCore->getNumAtoms());
for (const auto atom : extractedCore->atoms()) {
if (!atomIndicesToKeep.test(atom->getIdx())) {
extractedCore->removeAtom(atom);
removedAtoms.set(atom->getIdx());
}
}
extractedCore->commitBatchEdit();
// Copy molecule coordinates to extracted core
details::updateSubMolConfs(mol, *extractedCore, removedAtoms);
for (auto citer = mol.beginConformers(); citer != mol.endConformers();
++citer) {
Conformer &newConf =
extractedCore->getConformer(static_cast<int>((*citer)->getId()));
for (const auto &[fst, snd] : dummyAtomMap) {
newConf.setAtomPos(fst->getIdx(), (*citer)->getAtomPos(snd));
}
}
// If the molecule has no coordinates and the core does, copy those over
if (!mol.getNumConformers() && core->getNumConformers()) {
ROMol molCopy(mol);
for (auto citer = core->beginConformers(); citer != core->endConformers();
++citer) {
const auto newConf = new Conformer(mol.getNumAtoms());
newConf->setId((*citer)->getId());
newConf->set3D((*citer)->is3D());
for (const auto &[fst, snd] : match) {
newConf->setAtomPos(snd, (*citer)->getAtomPos(fst));
}
molCopy.addConformer(newConf);
}
details::updateSubMolConfs(molCopy, *extractedCore, removedAtoms);
molCopy.clearConformers();
for (const auto atom : extractedCore->atoms()) {
if (isUserRLabel(*atom)) {
int rLabel = atom->getProp<int>(RLABEL);
for (const auto coreAtom : core->atoms()) {
if (int l; coreAtom->getPropIfPresent(RLABEL, l) && l == rLabel) {
int i = 0;
for (auto citer = core->beginConformers();
citer != core->endConformers(); ++citer, ++i) {
extractedCore->getConformer(i).setAtomPos(
atom->getIdx(), (*citer)->getAtomPos(coreAtom->getIdx()));
}
break;
}
}
}
}
}
// Copy over any stereo groups that lie in the extracted core
details::copyStereoGroups(molAtomMap, mol, *extractedCore);
extractedCore->clearComputedProps(true);
extractedCore->updatePropertyCache(false);
#ifdef VERBOSE
std::cerr << "Extracted core smiles " << MolToSmiles(*extractedCore)
<< std::endl;
std::cerr << "Extracted core smarts " << MolToSmarts(*extractedCore)
<< std::endl;
#endif
try {
unsigned int failed;
MolOps::sanitizeMol(*extractedCore, failed,
MolOps::SANITIZE_SYMMRINGS | MolOps::SANITIZE_CLEANUP);
} catch (const MolSanitizeException &) {
}
return extractedCore;
}
// Return a copy of core where dummy atoms are replaced by
// the respective matching atom in mol, while other atoms have
// their aromatic flag and formal charge copied from
// the respective matching atom in mol
ROMOL_SPTR RCore::replaceCoreAtomsWithMolMatches(
const ROMol &mol, const MatchVectType &match) const {
auto coreReplacedAtoms = boost::make_shared<RWMol>(*core);
for (const auto &p : match) {
auto atom = coreReplacedAtoms->getAtomWithIdx(p.first);
if (isAtomWithMultipleNeighborsOrNotDummyRGroupAttachment(*atom)) {
auto molAtom = mol.getAtomWithIdx(p.second);
replaceCoreAtom(*coreReplacedAtoms, *atom, *molAtom);
}
}
std::map<int, int> matchLookup(match.cbegin(), match.cend());
for (auto bond : coreReplacedAtoms->bonds()) {
if (bond->hasQuery()) {
const auto molBond =
mol.getBondBetweenAtoms(matchLookup[bond->getBeginAtomIdx()],
matchLookup[bond->getEndAtomIdx()]);
if (molBond == nullptr) {
// this can happen if we have a user-defined R group that is not
// matched in the query
CHECK_INVARIANT(bond->getBeginAtom()->getAtomicNum() == 0 ||
bond->getEndAtom()->getAtomicNum() == 0,
"Failed to find core bond in molecule");
} else {
Bond newBond(molBond->getBondType());
newBond.setIsAromatic(molBond->getIsAromatic());
coreReplacedAtoms->replaceBond(bond->getIdx(), &newBond, true);
}
}
}
#ifdef VERBOSE
std::cerr << "Original core smarts " << MolToSmarts(*core) << std::endl;
std::cerr << "Dummy replaced core smarts " << MolToSmarts(*coreReplacedAtoms)
<< std::endl;
#endif
if (mol.getNumConformers() > 0) {
// if the input structure has coordinates copy them to the core
if (!coreReplacedAtoms->getNumConformers()) {
coreReplacedAtoms->addConformer(
new Conformer(coreReplacedAtoms->getNumAtoms()));
}
auto &replacedConformer = coreReplacedAtoms->getConformer();
const auto &molConformer = mol.getConformer();
for (const auto &p : match) {
auto molPoint = molConformer.getAtomPos(p.second);
replacedConformer.setAtomPos(p.first, molPoint);
}
} else {
// otherwise, delete all core coordinates from the replaced core
coreReplacedAtoms->clearConformers();
}
return coreReplacedAtoms;
}
void RCore::replaceCoreAtom(RWMol &mol, Atom &atom, const Atom &other) const {
auto atomicNumber = other.getAtomicNum();
auto targetAtom = &atom;
bool wasDummy = (atom.getAtomicNum() == 0);
if (wasDummy || atom.hasQuery()) {
if (atom.hasQuery()) {
Atom newAtom(atomicNumber);
auto atomIdx = atom.getIdx();
mol.replaceAtom(atomIdx, &newAtom, false, true);
targetAtom = mol.getAtomWithIdx(atomIdx);
} else {
atom.setAtomicNum(atomicNumber);
}
}
targetAtom->setIsAromatic(other.getIsAromatic());
targetAtom->setFormalCharge(other.getFormalCharge());
if (wasDummy) {
targetAtom->setNoImplicit(true);
unsigned int numHs = 0;
const auto &otherMol = other.getOwningMol();
for (const auto &nbri :
boost::make_iterator_range(otherMol.getAtomNeighbors(&other))) {
const auto nbrAtom = otherMol[nbri];
if (nbrAtom->getAtomicNum() == 1) {
++numHs;
}
}
targetAtom->setNumExplicitHs(numHs + other.getTotalNumHs());
targetAtom->updatePropertyCache(false);
}
}
// matching the core to the target molecule is a two step process
// First match to a reduced representation (the core minus terminal user
// R-groups). Next, match the R-groups. We do this as the core may not be a
// substructure match for the molecule if a single molecule atom matches 2
// terminal user defined RGroup attachments (see
// https://github.com/rdkit/rdkit/pull/4002) buildMatchingMol() creates the
// reduced representation from the core and matchTerminalUserRGroups() adds in
// the terminal R Groups to the match
// Builds a matching molecule which is the core with terminal user R groups
// removed Also creates the data structures used in matching the R groups
void RCore::buildMatchingMol() {
matchingMol = boost::make_shared<RWMol>(*core);
terminalRGroupAtomToNeighbor.clear();
matchingMol->beginBatchEdit();
for (auto atom : matchingMol->atoms()) {
// keep track of the original core index in the matching molecule atom
atom->setProp<int>(RLABEL_CORE_INDEX, atom->getIdx());
// TODO for unlabelled core attachments if the heavy neighbor is not dummy
// then keep one attachment
if (atom->getAtomicNum() == 0 && atom->getDegree() == 1 &&
isDummyRGroupAttachment(*atom)) {
// remove terminal user R groups and map the index of the core neighbor
// atom to the index of the removed terminal R group
const int neighborIdx = *matchingMol->getAtomNeighbors(atom).first;
terminalRGroupAtomToNeighbor.emplace(atom->getIdx(), neighborIdx);
matchingMol->removeAtom(atom);
}
}
matchingMol->commitBatchEdit();
}
// Given a matching molecule substructure match to a target molecule, return
// core matches with terminal user R groups matched
std::vector<MatchVectType> RCore::matchTerminalUserRGroups(
const RWMol &target, MatchVectType match,
const SubstructMatchParameters &sssParams) const {
// Transform match indexed by matching molecule atoms to a map
// indexed by core atoms
std::transform(match.begin(), match.end(), match.begin(),
[this](const std::pair<int, int> &mapping) {
auto queryIdx =
this->matchingIndexToCoreIndex(mapping.first);
std::pair<int, int> newMapping(queryIdx, mapping.second);
return newMapping;
});
std::map<int, int> matchMap(match.cbegin(), match.cend());
std::vector<MatchVectType> allMappings;
if (terminalRGroupAtomToNeighbor.empty()) {
allMappings.push_back(std::move(match));
return allMappings;
}
// build a dynamic_bitset of target atoms currently mapped
boost::dynamic_bitset<> mappedTargetIdx(target.getNumAtoms());
for (const auto &pair : match) {
mappedTargetIdx.set(pair.second);
}
// Dummy atoms/r group attachments that cannot be mapped to target atoms
std::vector<int> missingDummies;
// A map of terminal dummies/R group attachment points to a list of possible
// target atoms that the R group can map to
std::map<int, std::vector<int>> availableMappingsForDummyMap;
boost::dynamic_bitset<> symmetricHydrogens(target.getNumAtoms());
// keep a count of target atoms and the number of connections to the core
std::map<int, int> targetAtomBondsToCoreCounts;
for (const auto coreAtom : core->atoms()) {
if (coreAtom->getAtomicNum() == 1) {
continue;
}
if (isTerminalRGroupWithUserLabel(coreAtom->getIdx())) {
continue;
}
std::vector<int> dummyIndexes;
for (auto neighbor : core->atomNeighbors(coreAtom)) {
if (isTerminalRGroupWithUserLabel(neighbor->getIdx())) {
dummyIndexes.push_back(neighbor->getIdx());
}
}
if (dummyIndexes.empty()) {
continue;
}
// Sort dummies based on user RLABEL (ascending) then unlabeled
// (descending as they are negative)
std::sort(dummyIndexes.begin(), dummyIndexes.end(), [this](int a, int b) {
auto dummy = core->getAtomWithIdx(a);
auto otherDummy = core->getAtomWithIdx(b);
auto l1 = dummy->getProp<int>(RLABEL);
auto l2 = otherDummy->getProp<int>(RLABEL);
return l1 > 0 && l2 > 0 ? l1 < l2 : l1 > l2;
});
// Find what target atoms will bond to these dummies
std::vector<std::vector<int>> neighborDummyLists;
for (auto dummyIndex : dummyIndexes) {
const int neighborIdx = terminalRGroupAtomToNeighbor.at(dummyIndex);
const auto coreBond = core->getBondBetweenAtoms(dummyIndex, neighborIdx);
// find the atom in the target mapped to the neighbor in the core
const int targetIdx = matchMap[neighborIdx];
const auto targetAtom = target.getAtomWithIdx(targetIdx);
std::vector<int> available;
// now look for neighbors of that target atom that are not mapped to a
// core atom- the dummy atom can potentially be mapped to each of those
for (const auto &nbrIdx :
boost::make_iterator_range(target.getAtomNeighbors(targetAtom))) {
if (!mappedTargetIdx.test(nbrIdx)) {
const auto targetBond = target.getBondBetweenAtoms(targetIdx, nbrIdx);
// check for bond compatibility
if (bondCompat(coreBond, targetBond, sssParams)) {
available.push_back(nbrIdx);
++targetAtomBondsToCoreCounts[nbrIdx];
}
}
}
if (available.size() > 1) {
bool allHydrogens = std::all_of(
available.begin(), available.end(), [&target](const int idx) {
return target.getAtomWithIdx(idx)->getAtomicNum() == 1;
});
if (allHydrogens) {
// If all neighbors are hydrogens we don't need to iterate through
// them- just assign the first free hydrogen. Could extend to cover
// symmetric groups in general
auto hydrogen = std::find_if(available.begin(), available.end(),
[&symmetricHydrogens](const int idx) {
return !symmetricHydrogens.test(idx);
});
int singleHydrogen =
hydrogen == available.end() ? *available.begin() : *hydrogen;
available = std::vector<int>{singleHydrogen};
symmetricHydrogens.set(singleHydrogen);
}
}
neighborDummyLists.push_back(available);
}
// Now search through all the dummies and see if we need to exclude any as
// it may not be possible to assign target atoms to all R groups. If that
// is the case exclude R Groups with higher labels
// use negative numbers to indicate a group is excluded
std::vector<std::vector<int>> neighborListsWithUnmapped(
neighborDummyLists.size());
int start = 0;
std::transform(neighborDummyLists.begin(), neighborDummyLists.end(),
neighborListsWithUnmapped.begin(),
[&start](std::vector<int> v) {
v.push_back(--start);
return v;
});
// could optimize this product as depth search to return as soon as we
// have a permutation of all positive numbers
auto cp = cartesianProduct(neighborListsWithUnmapped, false);
// now sort
bool foundAll = false;
std::sort(cp.begin(), cp.end(),
[&foundAll](const std::vector<int> a, std::vector<int> b) {
auto isNegative = [](int v) -> bool { return v < 0; };
// firstly to minimize number of unmapped dummies
const int numUnmappedA =
std::count_if(a.begin(), a.end(), isNegative);
const int numUnmappedB =
std::count_if(b.begin(), b.end(), isNegative);
if (numUnmappedA < numUnmappedB) {
return true;
}
if (numUnmappedB == 0 || numUnmappedA == 0) {
foundAll = true;
}
if (!foundAll && numUnmappedA == numUnmappedB && numUnmappedA) {
// in a tie prefer the permutation that excludes the r group
// with the lowest label
// don't need to sort these if we've found an all mapped
// combination
for (size_t i = 0; i < a.size(); ++i) {
const int v1 = a[i];
const int v2 = b[i];
if ((v1 > 0 && v2 > 0) || (v1 < 0 && v2 < 0)) {
continue;
}
if (v1 > 0 && v2 < 0) {
return true;
}
if (v1 < 0 && v2 > 0) {
break;
}
}
}
return false;
});
auto best = cp[0];
for (size_t i = 0; i < dummyIndexes.size(); i++) {
auto dummyIdx = dummyIndexes[i];
if (best[i] < 0) {
// We can't map this dummy to a target atom. That is OK if it is an
// unlabeled core attachment atom or a user R label connected to a
// query or wildcard atom
const auto dummy = core->getAtomWithIdx(dummyIdx);
if (dummy->hasProp(UNLABELED_CORE_ATTACHMENT)) {
missingDummies.push_back(dummyIdx);
} else if (isUserRLabel(*dummy) &&
(coreAtom->getAtomicNum() == 0 || coreAtom->hasQuery())) {
// https://github.com/rdkit/rdkit/issues/4505
missingDummies.push_back(dummyIdx);
} else {
return allMappings;
}
} else {
availableMappingsForDummyMap[dummyIdx] = neighborDummyLists[i];
}
}
}
if (availableMappingsForDummyMap.empty()) {
allMappings.push_back(std::move(match));
return allMappings;
}
std::vector<int> dummiesWithMapping;
std::vector<std::vector<int>> availableMappingsForDummy;
for (const auto &mapping : availableMappingsForDummyMap) {
dummiesWithMapping.push_back(mapping.first);
availableMappingsForDummy.push_back(mapping.second);
}
// enumerate over all available atoms using a cartesian product.
// only allow duplicates if a target atom can be bonded to more than one query
// atom
const bool allowDuplicates =
std::find_if(targetAtomBondsToCoreCounts.begin(),
targetAtomBondsToCoreCounts.end(),
[](const std::pair<int, int> &p) { return p.second > 1; }) !=
targetAtomBondsToCoreCounts.end();
const auto allAvailableMappings =
cartesianProduct(availableMappingsForDummy, allowDuplicates);
if (allAvailableMappings.empty()) {
allMappings.push_back(std::move(match));
return allMappings;
}
// the size of the final mapping
size_t size = allAvailableMappings[0].size() + match.size();
// these indices are needed for the whole molecule match check functor
std::unique_ptr<RWMol> checkCore;
std::map<size_t, size_t> coreToCheck;
const std::string indexProp("__core_index__");
bool hasMissing = !missingDummies.empty();
if (hasMissing) {
// if there are dummies that we can't map these need to be removed from the
// query before atom-by-atom matching. Create a copy of the query for that
// and use properties to map atoms back to the core
for (auto atom : core->atoms()) {
atom->setProp(indexProp, atom->getIdx());
}
checkCore = std::make_unique<RWMol>(*core);
std::sort(missingDummies.begin(), missingDummies.end(),
std::greater<int>());
for (int index : missingDummies) {
auto [nbrIdx, endNbrs] =
checkCore->getAtomNeighbors(checkCore->getAtomWithIdx(index));
auto neighborAtom = checkCore->getAtomWithIdx(*nbrIdx);
checkCore->removeAtom(index);
neighborAtom->updatePropertyCache(false);
}
size_t index = 0U;
for (const auto atom : checkCore->atoms()) {
auto coreIndex = atom->getProp<int>(indexProp);
coreToCheck[coreIndex] = index++;
}
for (auto atom : core->atoms()) {
atom->clearProp(indexProp);
}
}
auto queryIndices = new std::uint32_t[size];
auto targetIndices = new std::uint32_t[size];
for (size_t position = 0; position < match.size(); position++) {
const auto &pair = match[position];
auto queryIndex = hasMissing ? coreToCheck[pair.first] : pair.first;
queryIndices[position] = queryIndex;
targetIndices[position] = pair.second;
}
auto queryMatchingMol = hasMissing ? checkCore.get() : core.get();
MolMatchFinalCheckFunctor molMatchFunctor(*queryMatchingMol, target,
sssParams);
boost::dynamic_bitset<> targetBondsPresent(target.getNumBonds());
// Filter all available mappings removing those that violate chirality or have
// duplicate bonds
for (const auto &dummyMapping : allAvailableMappings) {
CHECK_INVARIANT(match.size() + dummyMapping.size() == size,
"Size error in dummy mapping");
auto duplicateBonds = false;
targetBondsPresent.reset();
for (size_t i = 0; i < dummyMapping.size(); i++) {
size_t position = match.size() + i;
auto queryIndex = hasMissing ? coreToCheck[dummiesWithMapping[i]]
: dummiesWithMapping[i];
queryIndices[position] = queryIndex;
targetIndices[position] = dummyMapping[i];
if (allowDuplicates) {
const int neighborIdx =
terminalRGroupAtomToNeighbor.at(dummiesWithMapping[i]);
const int targetNeighborIdx = matchMap[neighborIdx];
const auto targetBond =
target.getBondBetweenAtoms(dummyMapping[i], targetNeighborIdx);
CHECK_INVARIANT(targetBond != nullptr,
"Matching target bond not found");
const auto targetBondIdx = targetBond->getIdx();
// check for duplicates
if (targetBondsPresent[targetBondIdx]) {
duplicateBonds = true;
break;
}
targetBondsPresent[targetBondIdx] = 1;
}
}
// use MolMatchFinalCheckFunctor to check this match works with chirality
if (!duplicateBonds && molMatchFunctor(queryIndices, targetIndices)) {
MatchVectType matchWithDummy(match);
for (size_t i = 0; i < dummyMapping.size(); i++) {
matchWithDummy.emplace_back(dummiesWithMapping[i], dummyMapping[i]);
}
allMappings.push_back(std::move(matchWithDummy));
}
}
delete[] queryIndices;
delete[] targetIndices;
return allMappings;
}
// This function checks the bond environment is valid when onlyMatchAtRGroups
// is set. When this function is called targetRGroupIdx is the index of an atom
// in the target that is mapped to an R group. Validates that all core bonds to
// the R group are present - in certain circumstances there may be two
// core bonds to a target R group and when onlyMatchAtRGroups is set
// both bonds should be present (#4002).
bool RCore::checkAllBondsToRGroupPresent(
const ROMol &mol, const int targetRGroupIdx,
const std::vector<std::vector<int>> &targetToCoreIndices) const {
const auto targetRGroupAtom = mol.getAtomWithIdx(targetRGroupIdx);
std::set<int> coreNeighborIndices;
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomNeighbors(targetRGroupAtom))) {
const auto &nbr = mol[nbri];
// could a neighbor to an r group attachment match another r group
// attachment? I don't think so.
if (nbr->getAtomicNum() >= 1) {
const auto &coreAtomIndices = targetToCoreIndices.at(nbri);
if (coreAtomIndices.empty()) {
continue;
}
CHECK_INVARIANT(
coreAtomIndices.size() == 1,
"Target atom neighboring R group should have exactly one match in core");
auto coreAtomIdx = coreAtomIndices.front();
const auto coreAtom = core->getAtomWithIdx(coreAtomIdx);
// don't need to match a non terminal user R group
// if (!(coreAtom->getDegree() > 1 && isUserRLabel(*coreAtom))) {
if (!(coreAtom->getAtomicNum() == 0 && isUserRLabel(*coreAtom))) {
coreNeighborIndices.insert(coreAtomIdx);
}
}
}
CHECK_INVARIANT(
coreNeighborIndices.size() >= 1,
"Unable to find target atom(s) matching core for attachment point");
if (coreNeighborIndices.size() == 1) {
// currently this routine is only called when we know the attachment to
// one core atom exists.
return true;
}
// at this point we know the target atom is connected to two or more core
// atoms. Now check we have core R groups for each.
// There should be a map entry for a different R group for each of
// the core atoms.
const auto &coreRGroupIndices = targetToCoreIndices.at(targetRGroupIdx);
if (coreRGroupIndices.size() != coreNeighborIndices.size()) {
return false;
}
// check that there is a bond to an attachment point for every neighbor
std::set<int> bondIndices;
for (const auto coreNeighborIdx : coreNeighborIndices) {
for (const auto coreRGroupIdx : coreRGroupIndices) {
const auto bond =
core->getBondBetweenAtoms(coreNeighborIdx, coreRGroupIdx);
if (bond) {
bondIndices.insert(bond->getIdx());
}
}
}
return bondIndices.size() == coreNeighborIndices.size();
}
// Convert a matching molecule index to a core index
int RCore::matchingIndexToCoreIndex(int matchingIndex) const {
auto atom = matchingMol->getAtomWithIdx(matchingIndex);
CHECK_INVARIANT(atom->hasProp(RLABEL_CORE_INDEX),
"Matched atom missing core index");
return atom->getProp<int>(RLABEL_CORE_INDEX);
}
// Create tautomer query for the matching mol on demand and cache for
// performance. If the tautomer query cannot be created (because we can't
// kekulize the query) then nullptr will be returned and we revert to
// non-tautomer match
std::shared_ptr<TautomerQuery> RCore::getMatchingTautomerQuery() {
if (!checkedForTautomerQuery) {
try {
// Enumerate tautomers from a sanitized copy of the matching molecule
RWMol copy(*matchingMol);
// If the core has had rgroup labels removed when creating the matching
// mol then we need to update properties. Should a full sanitization be
// done? MolOps::sanitizeMol(*copy);
copy.updatePropertyCache(false);
std::shared_ptr<TautomerQuery> tautomerQuery(
TautomerQuery::fromMol(copy));
matchingTautomerQuery = tautomerQuery;
} catch (const MolSanitizeException &) {
matchingTautomerQuery = nullptr;
}
checkedForTautomerQuery = true;
}
return matchingTautomerQuery;
}
} // namespace RDKit
|