1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
|
//
// Copyright (c) 2017-2021, Novartis Institutes for BioMedical Research Inc.
// and other RDKit contributors
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Novartis Institutes for BioMedical Research Inc.
// nor the names of its contributors may be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include "RGroupDecomp.h"
#include "RGroupDecompData.h"
#include <GraphMol/RDKitBase.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/ChemTransforms/ChemTransforms.h>
#include <boost/dynamic_bitset.hpp>
#include <set>
#include <utility>
#include <vector>
#include "GraphMol/TautomerQuery/TautomerQuery.h"
// #define VERBOSE 1
namespace RDKit {
// Attachment Points
// labeled cores => isotopes
// atom mappings
// atom indices => use -1 - atom index, range is [-1, ...., -num_atoms]
const std::string RLABEL = "tempRlabel";
const std::string RLABEL_TYPE = "tempRlabelType";
const std::string RLABEL_CORE_INDEX = "rLabelCoreIndex";
const std::string SIDECHAIN_RLABELS = "sideChainRlabels";
const std::string done = "RLABEL_PROCESSED";
const std::string _rgroupInputDummy = "_rgroupInputDummy";
const std::string UNLABELED_CORE_ATTACHMENT = "unlabeledCoreAttachment";
namespace {
static const std::string TARGET_ATOM_IDX = "__rgdTargetAtomIdx";
static const std::string TARGET_BOND_IDX = "__rgdTargetBondIdx";
void ADD_MATCH(R_DECOMP &match, int rlabel) {
if (match.find(rlabel) == match.end()) {
match[rlabel] = boost::make_shared<RGroupData>();
}
}
} // namespace
RGroupDecomposition::RGroupDecomposition(
const ROMol &inputCore, const RGroupDecompositionParameters ¶ms)
: data(new RGroupDecompData(inputCore, params)) {}
RGroupDecomposition::RGroupDecomposition(
const std::vector<ROMOL_SPTR> &cores,
const RGroupDecompositionParameters ¶ms)
: data(new RGroupDecompData(cores, params)) {}
RGroupDecomposition::~RGroupDecomposition() { delete data; }
void RGroupDecomposition::labelAtomBondIndices(RWMol &mol) {
for (const auto targetAtom : mol.atoms()) {
targetAtom->setProp(TARGET_ATOM_IDX, targetAtom->getIdx());
}
for (const auto targetBond : mol.bonds()) {
targetBond->setProp(TARGET_BOND_IDX, targetBond->getIdx());
}
}
void RGroupDecomposition::setTargetAtomBondIndices(
ROMol &mol, bool includeBondsToRLabels) const {
std::vector<int> atomIndices(mol.getNumAtoms(), -1);
std::vector<int> bondIndices(mol.getNumBonds(), -1);
int largestAtomIdx = -1;
bool isHydrogen = RGroupData::isMolHydrogen(mol);
for (const auto atom : mol.atoms()) {
int targetAtomIdx;
if (atom->getPropIfPresent(TARGET_ATOM_IDX, targetAtomIdx)) {
atom->clearProp(TARGET_ATOM_IDX);
if ((atom->getAtomicNum() == 1 && data->params.removeHydrogensPostMatch &&
!isHydrogen) ||
(atom->getAtomicNum() == 0 && !atom->hasProp(_rgroupInputDummy))) {
continue;
}
int atomIdx = atom->getIdx();
atomIndices[atomIdx] = targetAtomIdx;
largestAtomIdx = std::max(atomIdx, largestAtomIdx);
}
}
atomIndices.resize(largestAtomIdx + 1);
int largestBondIdx = -1;
for (const auto bond : mol.bonds()) {
int targetBondIdx;
if (bond->getPropIfPresent(TARGET_BOND_IDX, targetBondIdx)) {
bond->clearProp(TARGET_BOND_IDX);
if ((bond->getBeginAtom()->getAtomicNum() == 1 ||
bond->getEndAtom()->getAtomicNum() == 1) &&
data->params.removeHydrogensPostMatch && !isHydrogen) {
continue;
}
if (!includeBondsToRLabels &&
((bond->getBeginAtom()->getAtomicNum() == 0 &&
!bond->getBeginAtom()->hasProp(_rgroupInputDummy)) ||
(bond->getEndAtom()->getAtomicNum() == 0 &&
!bond->getEndAtom()->hasProp(_rgroupInputDummy)))) {
continue;
}
int bondIdx = bond->getIdx();
bondIndices[bondIdx] = targetBondIdx;
largestBondIdx = std::max(bondIdx, largestBondIdx);
}
}
bondIndices.resize(largestBondIdx + 1);
std::vector<int> highlightAtoms;
highlightAtoms.reserve(atomIndices.size());
std::copy_if(atomIndices.begin(), atomIndices.end(),
std::back_inserter(highlightAtoms),
[](const auto atomIdx) { return atomIdx != -1; });
std::vector<int> highlightBonds;
highlightBonds.reserve(bondIndices.size());
std::copy_if(bondIndices.begin(), bondIndices.end(),
std::back_inserter(highlightBonds),
[](const auto bondIdx) { return bondIdx != -1; });
mol.setProp(common_properties::_rgroupTargetAtoms, highlightAtoms);
mol.setProp(common_properties::_rgroupTargetBonds, highlightBonds);
}
int RGroupDecomposition::getMatchingCoreIdx(
const ROMol &mol, std::vector<MatchVectType> *matches) {
RWMol rwmol(mol);
std::vector<MatchVectType> matchesTmp;
const RCore *rcore;
auto coreIdx = getMatchingCoreInternal(rwmol, rcore, matchesTmp);
if (matches) {
std::set<MatchVectType> uniqueMatches;
int numAtoms = mol.getNumAtoms();
for (const auto &match : matchesTmp) {
MatchVectType heavyMatch;
heavyMatch.reserve(match.size());
std::copy_if(
std::make_move_iterator(match.begin()),
std::make_move_iterator(match.end()), std::back_inserter(heavyMatch),
[numAtoms](const auto &pair) { return pair.second < numAtoms; });
std::sort(heavyMatch.begin(), heavyMatch.end());
uniqueMatches.insert(heavyMatch);
}
*matches =
std::vector<MatchVectType>(uniqueMatches.begin(), uniqueMatches.end());
}
return coreIdx;
}
int RGroupDecomposition::getMatchingCoreInternal(
RWMol &mol, const RCore *&rcore, std::vector<MatchVectType> &matches) {
rcore = nullptr;
int core_idx = -1;
const bool explicitOnly = false;
const bool addCoords = true;
MolOps::addHs(mol, explicitOnly, addCoords);
std::vector<MatchVectType> tmatches;
std::vector<MatchVectType> tmatches_filtered;
// Find the first matching core (onlyMatchAtRGroups)
// or the first core that requires the smallest number
// of newly added labels and is a superstructure of
// the first matching core
int global_min_heavy_nbrs = -1;
SubstructMatchParameters sssparams(params().substructmatchParams);
sssparams.uniquify = false;
sssparams.recursionPossible = true;
for (auto &core : data->cores) {
{
// matching the core to the molecule is a two step process
// First match to a reduced representation (the core minus terminal
// R-groups). Next, match the R-groups. We do this as the core may not be
// a substructure match for the molecule if a single molecule atom matches
// 2 RGroup attachments (see https://github.com/rdkit/rdkit/pull/4002)
// match the reduced representation:
std::vector<MatchVectType> baseMatches;
if (params().doTautomers) {
// Here we are attempting to enumerate tautomers of the core
if (auto tautomerQuery = core.second.getMatchingTautomerQuery();
tautomerQuery != nullptr) {
// query atom indices from the tautomer query are the same as the
// template matching molecule
baseMatches = tautomerQuery->substructOf(mol, sssparams);
} else {
// However, if it is not possible to Kekulize the core, we revert back
// to the non-tautomer matching.
baseMatches =
SubstructMatch(mol, *core.second.matchingMol, sssparams);
}
} else {
baseMatches = SubstructMatch(mol, *core.second.matchingMol, sssparams);
}
tmatches.clear();
for (const auto &baseMatch : baseMatches) {
// Match the R Groups
// Important: there can be multiple core indices matching
// the same target idx, because of #4002
auto matchesIncludingRGroups =
core.second.matchTerminalUserRGroups(mol, baseMatch, sssparams);
/*
std::cerr << "baseMatch ";
for (const auto &pair : baseMatch) std::cerr << "(" << pair.first <<","
<< pair.second << "),"; std::cerr << std::endl; std::cerr <<
"matchesIncludingRGroups "; for (const auto &matchWithDummy :
matchesIncludingRGroups) { for (const auto &pair : matchWithDummy)
std::cerr << "(" << pair.first
<<"," << pair.second << "),"; std::cerr << " /// ";
}
std::cerr << std::endl;
*/
tmatches.insert(
tmatches.end(),
std::make_move_iterator(matchesIncludingRGroups.cbegin()),
std::make_move_iterator(matchesIncludingRGroups.cend()));
}
}
if (tmatches.empty()) {
continue;
}
std::vector<int> tmatches_heavy_nbrs(tmatches.size(), 0);
size_t i = 0;
for (const auto &mv : tmatches) {
bool passes_filter = data->params.onlyMatchAtRGroups;
// targetToCoreIndices maps each atom idx in the molecule to a vector
// of atom indices. This vector may be empty (if the atom in the molecule
// has no match with core) or not. When not empty, it will most often
// contain a single atom idx, corresponding to the matching index in the
// core, as usually a core atom can only match a single molecule atom.
// However, there is an important exception to this rule, i.e. when
// the core bears a single R-group dummy at a certain position, while
// the molecule has multiple substituents at the corresponding
// position; in this case, the vector will contain the indices of the
// root atom in all substituents which match a single R-group dummy on
// the core.
std::vector<std::vector<int>> targetToCoreIndices(mol.getNumAtoms());
for (const auto &match : mv) {
targetToCoreIndices[match.second].push_back(match.first);
}
for (const auto &match : mv) {
const auto atm = mol.getAtomWithIdx(match.second);
// is this a labelled rgroup or not?
if (!core.second.isCoreAtomUserLabelled(match.first)) {
// nope... if any neighbor is not part of the substructure
// check if it is a hydrogen; otherwise, if onlyMatchAtRGroups
// is true, skip the match
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomNeighbors(atm))) {
const auto &nbr = mol[nbri];
if (nbr->getAtomicNum() != 1 &&
targetToCoreIndices.at(nbr->getIdx()).empty()) {
if (data->params.onlyMatchAtRGroups) {
passes_filter = false;
break;
} else {
// for each match, we keep track of the number of
// R labels that need to be added to match all
// non-user-labelled R groups in this molecule
// if we use this core for RGD
++tmatches_heavy_nbrs[i];
}
}
}
} else if (core.second.isTerminalRGroupWithUserLabel(match.first) &&
data->params.onlyMatchAtRGroups &&
!core.second.checkAllBondsToRGroupPresent(
mol, match.second, targetToCoreIndices)) {
// labelled R-group
passes_filter = false;
}
if (!passes_filter && data->params.onlyMatchAtRGroups) {
break;
}
}
if (passes_filter) {
tmatches_filtered.push_back(std::move(mv));
}
++i;
}
if (!data->params.onlyMatchAtRGroups) {
// tmatches_heavy_nbrs.size() = tmatches.size(), and
// tmatches.size() cannot be empty, otherwise we should not be here
// but let's check it in case something changes upstream
CHECK_INVARIANT(!tmatches_heavy_nbrs.empty(),
"tmatches_heavy_nbrs must not be empty");
int min_heavy_nbrs = *std::min_element(tmatches_heavy_nbrs.begin(),
tmatches_heavy_nbrs.end());
if (!rcore || (min_heavy_nbrs < global_min_heavy_nbrs &&
!SubstructMatch(*core.second.core, *rcore->core, sssparams)
.empty())) {
i = 0;
tmatches_filtered.clear();
for (const auto heavy_nbrs : tmatches_heavy_nbrs) {
if (heavy_nbrs <= min_heavy_nbrs) {
tmatches_filtered.push_back(std::move(tmatches[i]));
}
++i;
}
global_min_heavy_nbrs = min_heavy_nbrs;
rcore = &core.second;
core_idx = core.first;
if (global_min_heavy_nbrs == 0) {
break;
}
}
} else if (!tmatches_filtered.empty()) {
rcore = &core.second;
core_idx = core.first;
break;
}
}
if (rcore) {
matches = std::move(tmatches_filtered);
}
return core_idx;
}
int RGroupDecomposition::add(const ROMol &inmol) {
RWMOL_SPTR mol(new RWMol(inmol));
const RCore *rcore;
std::vector<MatchVectType> tmatches;
// Add Hs for better symmetrization
auto core_idx = getMatchingCoreInternal(*mol, rcore, tmatches);
if (rcore == nullptr) {
BOOST_LOG(rdDebugLog) << "No core matches" << std::endl;
return -1;
}
if (data->params.includeTargetMolInResults) {
labelAtomBondIndices(*mol);
}
if (tmatches.size() > 1) {
if (data->params.matchingStrategy == NoSymmetrization) {
tmatches.resize(1);
} else if (data->matches.size() == 0) {
// Greedy strategy just grabs the first match and
// takes the best matches from the rest
if (data->params.matchingStrategy == Greedy) {
tmatches.resize(1);
}
}
}
// mark any wildcards in input molecule:
for (auto &atom : mol->atoms()) {
if (atom->getAtomicNum() == 0) {
atom->setProp(_rgroupInputDummy, true);
// clean any existing R group numbers
atom->setIsotope(0);
atom->setAtomMapNum(0);
atom->clearProp(common_properties::_MolFileRLabel);
atom->setProp(common_properties::dummyLabel, "*");
}
}
// strategies
// ==========
// Exhaustive - saves all matches and optimizes later exhaustive
// May never finish due to combinatorial complexity
// Greedy - matches to *FIRST* available match
// GreedyChunks - default - process every N chunks, unless
// MAX_PERMUTATIONS is exceeded, in which case it falls back to
// Greedy for the current chunk
// Should probably scan all mols first to find match with
// smallest number of matches...
std::vector<RGroupMatch> potentialMatches;
constexpr size_t MAX_PERMUTATIONS = 100000;
std::unique_ptr<ROMol> tMol;
for (const auto &tmatche : tmatches) {
const bool replaceDummies = false;
const bool labelByIndex = true;
const bool requireDummyMatch = false;
// TODO see if we need replaceCoreAtomsWithMolMatches or can just use
// rcore->core
auto coreCopy = rcore->replaceCoreAtomsWithMolMatches(*mol, tmatche);
tMol.reset(replaceCore(*mol, *coreCopy, tmatche, replaceDummies,
labelByIndex, requireDummyMatch));
#ifdef VERBOSE
std::cerr << "Core Match core_idx " << core_idx << " idx "
<< data->matches.size() << ": " << MolToSmarts(*coreCopy)
<< std::endl;
#endif
if (tMol) {
#ifdef VERBOSE
std::cerr << "All Fragments " << MolToSmiles(*tMol) << std::endl;
#endif
R_DECOMP match;
// rlabel rgroups
MOL_SPTR_VECT fragments = MolOps::getMolFrags(*tMol, false);
std::set<int> coreAtomAnyMatched;
// get the sidechains
for (size_t i = 0; i < fragments.size(); ++i) {
const auto &newMol = fragments[i];
std::vector<int> rlabelsOnSideChain;
newMol->setProp<int>("core", core_idx);
newMol->setProp<int>("idx", data->matches.size());
newMol->setProp<int>("frag_idx", i);
#ifdef VERBOSE
std::cerr << "Fragment " << MolToSmiles(*newMol) << std::endl;
#endif
for (auto sideChainAtom : newMol->atoms()) {
if (sideChainAtom->getAtomicNum() != 0) {
// we are only interested in sidechain R group atoms
continue;
}
if (!sideChainAtom->hasProp(_rgroupInputDummy)) {
// this is the index of the core atom that the R group
// atom is attached to
unsigned int coreAtomIndex = sideChainAtom->getIsotope();
auto coreAtom = rcore->core->getAtomWithIdx(coreAtomIndex);
coreAtomAnyMatched.insert(coreAtomIndex);
int rlabel;
if (coreAtom->getPropIfPresent(RLABEL, rlabel)) {
std::vector<int> rlabelsOnSideChainAtom;
sideChainAtom->getPropIfPresent(SIDECHAIN_RLABELS,
rlabelsOnSideChainAtom);
rlabelsOnSideChainAtom.push_back(rlabel);
sideChainAtom->setProp(SIDECHAIN_RLABELS, rlabelsOnSideChainAtom);
data->labels.insert(rlabel); // keep track of all labels used
rlabelsOnSideChain.push_back(rlabel);
if (const auto [bondIdx, end] =
newMol->getAtomBonds(sideChainAtom);
bondIdx != end) {
auto connectingBond = (*newMol)[*bondIdx];
if (connectingBond->getStereo() > Bond::BondStereo::STEREOANY) {
// TODO: how to handle bond stereo on rgroups connected to
// core by stereo double bonds
connectingBond->setStereo(Bond::BondStereo::STEREOANY);
}
}
}
} else {
// restore input wildcard
sideChainAtom->clearProp(_rgroupInputDummy);
}
}
if (data->params.includeTargetMolInResults) {
setTargetAtomBondIndices(*newMol, true);
}
if (!rlabelsOnSideChain.empty()) {
#ifdef VERBOSE
std::string newCoreSmi = MolToSmiles(*newMol, true);
#endif
for (auto rlabel : rlabelsOnSideChain) {
ADD_MATCH(match, rlabel);
match[rlabel]->add(newMol, rlabelsOnSideChain);
#ifdef VERBOSE
std::cerr << "Fragment " << i << " R" << rlabel << " "
<< MolToSmiles(*newMol) << std::endl;
#endif
}
} else {
// special case, only one fragment
if (fragments.size() == 1) { // need to make a new core
// remove the sidechains
// GJ I think if we ever get here that it's really an error and I
// believe that I've fixed the case where this code was called.
// Still, I'm too scared to delete the block.
RWMol newCore(*mol);
for (const auto &mvpair : tmatche) {
const Atom *coreAtm = rcore->core->getAtomWithIdx(mvpair.first);
Atom *newCoreAtm = newCore.getAtomWithIdx(mvpair.second);
int rlabel;
if (coreAtm->getPropIfPresent(RLABEL, rlabel)) {
newCoreAtm->setProp<int>(RLABEL, rlabel);
}
newCoreAtm->setProp<bool>("keep", true);
}
newCore.beginBatchEdit();
for (const auto atom : newCore.atoms()) {
if (!atom->hasProp("keep")) {
newCore.removeAtom(atom);
}
}
newCore.commitBatchEdit();
if (newCore.getNumAtoms()) {
std::string newCoreSmi = MolToSmiles(newCore, true);
// add a new core if possible
auto newcore = data->newCores.find(newCoreSmi);
int core_idx = 0;
if (newcore == data->newCores.end()) {
core_idx = data->newCores[newCoreSmi] = data->newCoreLabel--;
data->cores[core_idx] = RCore(newCore);
return add(inmol);
}
}
}
}
}
if (!match.empty()) {
// this is the number of user-defined R labels associated with
// non-hydrogen substituents
auto numberUserGroupsInMatch = std::accumulate(
match.begin(), match.end(), 0,
[](int sum,
const std::pair<int, boost::shared_ptr<RGroupData>> &p) {
return p.first > 0 && !p.second->is_hydrogen ? ++sum : sum;
});
int numberMissingUserGroups =
rcore->numberUserRGroups - numberUserGroupsInMatch;
CHECK_INVARIANT(numberMissingUserGroups >= 0,
"Data error in missing user rgroup count");
const auto extractedCore =
rcore->extractCoreFromMolMatch(*mol, tmatche, params());
if (data->params.includeTargetMolInResults) {
setTargetAtomBondIndices(*extractedCore, false);
}
potentialMatches.emplace_back(core_idx, numberMissingUserGroups, match,
extractedCore);
if (data->params.includeTargetMolInResults) {
potentialMatches.back().setTargetMoleculeForHighlights(mol);
}
}
}
}
if (potentialMatches.empty()) {
BOOST_LOG(rdDebugLog) << "No attachment points in side chains" << std::endl;
return -2;
}
if (data->params.matchingStrategy != GA) {
size_t N = 1;
for (auto matche = data->matches.begin() + data->previousMatchSize;
matche != data->matches.end(); ++matche) {
size_t sz = matche->size();
N *= sz;
}
// Highly symmetric cores can lead to a very large number of
// permutations to test. Fall back to Greedy for the current chunk
// when the number is too high.
if (N * potentialMatches.size() > MAX_PERMUTATIONS) {
data->process(data->prunePermutations);
}
}
data->matches.push_back(std::move(potentialMatches));
if (!data->matches.empty()) {
if (data->params.matchingStrategy & Greedy ||
(data->params.matchingStrategy & GreedyChunks &&
data->matches.size() % data->params.chunkSize == 0)) {
data->process(data->prunePermutations);
}
}
return data->matches.size() - 1;
}
bool RGroupDecomposition::process() { return processAndScore().success; }
RGroupDecompositionProcessResult RGroupDecomposition::processAndScore() {
try {
const bool finalize = true;
return data->process(data->prunePermutations, finalize);
} catch (...) {
return RGroupDecompositionProcessResult(false, -1);
}
}
std::vector<std::string> RGroupDecomposition::getRGroupLabels() const {
// this is a bit of a cheat
RGroupColumns cols = getRGroupsAsColumns();
std::vector<std::string> labels;
for (auto it : cols) {
labels.push_back(it.first);
}
std::sort(labels.begin(), labels.end());
return labels;
}
RWMOL_SPTR RGroupDecomposition::outputCoreMolecule(
const RGroupMatch &match, const UsedLabelMap &usedLabelMap) const {
// this routine could probably be merged into RGroupDecompData::relabelCore
const auto &core = data->cores[match.core_idx];
if (!match.matchedCore) {
return core.labelledCore;
}
auto coreWithMatches = match.matchedCore;
#ifdef VERBOSE
std::cerr << "output core mol1 " << MolToSmarts(*coreWithMatches)
<< std::endl;
#endif
std::map<Atom *, int> retainedRGroups;
for (auto atomIdx = coreWithMatches->getNumAtoms(); atomIdx--;) {
auto atom = coreWithMatches->getAtomWithIdx(atomIdx);
if (atom->getAtomicNum()) {
continue;
}
auto label = data->getRlabel(atom);
// Always convert to hydrogen - then remove later if
// removeHydrogensPostMatch is set
Atom *nbrAtom = nullptr;
for (const auto &nbri :
boost::make_iterator_range(coreWithMatches->getAtomNeighbors(atom))) {
nbrAtom = (*coreWithMatches)[nbri];
break;
}
if (nbrAtom) {
const bool isUserDefinedLabel =
usedLabelMap.has(label) && usedLabelMap.isUserDefined(label);
const bool isUsedLabel =
usedLabelMap.has(label) && usedLabelMap.getIsUsed(label);
if (!isUsedLabel && (!isUserDefinedLabel ||
data->params.removeAllHydrogenRGroupsAndLabels)) {
// Always convert to hydrogen - then remove later if
// removeHydrogensPostMatch is set
atom->setAtomicNum(1);
atom->updatePropertyCache(false);
} else {
retainedRGroups[atom] = label;
}
}
}
#ifdef VERBOSE
std::cerr << "output core mol2 " << MolToSmiles(*coreWithMatches)
<< std::endl;
#endif
if (data->params.removeHydrogensPostMatch) {
RDLog::LogStateSetter blocker;
const MolOps::RemoveHsParameters rhp;
constexpr bool sanitize = false;
MolOps::removeHs(*coreWithMatches, rhp, sanitize);
coreWithMatches->updatePropertyCache(false);
}
if (coreWithMatches->getNumConformers() > 0) {
for (const auto &[atom, label] : retainedRGroups) {
if (usedLabelMap.has(label) && usedLabelMap.isUserDefined(label)) {
// coordinates of user defined R groups should already be copied over
continue;
}
const auto neighbor = *coreWithMatches->atomNeighbors(atom).begin();
const auto &mapping = data->finalRlabelMapping;
if (const auto oldLabel = std::find_if(
mapping.begin(), mapping.end(),
[label = label](const auto &p) { return p.second == label; });
oldLabel != mapping.end()) {
if (auto iter = match.rgroups.find(oldLabel->first);
iter != match.rgroups.end()) {
MolOps::setTerminalAtomCoords(*coreWithMatches, atom->getIdx(),
neighbor->getIdx());
}
}
}
}
if (!coreWithMatches->getRingInfo()->isInitialized()) {
MolOps::symmetrizeSSSR(*coreWithMatches);
}
#ifdef VERBOSE
std::cerr << "output core mol3 " << MolToSmiles(*coreWithMatches)
<< std::endl;
#endif
return coreWithMatches;
}
RGroupRows RGroupDecomposition::getRGroupsAsRows() const {
std::vector<RGroupMatch> permutation = data->GetCurrentBestPermutation();
RGroupRows groups;
auto usedLabelMap = UsedLabelMap(data->finalRlabelMapping);
for (auto it = permutation.begin(); it != permutation.end(); ++it) {
auto Rs_seen(usedLabelMap);
// make a new rgroup entry
groups.push_back(RGroupRow());
RGroupRow &out_rgroups = groups.back();
if (data->params.includeTargetMolInResults) {
out_rgroups.emplace(RGroupData::getMolLabel(),
it->getTargetMoleculeForHighlights(
data->params.removeHydrogensPostMatch));
}
const R_DECOMP &in_rgroups = it->rgroups;
for (const auto &rgroup : in_rgroups) {
const auto realLabel = data->finalRlabelMapping.find(rgroup.first);
CHECK_INVARIANT(realLabel != data->finalRlabelMapping.end(),
"unprocessed rlabel, please call process() first.");
Rs_seen.setIsUsed(realLabel->second);
out_rgroups.emplace(RGroupData::getRGroupLabel(realLabel->second),
rgroup.second->combinedMol);
}
out_rgroups.emplace(RGroupData::getCoreLabel(),
outputCoreMolecule(*it, Rs_seen));
}
return groups;
}
//! return rgroups in column order group[attachment_point][molidx] = ROMol
RGroupColumns RGroupDecomposition::getRGroupsAsColumns() const {
std::vector<RGroupMatch> permutation = data->GetCurrentBestPermutation();
RGroupColumns groups;
std::unordered_set<std::string> rGroupWithRealMol{RGroupData::getCoreLabel()};
if (data->params.includeTargetMolInResults) {
rGroupWithRealMol.insert(RGroupData::getMolLabel());
}
auto usedLabelMap = UsedLabelMap(data->finalRlabelMapping);
unsigned int molidx = 0;
for (auto it = permutation.begin(); it != permutation.end(); ++it, ++molidx) {
auto Rs_seen(usedLabelMap);
const R_DECOMP &in_rgroups = it->rgroups;
if (data->params.includeTargetMolInResults) {
groups[RGroupData::getMolLabel()].push_back(
it->getTargetMoleculeForHighlights(
data->params.removeHydrogensPostMatch));
}
for (const auto &rgroup : in_rgroups) {
const auto realLabel = data->finalRlabelMapping.find(rgroup.first);
CHECK_INVARIANT(realLabel != data->finalRlabelMapping.end(),
"unprocessed rlabel, please call process() first.");
CHECK_INVARIANT(rgroup.second->combinedMol->hasProp(done),
"Not done! Call process()");
CHECK_INVARIANT(!Rs_seen.getIsUsed(realLabel->second),
"R group label appears multiple times!");
Rs_seen.setIsUsed(realLabel->second);
auto r = RGroupData::getRGroupLabel(realLabel->second);
RGroupColumn &col = groups[r];
if (molidx && col.size() < molidx - 1) {
col.resize(molidx - 1);
}
col.push_back(rgroup.second->combinedMol);
rGroupWithRealMol.insert(r);
}
groups[RGroupData::getCoreLabel()].push_back(
outputCoreMolecule(*it, Rs_seen));
// add empty entries to columns where this molecule didn't appear
for (const auto &realLabel : data->finalRlabelMapping) {
if (!Rs_seen.getIsUsed(realLabel.second)) {
auto r = RGroupData::getRGroupLabel(realLabel.second);
groups[r].push_back(boost::make_shared<RWMol>());
}
}
}
// purge R-group entries that have no mols
for (auto it = groups.begin(); it != groups.end();) {
auto itToErase = groups.end();
if (!rGroupWithRealMol.count(it->first)) {
itToErase = it;
}
++it;
if (itToErase != groups.end()) {
groups.erase(itToErase);
}
}
return groups;
}
const RGroupDecompositionParameters &RGroupDecomposition::params() const {
return data->params;
}
namespace {
std::vector<unsigned int> Decomp(RGroupDecomposition &decomp,
const std::vector<ROMOL_SPTR> &mols) {
auto t0 = std::chrono::steady_clock::now();
std::vector<unsigned int> unmatched;
for (size_t i = 0; i < mols.size(); ++i) {
int v = decomp.add(*mols[i].get());
if (v == -1) {
unmatched.push_back(i);
}
checkForTimeout(t0, decomp.params().timeout);
}
decomp.process();
return unmatched;
}
} // namespace
unsigned int RGroupDecompose(const std::vector<ROMOL_SPTR> &cores,
const std::vector<ROMOL_SPTR> &mols,
RGroupRows &rows,
std::vector<unsigned int> *unmatchedIndices,
const RGroupDecompositionParameters &options) {
RGroupDecomposition decomp(cores, options);
std::vector<unsigned int> unmatched = Decomp(decomp, mols);
if (unmatchedIndices) {
*unmatchedIndices = unmatched;
}
rows = decomp.getRGroupsAsRows();
return mols.size() - unmatched.size();
}
unsigned int RGroupDecompose(const std::vector<ROMOL_SPTR> &cores,
const std::vector<ROMOL_SPTR> &mols,
RGroupColumns &columns,
std::vector<unsigned int> *unmatchedIndices,
const RGroupDecompositionParameters &options) {
RGroupDecomposition decomp(cores, options);
std::vector<unsigned int> unmatched = Decomp(decomp, mols);
if (unmatchedIndices) {
*unmatchedIndices = unmatched;
}
columns = decomp.getRGroupsAsColumns();
return mols.size() - unmatched.size();
}
} // namespace RDKit
|