File: RingInfo.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (316 lines) | stat: -rw-r--r-- 10,240 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//
//  Copyright (C) 2004-2019 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "RingInfo.h"
#include <RDGeneral/Invariant.h>
#include <algorithm>

namespace RDKit {
RingInfo::INT_VECT RingInfo::atomRingSizes(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_atomMembers.size()) {
    INT_VECT res(d_atomMembers[idx].size());
    std::transform(d_atomMembers[idx].begin(), d_atomMembers[idx].end(),
                   res.begin(),
                   [this](int ri) { return d_atomRings.at(ri).size(); });
    return res;
  }
  return INT_VECT();
}
bool RingInfo::isAtomInRingOfSize(unsigned int idx, unsigned int size) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_atomMembers.size()) {
    return std::find_if(d_atomMembers[idx].begin(), d_atomMembers[idx].end(),
                        [this, size](int ri) {
                          return d_atomRings.at(ri).size() == size;
                        }) != d_atomMembers[idx].end();
  }
  return false;
}
unsigned int RingInfo::minAtomRingSize(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_atomMembers.size() && !d_atomMembers[idx].empty()) {
    auto ri = *std::min_element(
        d_atomMembers[idx].begin(), d_atomMembers[idx].end(),
        [this](int ri1, int ri2) {
          return d_atomRings.at(ri1).size() < d_atomRings.at(ri2).size();
        });
    return d_atomRings.at(ri).size();
  }
  return 0;
}
unsigned int RingInfo::numAtomRings(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_atomMembers.size()) {
    return rdcast<unsigned int>(d_atomMembers[idx].size());
  }
  return 0;
}
const RingInfo::INT_VECT &RingInfo::atomMembers(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  static const INT_VECT emptyVect;
  if (idx < d_atomMembers.size()) {
    return d_atomMembers[idx];
  }
  return emptyVect;
}
bool RingInfo::areAtomsInSameRingOfSize(unsigned int idx1, unsigned int idx2,
                                        unsigned int size) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx1 >= d_atomMembers.size() || idx2 >= d_atomMembers.size()) {
    return false;
  }
  auto it1 = d_atomMembers[idx1].begin();
  auto it2 = d_atomMembers[idx2].begin();
  while (it1 != d_atomMembers[idx1].end() && it2 != d_atomMembers[idx2].end()) {
    if (*it1 < *it2) {
      ++it1;
    } else if (*it1 > *it2) {
      ++it2;
    } else if (!size || d_atomRings.at(*it1).size() == size) {
      return true;
    } else {
      ++it1;
      ++it2;
    }
  }
  return false;
}
RingInfo::INT_VECT RingInfo::bondRingSizes(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_bondMembers.size()) {
    INT_VECT res(d_bondMembers[idx].size());
    std::transform(d_bondMembers[idx].begin(), d_bondMembers[idx].end(),
                   res.begin(),
                   [this](int ri) { return d_bondRings.at(ri).size(); });
    return res;
  }
  return INT_VECT();
}
bool RingInfo::isBondInRingOfSize(unsigned int idx, unsigned int size) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_bondMembers.size()) {
    return std::find_if(d_bondMembers[idx].begin(), d_bondMembers[idx].end(),
                        [this, size](int ri) {
                          return d_bondRings.at(ri).size() == size;
                        }) != d_bondMembers[idx].end();
  }
  return false;
}
unsigned int RingInfo::minBondRingSize(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_bondMembers.size() && d_bondMembers[idx].size()) {
    return d_bondRings
        .at(*std::min_element(
            d_bondMembers[idx].begin(), d_bondMembers[idx].end(),
            [this](int ri1, int ri2) {
              return d_bondRings.at(ri1).size() < d_bondRings.at(ri2).size();
            }))
        .size();
  }
  return 0;
}
unsigned int RingInfo::numBondRings(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx < d_bondMembers.size()) {
    return rdcast<unsigned int>(d_bondMembers[idx].size());
  }
  return 0;
}
const RingInfo::INT_VECT &RingInfo::bondMembers(unsigned int idx) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  static const INT_VECT emptyVect;
  if (idx < d_bondMembers.size()) {
    return d_bondMembers[idx];
  }
  return emptyVect;
}
bool RingInfo::areBondsInSameRingOfSize(unsigned int idx1, unsigned int idx2,
                                        unsigned int size) const {
  PRECONDITION(df_init, "RingInfo not initialized");

  if (idx1 >= d_bondMembers.size() || idx2 >= d_bondMembers.size()) {
    return false;
  }
  auto it1 = d_bondMembers[idx1].begin();
  auto it2 = d_bondMembers[idx2].begin();
  while (it1 != d_bondMembers[idx1].end() && it2 != d_bondMembers[idx2].end()) {
    if (*it1 < *it2) {
      ++it1;
    } else if (*it1 > *it2) {
      ++it2;
    } else if (!size || d_bondRings.at(*it1).size() == size) {
      return true;
    } else {
      ++it1;
      ++it2;
    }
  }
  return false;
}

unsigned int RingInfo::numRings() const {
  PRECONDITION(df_init, "RingInfo not initialized");
  PRECONDITION(d_atomRings.size() == d_bondRings.size(), "length mismatch");
  return rdcast<unsigned int>(d_atomRings.size());
}

unsigned int RingInfo::addRing(const INT_VECT &atomIndices,
                               const INT_VECT &bondIndices) {
  PRECONDITION(df_init, "RingInfo not initialized");
  PRECONDITION(atomIndices.size() == bondIndices.size(), "length mismatch");
  for (const auto &i : atomIndices) {
    if (i >= static_cast<int>(d_atomMembers.size())) {
      d_atomMembers.resize(i + 1);
    }
    d_atomMembers[i].push_back(d_atomRings.size());
  }
  for (const auto &i : bondIndices) {
    if (i >= static_cast<int>(d_bondMembers.size())) {
      d_bondMembers.resize(i + 1);
    }
    d_bondMembers[i].push_back(d_bondRings.size());
  }
  d_atomRings.push_back(atomIndices);
  d_bondRings.push_back(bondIndices);
  POSTCONDITION(d_atomRings.size() == d_bondRings.size(), "length mismatch");
  return rdcast<unsigned int>(d_atomRings.size());
}

bool RingInfo::isRingFused(unsigned int ringIdx) {
  initFusedRings();
  PRECONDITION(ringIdx < d_fusedRings.size(), "ringIdx out of bounds");
  return d_fusedRings[ringIdx].any();
}

bool RingInfo::areRingsFused(unsigned int ring1Idx, unsigned int ring2Idx) {
  initFusedRings();
  PRECONDITION(ring1Idx < d_fusedRings.size(), "ring1Idx out of bounds");
  PRECONDITION(ring2Idx < d_fusedRings.size(), "ring2Idx out of bounds");
  return d_fusedRings[ring1Idx].test(ring2Idx);
}

unsigned int RingInfo::numFusedBonds(unsigned int ringIdx) {
  PRECONDITION(ringIdx < d_bondRings.size(), "ringIdx out of bounds");
  if (d_numFusedBonds.size() != d_bondRings.size()) {
    d_numFusedBonds.clear();
    d_numFusedBonds.resize(d_bondRings.size(), 0);
    for (unsigned int ri = 0; ri < d_bondRings.size(); ++ri) {
      d_numFusedBonds[ri] += std::count_if(
          d_bondRings[ri].begin(), d_bondRings[ri].end(),
          [this](unsigned int bi) { return numBondRings(bi) > 1; });
    }
  }
  return d_numFusedBonds[ringIdx];
}

unsigned int RingInfo::numFusedRingNeighbors(unsigned int ringIdx) {
  initFusedRings();
  PRECONDITION(ringIdx < d_fusedRings.size(), "ringIdx out of bounds");
  return d_fusedRings[ringIdx].count();
}

std::vector<unsigned int> RingInfo::fusedRingNeighbors(unsigned int ringIdx) {
  initFusedRings();
  PRECONDITION(ringIdx < d_fusedRings.size(), "ringIdx out of bounds");
  std::vector<unsigned int> res;
  res.reserve(d_fusedRings[ringIdx].count());
  for (unsigned int i = 0; i < d_fusedRings[ringIdx].size(); ++i) {
    if (d_fusedRings[ringIdx].test(i)) {
      res.push_back(i);
    }
  }
  return res;
}

void RingInfo::initFusedRings() {
  if (d_fusedRings.size() == d_bondRings.size()) {
    return;
  }
  d_fusedRings.clear();
  if (d_bondRings.empty()) {
    return;
  }
  d_fusedRings.resize(d_bondRings.size());
  for (auto &fusedRing : d_fusedRings) {
    fusedRing.resize(d_bondRings.size());
  }
  for (const auto &ringIndices : d_bondMembers) {
    if (ringIndices.size() <= 1) {
      continue;
    }
    for (unsigned int i = 0; i < ringIndices.size() - 1; ++i) {
      unsigned int ringIdx1 = ringIndices[i];
      for (unsigned int j = i + 1; j < ringIndices.size(); ++j) {
        unsigned int ringIdx2 = ringIndices[j];
        d_fusedRings[ringIdx1].set(ringIdx2);
        d_fusedRings[ringIdx2].set(ringIdx1);
      }
    }
  }
}

#ifdef RDK_USE_URF
unsigned int RingInfo::numRingFamilies() const {
  PRECONDITION(df_init, "RingInfo not initialized");
  return d_atomRingFamilies.size();
};

unsigned int RingInfo::numRelevantCycles() const {
  PRECONDITION(df_init, "RingInfo not initialized");
  return rdcast<unsigned int>(RDL_getNofRC(dp_urfData.get()));
};

unsigned int RingInfo::addRingFamily(const INT_VECT &atomIndices,
                                     const INT_VECT &bondIndices) {
  PRECONDITION(df_init, "RingInfo not initialized");
  d_atomRingFamilies.push_back(atomIndices);
  d_bondRingFamilies.push_back(bondIndices);
  POSTCONDITION(d_atomRingFamilies.size() == d_bondRingFamilies.size(),
                "length mismatch");

  return rdcast<unsigned int>(d_atomRingFamilies.size());
}
#endif

void RingInfo::initialize(RDKit::FIND_RING_TYPE ringType) {
  df_init = true;
  df_find_type_type = ringType;
};
void RingInfo::reset() {
  if (!df_init) {
    return;
  }
  df_init = false;
  df_find_type_type = RDKit::FIND_RING_TYPE_OTHER_OR_UNKNOWN;
  d_atomMembers.clear();
  d_bondMembers.clear();
  d_atomRings.clear();
  d_bondRings.clear();
#ifdef RDK_USE_URF
  d_atomRingFamilies.clear();
  d_bondRingFamilies.clear();
#endif
}
void RingInfo::preallocate(unsigned int numAtoms, unsigned int numBonds) {
  d_atomMembers.resize(numAtoms);
  d_bondMembers.resize(numBonds);
}
}  // namespace RDKit