1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
|
//
// Copyright (C) David Cosgrove 2023
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <regex>
#include <set>
#include <RDGeneral/BoostStartInclude.h>
#include <boost/dynamic_bitset.hpp>
#include <boost/algorithm/string.hpp>
#include <RDGeneral/BoostEndInclude.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/QueryAtom.h>
#include <GraphMol/QueryBond.h>
#include <GraphMol/QueryOps.h>
#include <GraphMol/SmilesParse/SmartsWrite.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/RascalMCES/RascalDetails.h>
#include <GraphMol/RascalMCES/RascalResult.h>
namespace RDKit {
namespace RascalMCES {
RascalResult::RascalResult(const RDKit::ROMol &mol1, const RDKit::ROMol &mol2,
const std::vector<std::vector<int>> &adjMatrix1,
const std::vector<std::vector<int>> &adjMatrix2,
const std::vector<unsigned int> &clique,
const std::vector<std::pair<int, int>> &vtx_pairs,
bool timedOut, bool swapped, double tier1Sim,
double tier2Sim, bool ringMatchesRingOnly,
bool singleLargestFrag, int maxFragSep,
bool exactConnectionsMatch,
const std::string &equivalentAtoms,
bool ignoreBondOrders)
: d_timedOut(timedOut),
d_tier1Sim(tier1Sim),
d_tier2Sim(tier2Sim),
d_ringMatchesRingOnly(ringMatchesRingOnly),
d_maxFragSep(maxFragSep),
d_exactConnectionsMatch(exactConnectionsMatch),
d_equivalentAtoms(equivalentAtoms),
d_ignoreBondOrders(ignoreBondOrders) {
const std::vector<std::vector<int>> *mol1AdjMatrix;
if (swapped) {
d_mol1.reset(new RDKit::ROMol(mol2));
d_mol2.reset(new RDKit::ROMol(mol1));
mol1AdjMatrix = &adjMatrix2;
} else {
d_mol1.reset(new RDKit::ROMol(mol1));
d_mol2.reset(new RDKit::ROMol(mol2));
mol1AdjMatrix = &adjMatrix1;
}
details::extractClique(clique, vtx_pairs, swapped, d_bondMatches);
matchCliqueAtoms(*mol1AdjMatrix);
if (d_maxFragSep != -1) {
applyMaxFragSep();
}
if (singleLargestFrag) {
largestFragOnly();
}
}
RascalResult::RascalResult(double tier1Sim, double tier2Sim)
: d_tier1Sim(tier1Sim), d_tier2Sim(tier2Sim) {}
RascalResult::RascalResult(const RascalResult &other)
: d_bondMatches(other.d_bondMatches),
d_atomMatches(other.d_atomMatches),
d_smarts(other.d_smarts),
d_timedOut(other.d_timedOut),
d_tier1Sim(other.d_tier1Sim),
d_tier2Sim(other.d_tier2Sim),
d_equivalentAtoms(other.d_equivalentAtoms),
d_ignoreBondOrders(other.d_ignoreBondOrders),
d_numFrags(other.d_numFrags),
d_ringNonRingBondScore(other.d_ringNonRingBondScore),
d_atomMatchScore(other.d_atomMatchScore),
d_maxDeltaAtomAtomDist(other.d_maxDeltaAtomAtomDist),
d_largestFragSize(other.d_largestFragSize) {
if (other.d_mol1) {
d_mol1.reset(new ROMol(*other.d_mol1));
}
if (other.d_mol2) {
d_mol2.reset(new ROMol(*other.d_mol2));
}
if (other.d_mcesMol) {
d_mcesMol.reset(new ROMol(*other.d_mcesMol));
}
}
RascalResult &RascalResult::operator=(const RascalResult &other) {
if (this == &other) {
return *this;
}
d_bondMatches = other.d_bondMatches;
d_atomMatches = other.d_atomMatches;
d_smarts = other.d_smarts;
d_timedOut = other.d_timedOut;
d_equivalentAtoms = other.d_equivalentAtoms;
d_numFrags = other.d_numFrags;
d_ringNonRingBondScore = other.d_ringNonRingBondScore;
d_atomMatchScore = other.d_atomMatchScore;
d_maxDeltaAtomAtomDist = other.d_maxDeltaAtomAtomDist;
d_largestFragSize = other.d_largestFragSize;
if (other.d_mol1) {
d_mol1.reset(new ROMol(*other.d_mol1));
}
if (other.d_mol2) {
d_mol2.reset(new ROMol(*other.d_mol2));
}
if (other.d_mcesMol) {
d_mcesMol.reset(new ROMol(*other.d_mcesMol));
}
return *this;
}
void RascalResult::largestFragOnly() { largestFragsOnly(1); }
void RascalResult::largestFragsOnly(unsigned int numFrags) {
std::unique_ptr<RDKit::ROMol> mol1_frags(makeMolFrags(1));
// getMolFrags() returns boost::shared_ptr. Ho-hum.
auto frags = RDKit::MolOps::getMolFrags(*mol1_frags, false);
if (numFrags < 1 || frags.size() < numFrags) {
return;
}
std::sort(frags.begin(), frags.end(),
[](const boost::shared_ptr<ROMol> &f1,
const boost::shared_ptr<ROMol> &f2) -> bool {
return f1->getNumAtoms() > f2->getNumAtoms();
});
frags.erase(frags.begin() + numFrags, frags.end());
rebuildFromFrags(frags);
}
void RascalResult::trimSmallFrags(unsigned int minFragSize) {
std::unique_ptr<RDKit::ROMol> mol1_frags(makeMolFrags(1));
// getMolFrags() returns boost::shared_ptr. Ho-hum.
auto frags = RDKit::MolOps::getMolFrags(*mol1_frags, false);
frags.erase(std::remove_if(frags.begin(), frags.end(),
[&](const boost::shared_ptr<ROMol> &f) -> bool {
return f->getNumAtoms() < minFragSize;
}),
frags.end());
rebuildFromFrags(frags);
}
double RascalResult::getSimilarity() const {
if (!d_mol1 || !d_mol2) {
return 0.0;
}
return details::johnsonSimilarity(d_bondMatches, d_atomMatches, *d_mol1,
*d_mol2);
}
void RascalResult::rebuildFromFrags(
const std::vector<boost::shared_ptr<ROMol>> &frags) {
// Force the re-creation of the SMARTS and other properties next time
// they-re needed.
d_smarts = "";
d_maxFragSep = -1;
d_ringNonRingBondScore = -1;
d_maxDeltaAtomAtomDist = -1;
d_largestFragSize = -1;
// for now, this is always called after fragmenting d_mol1, but just for
// safety, protect against the frags coming from d_mol2 in some future
// use.
boost::dynamic_bitset<> fragAtoms(
std::max(d_mol1->getNumAtoms(), d_mol2->getNumAtoms()));
boost::dynamic_bitset<> fragBonds(
std::max(d_mol1->getNumBonds(), d_mol2->getNumBonds()));
for (const auto &f : frags) {
for (auto atom : f->atoms()) {
if (atom->hasProp("ORIG_INDEX")) {
fragAtoms.set(atom->getProp<int>("ORIG_INDEX"));
}
}
for (auto bond : f->bonds()) {
if (bond->hasProp("ORIG_INDEX")) {
fragBonds.set(bond->getProp<int>("ORIG_INDEX"));
}
}
}
std::vector<std::pair<int, int>> newAtomMatches;
for (const auto &am : d_atomMatches) {
if (fragAtoms[am.first]) {
newAtomMatches.push_back(am);
}
}
d_atomMatches = newAtomMatches;
std::vector<std::pair<int, int>> new_bond_matches;
for (const auto &bm : d_bondMatches) {
if (fragBonds[bm.first]) {
new_bond_matches.push_back(bm);
}
}
d_bondMatches = new_bond_matches;
d_numFrags = frags.size();
d_largestFragSize = frags.empty() ? 0 : frags.front()->getNumAtoms();
}
std::string RascalResult::createSmartsString() const {
if (!d_mol1 || !d_mol2) {
return "";
}
RWMol smartsMol;
std::map<int, unsigned int> atomMap;
auto mol1Rings = d_mol1->getRingInfo();
auto mol2Rings = d_mol2->getRingInfo();
for (const auto &am : d_atomMatches) {
RDKit::QueryAtom a;
auto mol1Atom = d_mol1->getAtomWithIdx(am.first);
a.setQuery(RDKit::makeAtomNumQuery(mol1Atom->getAtomicNum()));
auto mol2Atom = d_mol2->getAtomWithIdx(am.second);
if (mol1Atom->getAtomicNum() != mol2Atom->getAtomicNum()) {
a.expandQuery(RDKit::makeAtomNumQuery(mol2Atom->getAtomicNum()),
Queries::COMPOSITE_OR);
}
if (mol1Atom->getIsAromatic() && mol2Atom->getIsAromatic()) {
a.expandQuery(RDKit::makeAtomAromaticQuery(), Queries::COMPOSITE_AND,
true);
} else if (!mol1Atom->getIsAromatic() && !mol2Atom->getIsAromatic()) {
a.expandQuery(RDKit::makeAtomAliphaticQuery(), Queries::COMPOSITE_AND,
true);
}
if (d_ringMatchesRingOnly && !mol1Atom->getIsAromatic() &&
!mol2Atom->getIsAromatic() &&
mol1Rings->numAtomRings(mol1Atom->getIdx()) &&
mol2Rings->numAtomRings(mol2Atom->getIdx())) {
a.expandQuery(RDKit::makeAtomInRingQuery(), Queries::COMPOSITE_AND, true);
}
if (d_exactConnectionsMatch) {
a.expandQuery(RDKit::makeAtomExplicitDegreeQuery(mol1Atom->getDegree()),
Queries::COMPOSITE_AND, true);
}
auto ai = smartsMol.addAtom(&a);
atomMap.insert(std::make_pair(am.first, ai));
}
for (const auto &bm : d_bondMatches) {
RDKit::QueryBond b;
auto mol1Bond = d_mol1->getBondWithIdx(bm.first);
auto mol2Bond = d_mol2->getBondWithIdx(bm.second);
b.setBeginAtomIdx(atomMap[mol1Bond->getBeginAtomIdx()]);
b.setEndAtomIdx(atomMap[mol1Bond->getEndAtomIdx()]);
if (d_ignoreBondOrders) {
b.setQuery(makeBondNullQuery());
} else {
b.setQuery(makeBondOrderEqualsQuery(mol1Bond->getBondType()));
if (mol1Bond->getBondType() != mol2Bond->getBondType()) {
b.expandQuery(makeBondOrderEqualsQuery(mol2Bond->getBondType()),
Queries::COMPOSITE_OR);
}
}
if (d_ringMatchesRingOnly && !mol1Bond->getIsAromatic() &&
!mol2Bond->getIsAromatic() &&
mol1Rings->numBondRings(mol1Bond->getIdx()) &&
mol2Rings->numBondRings(mol2Bond->getIdx())) {
b.expandQuery(RDKit::makeBondIsInRingQuery(), Queries::COMPOSITE_AND,
true);
}
smartsMol.addBond(&b, false);
}
std::string smt = RDKit::MolToSmarts(smartsMol, true);
details::cleanSmarts(smt, d_equivalentAtoms);
return smt;
}
namespace {
// Return the atom common to the two bonds, -1 if there isn't one.
int common_atom_in_bonds(const RDKit::Bond *bond1, const RDKit::Bond *bond2) {
int commonAtom = -1;
if (bond1->getBeginAtomIdx() == bond2->getBeginAtomIdx()) {
commonAtom = bond1->getBeginAtomIdx();
} else if (bond1->getEndAtomIdx() == bond2->getBeginAtomIdx()) {
commonAtom = bond1->getEndAtomIdx();
} else if (bond1->getBeginAtomIdx() == bond2->getEndAtomIdx()) {
commonAtom = bond1->getBeginAtomIdx();
} else if (bond1->getEndAtomIdx() == bond2->getEndAtomIdx()) {
commonAtom = bond1->getEndAtomIdx();
}
return commonAtom;
}
} // namespace
void RascalResult::matchCliqueAtoms(
const std::vector<std::vector<int>> &mol1_adj_matrix) {
if (d_bondMatches.empty()) {
return;
}
std::vector<int> mol1Matches(d_mol1->getNumAtoms(), -1);
// set the clique atoms to -2 in mol1Matches, to mark them as yet undecided.
for (const auto &bm : d_bondMatches) {
auto bond1 = d_mol1->getBondWithIdx(bm.first);
mol1Matches[bond1->getBeginAtomIdx()] = -2;
mol1Matches[bond1->getEndAtomIdx()] = -2;
}
// First, use the line graphs to match atoms that have 2 matching bonds
// incident on them.
for (size_t i = 0; i < d_bondMatches.size() - 1; ++i) {
const auto &pair1 = d_bondMatches[i];
auto bond1_1 = d_mol1->getBondWithIdx(pair1.first);
auto bond2_1 = d_mol2->getBondWithIdx(pair1.second);
for (size_t j = i + 1; j < d_bondMatches.size(); ++j) {
const auto &pair2 = d_bondMatches[j];
if (mol1_adj_matrix[pair1.first][pair2.first]) {
// the 2 bonds are incident on the same atom, so the 2 atoms must match
auto bond1_2 = d_mol1->getBondWithIdx(pair2.first);
auto bond2_2 = d_mol2->getBondWithIdx(pair2.second);
auto mol1Atom = common_atom_in_bonds(bond1_1, bond1_2);
auto mol2Atom = common_atom_in_bonds(bond2_1, bond2_2);
if (mol1Atom != -1) {
mol1Matches[mol1Atom] = mol2Atom;
auto omol1Atom = bond1_1->getOtherAtomIdx(mol1Atom);
auto omol2Atom = bond2_1->getOtherAtomIdx(mol2Atom);
mol1Matches[omol1Atom] = omol2Atom;
omol1Atom = bond1_2->getOtherAtomIdx(mol1Atom);
omol2Atom = bond2_2->getOtherAtomIdx(mol2Atom);
mol1Matches[omol1Atom] = omol2Atom;
}
}
}
}
// if there are -2 entries in mol1Matches there's more to do.
if (std::count(mol1Matches.begin(), mol1Matches.end(), -2)) {
// Any -2 entries in mol1Matches are down to isolated bonds, which are a bit
// tricky.
for (const auto &pair1 : d_bondMatches) {
auto bond1_1 = d_mol1->getBondWithIdx(pair1.first);
if (mol1Matches[bond1_1->getBeginAtomIdx()] == -2 &&
mol1Matches[bond1_1->getEndAtomIdx()] == -2) {
auto bond2_1 = d_mol2->getBondWithIdx(pair1.second);
if (bond1_1->getBeginAtom()->getAtomicNum() !=
bond1_1->getEndAtom()->getAtomicNum()) {
// it's fairly straightforward:
if (bond1_1->getBeginAtom()->getAtomicNum() ==
bond2_1->getBeginAtom()->getAtomicNum()) {
mol1Matches[bond1_1->getBeginAtomIdx()] =
bond2_1->getBeginAtomIdx();
mol1Matches[bond1_1->getEndAtomIdx()] = bond2_1->getEndAtomIdx();
} else {
mol1Matches[bond1_1->getBeginAtomIdx()] = bond2_1->getEndAtomIdx();
mol1Matches[bond1_1->getEndAtomIdx()] = bond2_1->getBeginAtomIdx();
}
} else if (bond1_1->getBeginAtom()->getTotalNumHs() !=
bond1_1->getEndAtom()->getTotalNumHs()) {
// try it on number of hydrogens
if (bond1_1->getBeginAtom()->getTotalNumHs() >
bond1_1->getEndAtom()->getTotalNumHs()) {
mol1Matches[bond1_1->getBeginAtomIdx()] =
bond2_1->getBeginAtomIdx();
mol1Matches[bond1_1->getEndAtomIdx()] = bond2_1->getEndAtomIdx();
} else {
mol1Matches[bond1_1->getBeginAtomIdx()] = bond2_1->getEndAtomIdx();
mol1Matches[bond1_1->getEndAtomIdx()] = bond2_1->getBeginAtomIdx();
}
} else {
// it probably doesn't matter
mol1Matches[bond1_1->getBeginAtomIdx()] = bond2_1->getBeginAtomIdx();
mol1Matches[bond1_1->getEndAtomIdx()] = bond2_1->getEndAtomIdx();
}
}
}
}
for (size_t i = 0u; i < d_mol1->getNumAtoms(); ++i) {
if (mol1Matches[i] >= 0) {
d_atomMatches.push_back(std::make_pair(i, mol1Matches[i]));
}
}
}
void RascalResult::applyMaxFragSep() {
std::unique_ptr<RDKit::ROMol> mol1_frags(makeMolFrags(1));
auto frags1 = RDKit::MolOps::getMolFrags(*mol1_frags, false);
if (frags1.size() < 2) {
return;
}
auto fragFragDist = [](const boost::shared_ptr<RDKit::ROMol> &frag1,
const boost::shared_ptr<RDKit::ROMol> &frag2,
const double *pathMatrix, int num_atoms) -> double {
int minDist = std::numeric_limits<int>::max();
for (auto at1 : frag1->atoms()) {
int at1Idx = at1->getProp<int>("ORIG_INDEX");
for (auto at2 : frag2->atoms()) {
int at2Idx = at2->getProp<int>("ORIG_INDEX");
int dist = std::nearbyint(pathMatrix[at1Idx * num_atoms + at2Idx]);
if (dist < minDist) {
minDist = dist;
}
}
}
return minDist;
};
std::unique_ptr<RDKit::ROMol> mol2Frags(makeMolFrags(2));
auto frags2 = RDKit::MolOps::getMolFrags(*mol2Frags, false);
// These arrays must not be deleted - they are cached in the molecule and
// deleted when it is. The distance matrix will be re-calculated in case
// something's been copied over somewhere.
auto mol1Dists = RDKit::MolOps::getDistanceMat(*d_mol1, false, false, true);
auto mol2Dists = RDKit::MolOps::getDistanceMat(*d_mol2, false, false, true);
bool deletedFrag = false;
for (size_t i = 0; i < frags1.size() - 1; ++i) {
if (!frags1[i]) {
continue;
}
for (size_t j = i + 1; j < frags1.size(); ++j) {
if (!frags1[j]) {
continue;
}
int mol1Dist =
fragFragDist(frags1[i], frags1[j], mol1Dists, d_mol1->getNumAtoms());
int mol2Dist =
fragFragDist(frags2[i], frags2[j], mol2Dists, d_mol2->getNumAtoms());
if (mol1Dist > d_maxFragSep || mol2Dist > d_maxFragSep) {
deletedFrag = true;
if (frags1[i]->getNumAtoms() < frags1[j]->getNumAtoms()) {
frags1[i].reset();
frags2[i].reset();
} else {
frags1[j].reset();
frags2[j].reset();
}
}
}
}
if (deletedFrag) {
// rebuild the d_bondMatches
std::vector<std::pair<int, int>> new_bond_matches;
for (auto &frag : frags1) {
if (!frag) {
continue;
}
for (auto b : frag->bonds()) {
int b_idx = b->getProp<int>("ORIG_INDEX");
for (auto &bm : d_bondMatches) {
if (b_idx == bm.first) {
new_bond_matches.push_back(bm);
break;
}
}
}
}
d_bondMatches = new_bond_matches;
// and the d_atomMatches
std::vector<std::pair<int, int>> new_atom_matches;
for (auto &frag : frags1) {
if (!frag) {
continue;
}
for (auto a : frag->atoms()) {
int a_idx = a->getProp<int>("ORIG_INDEX");
for (auto &am : d_atomMatches) {
if (a_idx == am.first) {
new_atom_matches.push_back(am);
break;
}
}
}
}
d_atomMatches = new_atom_matches;
}
}
// Return a molecule with the clique in it. Each atom will have the property
// ORIG_INDEX giving its index in the original molecule.
RDKit::ROMol *RascalResult::makeMolFrags(int molNum) const {
std::shared_ptr<RDKit::ROMol> theMol;
if (molNum == 1) {
theMol = d_mol1;
} else if (molNum == 2) {
theMol = d_mol2;
} else {
return nullptr;
}
if (!theMol) {
return nullptr;
}
auto *molFrags = new RDKit::RWMol(*theMol);
std::vector<char> ainClique(theMol->getNumAtoms(), 0);
for (const auto &am : d_atomMatches) {
if (molNum == 1) {
ainClique[am.first] = 1;
} else {
ainClique[am.second] = 1;
}
}
std::vector<char> binClique(theMol->getNumBonds(), 0);
for (const auto &bm : d_bondMatches) {
if (molNum == 1) {
binClique[bm.first] = 1;
} else {
binClique[bm.second] = 1;
}
}
molFrags->beginBatchEdit();
for (auto &a : molFrags->atoms()) {
if (!ainClique[a->getIdx()]) {
molFrags->removeAtom(a);
} else {
a->setProp<int>("ORIG_INDEX", a->getIdx());
}
}
for (auto &b : molFrags->bonds()) {
if (!binClique[b->getIdx()]) {
molFrags->removeBond(b->getBeginAtomIdx(), b->getEndAtomIdx());
} else {
b->setProp<int>("ORIG_INDEX", b->getIdx());
}
}
molFrags->commitBatchEdit();
return molFrags;
}
// Calculate a score for how many bonds in the clique don't match
// cyclic/non-cyclic
int RascalResult::calcRingNonRingScore() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
int score = 0;
for (const auto &bm : d_bondMatches) {
auto nbr1 = d_mol1->getRingInfo()->numBondRings(bm.first);
auto nbr2 = d_mol2->getRingInfo()->numBondRings(bm.second);
if ((nbr1 && !nbr2) || (!nbr1 && nbr2)) {
++score;
}
}
return score;
}
// Calculate a score for how well the atoms in the clique from mol1 match the
// atoms for the clique in mol2. The atom scores are made up of H count and
// summed for the molecule. Its so that, for example, an OH in mol1 that could
// match an OH or OMe matches the OH for preference.
int RascalResult::calcAtomMatchScore() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
int score = 0;
for (const auto &am : d_atomMatches) {
int num_h_1 = d_mol1->getAtomWithIdx(am.first)->getTotalNumHs();
int num_h_2 = d_mol2->getAtomWithIdx(am.second)->getTotalNumHs();
score += std::abs(num_h_1 - num_h_2);
}
return score;
}
int RascalResult::calcMaxDeltaAtomAtomDistScore() const {
// Possibly this could be improved, to be the total of the minimum distances
// between each fragment.
if (d_atomMatches.empty()) {
return 0;
}
// These arrays are cached so shouldn't be deleted. The final 'true' in the
// call is to force recalculation, just in case there's some other type copied
// over from the input molecule.
const auto *mol1Dists =
RDKit::MolOps::getDistanceMat(*d_mol1, false, false, true);
const auto *mol2Dists =
RDKit::MolOps::getDistanceMat(*d_mol2, false, false, true);
int score = 0;
auto dist = [](int idx1, int idx2, const double *dists,
int num_atoms) -> int {
return int(std::nearbyint(dists[idx1 * num_atoms + idx2]));
};
for (size_t i = 0; i < d_atomMatches.size() - 1; ++i) {
for (size_t j = i + 1; j < d_atomMatches.size(); ++j) {
auto d1 = dist(d_atomMatches[i].first, d_atomMatches[j].first, mol1Dists,
d_mol1->getNumAtoms());
auto d2 = dist(d_atomMatches[i].second, d_atomMatches[j].second,
mol2Dists, d_mol2->getNumAtoms());
auto deltaDist = abs(d1 - d2);
if (deltaDist > score) {
score = deltaDist;
}
}
}
return score;
}
int RascalResult::calcLargestFragSize() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
std::unique_ptr<RDKit::ROMol> mol1_frags(makeMolFrags(1));
std::vector<int> mapping;
auto numFrags = RDKit::MolOps::getMolFrags(*mol1_frags, mapping);
auto lfs = std::count(mapping.begin(), mapping.end(), 0);
for (unsigned int i = 1; i < numFrags; ++i) {
auto fragSize = std::count(mapping.begin(), mapping.end(), i);
lfs = std::max(lfs, fragSize);
}
return lfs;
}
int RascalResult::getNumFrags() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
if (d_numFrags == -1) {
std::unique_ptr<RDKit::ROMol> mol1_frags(makeMolFrags(1));
std::vector<int> mol1_frag_mapping;
d_numFrags = RDKit::MolOps::getMolFrags(*mol1_frags, mol1_frag_mapping);
}
return d_numFrags;
}
int RascalResult::getRingNonRingBondScore() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
if (d_ringNonRingBondScore == -1) {
d_ringNonRingBondScore = calcRingNonRingScore();
}
return d_ringNonRingBondScore;
}
int RascalResult::getAtomMatchScore() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
if (d_atomMatchScore == -1) {
d_atomMatchScore = calcAtomMatchScore();
}
return d_atomMatchScore;
}
int RascalResult::getMaxDeltaAtomAtomDist() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
if (d_maxDeltaAtomAtomDist == -1) {
d_maxDeltaAtomAtomDist = calcMaxDeltaAtomAtomDistScore();
}
return d_maxDeltaAtomAtomDist;
}
unsigned int RascalResult::getLargestFragSize() const {
if (!d_mol1 || !d_mol2) {
return 0;
}
if (d_largestFragSize == -1) {
d_largestFragSize = calcLargestFragSize();
}
return static_cast<unsigned int>(d_largestFragSize);
}
std::string RascalResult::getSmarts() const {
if (!d_mol1 || !d_mol2) {
return "";
}
if (d_smarts.empty()) {
d_smarts = createSmartsString();
}
return d_smarts;
}
const std::shared_ptr<ROMol> RascalResult::getMcesMol() const {
if (d_mcesMol || !d_mol1) {
return d_mcesMol;
}
boost::dynamic_bitset<> mol1Bonds(d_mol1->getNumBonds());
for (const auto &bm : d_bondMatches) {
mol1Bonds.set(bm.first);
}
boost::dynamic_bitset<> mol1Atoms(d_mol1->getNumAtoms());
for (const auto &am : d_atomMatches) {
mol1Atoms.set(am.first);
}
std::shared_ptr<RWMol> tmpMol(new RWMol(*d_mol1));
MolOps::KekulizeIfPossible(*tmpMol);
tmpMol->beginBatchEdit();
for (auto &bond : tmpMol->bonds()) {
if (!mol1Bonds[bond->getIdx()]) {
auto bo = bond->getBondType();
if (bond->getBeginAtom()->getNoImplicit() ||
(bond->getBeginAtom()->getIsAromatic() &&
bond->getBeginAtom()->getAtomicNum() != 6)) {
bond->getBeginAtom()->setNumExplicitHs(
bond->getBeginAtom()->getNumExplicitHs() + bo);
}
if (bond->getEndAtom()->getNoImplicit() ||
(bond->getEndAtom()->getIsAromatic() &&
bond->getEndAtom()->getAtomicNum() != 6)) {
bond->getEndAtom()->setNumExplicitHs(
bond->getEndAtom()->getNumExplicitHs() + bo);
}
tmpMol->removeBond(bond->getBeginAtomIdx(), bond->getEndAtomIdx());
}
}
for (auto atom : tmpMol->atoms()) {
if (!mol1Atoms[atom->getIdx()]) {
tmpMol->removeAtom(atom);
}
}
tmpMol->commitBatchEdit();
MolOps::removeHs(*tmpMol);
MolOps::sanitizeMol(*tmpMol);
d_mcesMol = tmpMol;
return d_mcesMol;
}
namespace details {
bool resultCompare(const RascalResult &res1, const RascalResult &res2) {
if (res1.getBondMatches().size() != res2.getBondMatches().size()) {
return res1.getBondMatches().size() > res2.getBondMatches().size();
}
if (res1.getNumFrags() != res2.getNumFrags()) {
return res1.getNumFrags() < res2.getNumFrags();
}
if (res1.getLargestFragSize() != res2.getLargestFragSize()) {
return res1.getLargestFragSize() > res2.getLargestFragSize();
}
if (res1.getRingNonRingBondScore() != res2.getRingNonRingBondScore()) {
return res1.getRingNonRingBondScore() < res2.getRingNonRingBondScore();
}
if (res1.getAtomMatchScore() != res2.getAtomMatchScore()) {
return res1.getAtomMatchScore() < res2.getAtomMatchScore();
}
if (res1.getMaxDeltaAtomAtomDist() != res2.getMaxDeltaAtomAtomDist()) {
return res1.getMaxDeltaAtomAtomDist() < res2.getMaxDeltaAtomAtomDist();
}
return res1.getSmarts() < res2.getSmarts();
}
void extractClique(const std::vector<unsigned int> &clique,
const std::vector<std::pair<int, int>> &vtxPairs,
bool swapped,
std::vector<std::pair<int, int>> &bondMatches) {
bondMatches.clear();
for (auto mem : clique) {
if (swapped) {
bondMatches.emplace_back(vtxPairs[mem].second, vtxPairs[mem].first);
} else {
bondMatches.push_back(vtxPairs[mem]);
}
}
std::sort(bondMatches.begin(), bondMatches.end());
}
void cleanSmarts(std::string &smarts, const std::string &equivalentAtoms) {
const static std::vector<std::pair<std::regex, std::string>> repls{
{std::regex(R"(\[#6&A\])"), "C"},
{std::regex(R"(\[#6&A&R\])"), "[C&R]"},
{std::regex(R"(\[#6&a\])"), "c"},
{std::regex(R"(\[#7&A\])"), "N"},
{std::regex(R"(\[#7&A&R\])"), "[N&R]"},
{std::regex(R"(\[#7&a\])"), "n"},
{std::regex(R"(\[#8&A\])"), "O"},
{std::regex(R"(\[#8&A&R\])"), "[O&R]"},
{std::regex(R"(\[#8&a\])"), "o"},
{std::regex(R"(\[#9&A\])"), "F"},
{std::regex(R"(\[#16&A\])"), "S"},
{std::regex(R"(\[#16&a\])"), "s"},
{std::regex(R"(\[#17&A\])"), "Cl"},
{std::regex(R"(\[#35&A\])"), "Br"},
{std::regex(R"(\[#53&A\])"), "I"},
{std::regex(R"(([A-Z])-([cnops]))"), "$1$2"},
{std::regex(R"(([cnops][1-9]*)-([A-Z]))"), "$1$2"},
{std::regex(R"(([A-Z][1-9]*)-([A-Z]))"), "$1$2"},
{std::regex(R"(([A-Z])-([1-9]))"), "$1$2"}};
// Sometimes it needs more than 1 pass through
std::string start_smt = "";
while (start_smt != smarts) {
start_smt = smarts;
for (auto [patt, repl] : repls) {
smarts = std::regex_replace(smarts, patt, repl);
}
}
// Convert the equivalent atoms from weird atomic numbers to the
// original SMARTS pattern
std::vector<std::string> classSmarts;
boost::split(classSmarts, equivalentAtoms, boost::is_any_of(" "));
int atNum = 110;
for (auto &smt : classSmarts) {
// The SMARTS come out with &A or &a after the atomic number
// depending on the aromaticity of the underlying atom but
// the original SMARTS for the equivalent atom should take
// that into account. For example [*] needs to match both
// aromatic and aliphatic atoms. Include the case of no
// &[Aa] for good measure.
auto atNumStr = std::to_string(atNum);
std::regex a1(R"(\[#)" + atNumStr + R"(&[Aa]\])");
smarts = std::regex_replace(smarts, a1, smt);
// If it's a plain atomic number, it's safe to do a straight
// replacement with the smt.
std::regex a2(R"(\[#)" + atNumStr + R"(\])");
smarts = std::regex_replace(smarts, a2, smt);
// If the ringMatchesRingOnly option has been used, there may
// be [#110&A&R] or [#110&a&R] or [#110&R]. In these cases
// it needs to end ;R] but again without the &A or &a. The
// SMARTS has to match to a single atom, so must end with
// a ]. e.g. [O,S] or [c,$(o1cccc1),$(n1cccc1)]
std::regex a3(R"(\[#)" + atNumStr + R"((?:&[Aa])*&R)");
std::string replaceWith(smt.substr(0, smt.length() - 1) + ";R");
smarts = std::regex_replace(smarts, a3, replaceWith);
++atNum;
}
}
void printBondMatches(const RascalResult &res, std::ostream &os) {
os << "Bond 1 matches : " << res.getBondMatches().size() << " : [";
for (const auto &bm : res.getBondMatches()) {
os << bm.first << ",";
}
os << "]" << std::endl;
os << "Bond 2 matches : " << res.getBondMatches().size() << " : [";
for (const auto &bm : res.getBondMatches()) {
os << bm.second << ",";
}
os << "]" << std::endl;
}
void printAtomMatches(const RascalResult &res, std::ostream &os) {
os << "Atom 1 matches : " << res.getAtomMatches().size() << " : [";
for (const auto &am : res.getAtomMatches()) {
os << am.first << ",";
}
os << "]" << std::endl;
os << "Atom 2 matches : " << res.getAtomMatches().size() << " : [";
for (const auto &am : res.getAtomMatches()) {
os << am.second << ",";
}
os << "]" << std::endl;
}
void printScores(const RascalResult &res, std::ostream &os) {
os << res.getBondMatches().size() << " : " << res.getNumFrags() << " : "
<< res.getLargestFragSize() << " : " << res.getRingNonRingBondScore()
<< " : " << res.getAtomMatchScore() << " : "
<< res.getMaxDeltaAtomAtomDist() << " : " << res.getSmarts() << std::endl;
}
double johnsonSimilarity(const std::vector<std::pair<int, int>> &bondMatches,
const std::vector<std::pair<int, int>> &atomMatches,
const RDKit::ROMol &mol1, const RDKit::ROMol &mol2) {
double num = (bondMatches.size() + atomMatches.size()) *
(bondMatches.size() + atomMatches.size());
double denom = (mol1.getNumAtoms() + mol1.getNumBonds()) *
(mol2.getNumAtoms() + mol2.getNumBonds());
return num / denom;
}
} // namespace details
} // namespace RascalMCES
} // namespace RDKit
|