1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
//
// Copyright (C) David Cosgrove 2023
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
// This file contains an implementation of the clustering algorithm
// described in
// 'A Line Graph Algorithm for Clustering Chemical Structures Based
// on Common Substructural Cores', JW Raymond, PW Willett.
// https://match.pmf.kg.ac.rs/electronic_versions/Match48/match48_197-207.pdf
// https://eprints.whiterose.ac.uk/77598/
// It uses the RASCAL MCES algorithm to perform a fuzzy clustering
// of a set of molecules.
#include <algorithm>
#include <iterator>
#include <list>
#include <thread>
#include <vector>
#include <RDGeneral/RDThreads.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/RascalMCES/RascalClusterOptions.h>
#include <GraphMol/RascalMCES/RascalDetails.h>
#include <GraphMol/RascalMCES/RascalMCES.h>
#include <GraphMol/RascalMCES/RascalResult.h>
namespace RDKit {
namespace RascalMCES {
namespace details {
ClusNode calcMolMolSimilarity(
const std::tuple<
size_t, size_t, const std::vector<std::shared_ptr<ROMol>> *,
const RascalOptions *, const RascalClusterOptions *> &toDo) {
auto i = std::get<0>(toDo);
auto j = std::get<1>(toDo);
auto mols = std::get<2>(toDo);
auto opts = std::get<3>(toDo);
auto clusOpts = std::get<4>(toDo);
auto res = rascalMCES(*(*mols)[i], *(*mols)[j], *opts);
ClusNode cn;
cn.d_mol1Num = i;
cn.d_mol2Num = j;
if (res.empty()) {
// tier1Sim and tier2Sim were above the threshold, but no MCES
// was found.
cn.d_sim = 0.0;
} else {
if (res.front().getBondMatches().empty()) {
cn.d_sim = 0.0;
} else {
res.front().trimSmallFrags();
res.front().largestFragsOnly(clusOpts->maxNumFrags);
cn.d_sim = res.front().getSimilarity();
if (cn.d_sim >= opts->similarityThreshold) {
cn.d_res = std::shared_ptr<RascalResult>(new RascalResult(res.front()));
}
}
}
return cn;
}
std::vector<std::vector<ClusNode>> buildProximityGraph(
const std::vector<std::shared_ptr<ROMol>> &mols,
const RascalClusterOptions &clusOpts) {
if (mols.size() < 2) {
return std::vector<std::vector<ClusNode>>();
}
std::vector<std::vector<ClusNode>> proxGraph =
std::vector<std::vector<ClusNode>>(
mols.size(), std::vector<ClusNode>(mols.size(), ClusNode()));
std::vector<
std::tuple<size_t, size_t, const std::vector<std::shared_ptr<ROMol>> *,
const RascalOptions *, const RascalClusterOptions *>>
toDo;
RascalOptions opts;
opts.similarityThreshold = clusOpts.similarityCutoff;
for (size_t i = 0; i < mols.size() - 1; ++i) {
for (size_t j = i + 1; j < mols.size(); ++j) {
toDo.push_back({i, j, &mols, &opts, &clusOpts});
}
}
auto buildProxGraphPart =
[](const std::vector<std::tuple<
size_t, size_t, const std::vector<std::shared_ptr<ROMol>> *,
const RascalOptions *, const RascalClusterOptions *>> &toDo,
std::vector<ClusNode> &molSims, size_t start, size_t finish) -> void {
if (start > toDo.size()) {
return;
}
if (finish > toDo.size()) {
finish = toDo.size();
}
std::transform(toDo.begin() + start, toDo.begin() + finish,
molSims.begin() + start, calcMolMolSimilarity);
};
std::vector<ClusNode> molSims(toDo.size());
#if RDK_BUILD_THREADSAFE_SSS
auto numThreads = getNumThreadsToUse(clusOpts.numThreads);
if (numThreads > 1) {
size_t eachThread = 1 + (toDo.size() / numThreads);
size_t start = 0;
std::vector<std::thread> threads;
for (unsigned int i = 0U; i < numThreads; ++i, start += eachThread) {
threads.push_back(std::thread(buildProxGraphPart, std::ref(toDo),
std::ref(molSims), start,
start + eachThread));
}
for (auto &t : threads) {
t.join();
}
} else {
std::transform(toDo.begin(), toDo.end(), molSims.begin(),
calcMolMolSimilarity);
}
#else
std::transform(toDo.begin(), toDo.end(), molSims.begin(),
calcMolMolSimilarity);
#endif
for (const auto &cn : molSims) {
proxGraph[cn.d_mol1Num][cn.d_mol2Num] =
proxGraph[cn.d_mol2Num][cn.d_mol1Num] = cn;
}
return proxGraph;
}
// Split the proximity graph into its disconnected components,
// returning vectors of the molecule numbers of the disconnected
// graphs.
std::vector<std::vector<unsigned int>> disconnectProximityGraphs(
std::vector<std::vector<ClusNode>> &proxGraph) {
std::vector<std::vector<unsigned int>> subGraphs;
std::vector<bool> done(proxGraph.size(), false);
auto nextStart = std::find(done.begin(), done.end(), false);
while (nextStart != done.end()) {
std::list<unsigned int> nodes;
std::list<unsigned int> toDo(1, std::distance(done.begin(), nextStart));
while (!toDo.empty()) {
auto nextNode = toDo.front();
toDo.pop_front();
if (!done[nextNode]) {
nodes.push_back(nextNode);
}
done[nextNode] = true;
for (size_t i = 0; i < proxGraph.size(); ++i) {
if (!done[i] && proxGraph[nextNode][i].d_res) {
toDo.push_back(i);
nodes.push_back(i);
done[i] = true;
}
}
}
nodes.sort();
subGraphs.push_back(std::vector(nodes.begin(), nodes.end()));
nextStart = std::find(done.begin(), done.end(), false);
}
return subGraphs;
}
// Calculate G_{ij} for the molecule. p is the number of bonds that
// a fragment must exceed for it to be counted in the formula.
double g_ij(const std::shared_ptr<ROMol> &mol, double a, double b,
unsigned int p) {
auto molFrags = MolOps::getMolFrags(*mol, false);
int numBigFrags = 0;
for (const auto &mf : molFrags) {
if (mf->getNumBonds() > p) {
++numBigFrags;
}
}
numBigFrags = numBigFrags == 0 ? molFrags.size() : numBigFrags;
double g = mol->getNumAtoms();
g += b * (1.0 - a * (numBigFrags - 1)) * mol->getNumBonds();
return g;
}
std::vector<std::vector<unsigned int>> makeSubClusters(
const std::vector<ClusNode> &nbors, const RascalClusterOptions &clusOpts) {
std::vector<std::vector<unsigned int>> subClusters;
std::vector<const ClusNode *> tmpNbors;
for (const auto &n : nbors) {
tmpNbors.push_back(&n);
}
while (!tmpNbors.empty()) {
subClusters.push_back(std::vector<unsigned int>{
tmpNbors.front()->d_mol1Num, tmpNbors.front()->d_mol2Num});
auto m1 = tmpNbors.front()->d_res->getMcesMol();
auto g_12 = g_ij(m1, clusOpts.a, clusOpts.b, clusOpts.minFragSize);
for (size_t i = 1; i < tmpNbors.size(); ++i) {
auto m2 = tmpNbors[i]->d_res->getMcesMol();
auto g_13 = g_ij(m2, clusOpts.a, clusOpts.b, clusOpts.minFragSize);
auto results = RDKit::RascalMCES::rascalMCES(*m1, *m2);
if (results.empty() || results.front().getBondMatches().empty()) {
continue;
}
auto res = results.front();
auto g_12_13 =
g_ij(res.getMcesMol(), clusOpts.a, clusOpts.b, clusOpts.minFragSize);
double sim = g_12_13 / std::min(g_12, g_13);
if (sim > clusOpts.minIntraClusterSim) {
subClusters.back().push_back(tmpNbors[i]->d_mol2Num);
subClusters.back().push_back(tmpNbors[i]->d_mol1Num);
tmpNbors[i] = nullptr;
}
}
tmpNbors.front() = nullptr;
tmpNbors.erase(std::remove(tmpNbors.begin(), tmpNbors.end(), nullptr),
tmpNbors.end());
std::sort(subClusters.back().begin(), subClusters.back().end());
subClusters.back().erase(
std::unique(subClusters.back().begin(), subClusters.back().end()),
subClusters.back().end());
}
return subClusters;
}
std::vector<std::vector<unsigned int>> formInitialClusters(
const std::vector<unsigned int> &subGraph,
const std::vector<std::vector<ClusNode>> &proxGraph,
const RascalClusterOptions &clusOpts) {
std::vector<std::vector<unsigned int>> clusters;
if (subGraph.size() < 2) {
return clusters;
}
for (auto i : subGraph) {
std::vector<ClusNode> nbors;
for (auto j : subGraph) {
if (proxGraph[i][j].d_res) {
nbors.push_back(proxGraph[i][j]);
}
}
std::sort(nbors.begin(), nbors.end(),
[](const ClusNode &c1, const ClusNode &c2) -> bool {
return c1.d_sim > c2.d_sim;
});
if (!nbors.empty()) {
auto subClusters = makeSubClusters(nbors, clusOpts);
clusters.insert(clusters.end(), subClusters.begin(), subClusters.end());
}
}
std::sort(clusters.begin(), clusters.end(),
[](const std::vector<unsigned int> &c1,
const std::vector<unsigned int> &c2) -> bool {
if (c1.size() == c2.size()) {
return c1.front() < c2.front();
} else {
return c1.size() > c2.size();
}
});
clusters.erase(std::unique(clusters.begin(), clusters.end()), clusters.end());
return clusters;
}
std::vector<std::vector<unsigned int>> mergeClusters(
const std::vector<std::vector<unsigned int>> &clusters,
const RascalClusterOptions &clusOpts) {
std::vector<std::vector<unsigned int>> outClusters(clusters);
if (outClusters.size() < 2) {
return outClusters;
}
for (size_t i = 0; i < outClusters.size() - 1; ++i) {
for (size_t j = i + 1; j < outClusters.size(); ++j) {
std::vector<int> inCommon;
std::set_intersection(outClusters[i].begin(), outClusters[i].end(),
outClusters[j].begin(), outClusters[j].end(),
std::back_inserter(inCommon));
double s =
double(inCommon.size()) / std::min(double(outClusters[i].size()),
double(outClusters[j].size()));
if (s > clusOpts.clusterMergeSim) {
outClusters[i].insert(outClusters[i].end(), outClusters[j].begin(),
outClusters[j].end());
outClusters[j].clear();
std::sort(outClusters[i].begin(), outClusters[i].end());
outClusters[i].erase(
std::unique(outClusters[i].begin(), outClusters[i].end()),
outClusters[i].end());
}
}
outClusters.erase(
std::remove_if(outClusters.begin(), outClusters.end(),
[](const std::vector<unsigned int> &c) -> bool {
return c.empty();
}),
outClusters.end());
}
return outClusters;
}
void sortClusterMembersByMeanSim(
const std::vector<std::vector<ClusNode>> &proxGraph,
std::vector<std::vector<unsigned int>> &clusters) {
for (auto &clus : clusters) {
std::vector<std::pair<unsigned int, double>> clusSims;
for (unsigned int i = 0U; i < clus.size(); ++i) {
double totSim = 0.0;
for (unsigned int j = 0U; j < clus.size(); ++j) {
if (i != j) {
totSim += proxGraph[clus[i]][clus[j]].d_sim;
}
}
clusSims.push_back({clus[i], totSim / (clus.size() - 1)});
}
std::sort(clusSims.begin(), clusSims.end(),
[](const std::pair<unsigned int, double> &p1,
const std::pair<unsigned int, double> &p2) -> bool {
return p1.second > p2.second;
});
std::transform(
clusSims.begin(), clusSims.end(), clus.begin(),
[](const std::pair<unsigned int, double> &p) -> unsigned int {
return p.first;
});
}
}
std::vector<std::vector<unsigned int>> makeClusters(
const std::vector<std::vector<unsigned int>> &subGraphs,
const std::vector<std::vector<ClusNode>> &proxGraph,
const RascalClusterOptions &clusOpts) {
std::vector<std::vector<unsigned int>> clusters;
for (const auto &sg : subGraphs) {
auto theseClusters = formInitialClusters(sg, proxGraph, clusOpts);
auto mergedClusters = mergeClusters(theseClusters, clusOpts);
clusters.insert(clusters.end(), mergedClusters.begin(),
mergedClusters.end());
}
std::sort(clusters.begin(), clusters.end(),
[](const std::vector<unsigned int> &c1,
const std::vector<unsigned int> &c2) -> bool {
return c1.size() > c2.size();
});
return clusters;
}
std::vector<unsigned int> collectSingletons(
const std::vector<std::vector<ClusNode>> &proxGraph) {
std::vector<unsigned int> singletons;
for (size_t i = 0; i < proxGraph.size(); ++i) {
bool single = true;
for (const auto &cn : proxGraph[i]) {
if (cn.d_res) {
single = false;
break;
}
}
if (single) {
singletons.push_back(i);
}
}
return singletons;
}
} // namespace details
std::vector<std::vector<unsigned int>> rascalCluster(
const std::vector<std::shared_ptr<ROMol>> &mols,
const RascalClusterOptions &clusOpts) {
auto proxGraph = details::buildProximityGraph(mols, clusOpts);
auto subGraphs = details::disconnectProximityGraphs(proxGraph);
auto clusters = details::makeClusters(subGraphs, proxGraph, clusOpts);
auto singletons = details::collectSingletons(proxGraph);
clusters.push_back(singletons);
details::sortClusterMembersByMeanSim(proxGraph, clusters);
return clusters;
}
} // namespace RascalMCES
} // namespace RDKit
|