1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
|
// Copyright (C) 2001-2024 RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/Canon.h>
#include <GraphMol/Chirality.h>
#include <GraphMol/new_canon.h>
#include <GraphMol/SmilesParse/SmilesParseOps.h>
#include <GraphMol/RDKitQueries.h>
#include <RDGeneral/Exceptions.h>
#include <RDGeneral/hash/hash.hpp>
#include <RDGeneral/utils.h>
#include <algorithm>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/SmilesParse/CanonicalizeStereoGroups.h>
namespace RDKit {
namespace {
void buildTree(int atomIndexToAdd, const ROMol *mol,
std::vector<unsigned int> &chosenOrder,
std::vector<int> &reverseOrder,
std::vector<unsigned int> &ranks) {
// build a tree of the atoms in the molecule
// starting with the atom at atomIndexToAdd
// and using the ranks to determine
// the order of the neighbors in each atom in the tree.
//
// The chosenOrder is the list of old atom numbers in the order they are
// chosen reverseOrder is the reference for each old atom number to its new
// place in the new chosenOrder.
//
// the tree is built by adding, recursively, the neighbor atoms in order of
// rank
//
PRECONDITION(mol, "bad molecule");
chosenOrder.push_back(atomIndexToAdd);
reverseOrder[atomIndexToAdd] = chosenOrder.size() - 1;
auto atomToAdd = mol->getAtomWithIdx(atomIndexToAdd);
std::vector<std::pair<unsigned int, unsigned int>> nbrRanks;
nbrRanks.reserve(mol->getAtomDegree(atomToAdd));
for (const auto nbr : mol->atomNeighbors(atomToAdd)) {
nbrRanks.push_back(std::make_pair(ranks[nbr->getIdx()], nbr->getIdx()));
}
std::sort(nbrRanks.begin(), nbrRanks.end());
for (const auto &pr : nbrRanks) {
if (reverseOrder[pr.second] == -1) {
buildTree(pr.second, mol, chosenOrder, reverseOrder, ranks);
}
}
}
class ChiralAtomItem {
private:
unsigned int atomId;
RDKit::Atom::ChiralType chiralType;
public:
ChiralAtomItem() = delete;
ChiralAtomItem(const RDKit::Atom *atomInit,
const std::vector<unsigned int> &atomsToInvert)
: atomId(atomInit->getIdx()), chiralType(atomInit->getChiralTag()) {
if (std::find(atomsToInvert.begin(), atomsToInvert.end(), atomId) !=
atomsToInvert.end()) {
if (chiralType == RDKit::Atom::CHI_TETRAHEDRAL_CW) {
chiralType = RDKit::Atom::CHI_TETRAHEDRAL_CCW;
} else if (chiralType == RDKit::Atom::CHI_TETRAHEDRAL_CCW) {
chiralType = RDKit::Atom::CHI_TETRAHEDRAL_CW;
}
}
}
unsigned int getAtomId() const { return atomId; }
RDKit::Atom::ChiralType getChiralType() const { return chiralType; }
bool operator<(const ChiralAtomItem &other) const {
if (atomId < other.atomId) {
return true;
} else if (atomId > other.atomId) {
return false;
}
// note: CCW is considered less that CW
if (chiralType < other.chiralType) {
return true;
} else if (chiralType > other.chiralType) {
return false;
}
return false;
}
bool operator==(const ChiralAtomItem &other) const {
if (atomId != other.atomId) {
return false;
}
if (chiralType != other.chiralType) {
return false;
}
return true;
}
bool operator!=(const ChiralAtomItem &other) const {
return !(*this == other);
}
};
class ChiralBondItem {
private:
RDKit::Bond::BondStereo stereoType = RDKit::Bond::BondStereo::STEREONONE;
unsigned int bondId;
unsigned int atomId1;
unsigned int atomId2;
public:
unsigned int getBondId() const { return bondId; }
unsigned int getAtomId1() const { return atomId1; }
unsigned int getAtomId2() const { return atomId2; }
RDKit::Bond::BondStereo getStereoType() const { return stereoType; }
ChiralBondItem() = delete;
ChiralBondItem(const RDKit::Bond *bondInit)
: stereoType(bondInit->getStereo()),
bondId(bondInit->getIdx()),
atomId1(bondInit->getBeginAtomIdx()),
atomId2(bondInit->getEndAtomIdx()) {
if (atomId1 > atomId2) {
std::swap(atomId1, atomId2);
}
}
bool operator<(const ChiralBondItem &other) const {
if (atomId1 < other.atomId1) {
return true;
} else if (atomId1 > other.atomId1) {
return false;
} else if (atomId2 < other.atomId2) {
return true;
} else if (atomId2 > other.atomId2) {
return false;
}
if (stereoType < other.stereoType) {
return true;
} else if (stereoType > other.stereoType) {
return false;
}
return false;
}
bool operator==(const ChiralBondItem &other) const {
if (atomId1 != other.atomId1 || atomId2 != other.atomId2 ||
stereoType != other.stereoType) {
return false;
}
return true;
}
bool operator!=(const ChiralBondItem &other) const {
return !(*this == other);
}
};
class RankedValue {
private:
std::vector<ChiralAtomItem> chiralAtomItems;
mutable std::vector<ChiralBondItem> chiralBondItems;
mutable bool bondsSorted = false;
public:
void AddAtom(RDKit::Atom *atom,
const std::vector<unsigned int> &atomsToInvert) {
chiralAtomItems.emplace_back(atom, atomsToInvert);
}
void AddBond(RDKit::Bond *bond) {
chiralBondItems.emplace_back(bond);
bondsSorted = false;
}
unsigned int getNumChiralAtoms() const { return chiralAtomItems.size(); }
unsigned int getNumChiralBonds() const { return chiralBondItems.size(); }
const std::vector<ChiralAtomItem> &getChiralAtoms() const {
return chiralAtomItems;
}
const std::vector<ChiralBondItem> &getChiralBonds() const {
if (!bondsSorted) {
if (chiralBondItems.size() > 1) {
std::sort(chiralBondItems.begin(), chiralBondItems.end());
}
bondsSorted = true;
}
return chiralBondItems;
}
bool operator<(const RankedValue &other) const {
if (chiralAtomItems.size() < other.chiralAtomItems.size()) {
return true;
} else if (chiralAtomItems.size() > other.chiralAtomItems.size()) {
return false;
}
if (chiralBondItems.size() < other.chiralBondItems.size()) {
return true;
} else if (chiralBondItems.size() > other.chiralBondItems.size()) {
return false;
}
for (auto it = chiralAtomItems.begin(), it2 = other.chiralAtomItems.begin();
it != chiralAtomItems.end(); ++it, ++it2) {
if (*it < *it2) {
return true;
} else if (*it2 < *it) {
return false;
}
}
for (auto it = chiralBondItems.begin(), it2 = other.chiralBondItems.begin();
it != chiralBondItems.end(); ++it, ++it2) {
if (*it < *it2) {
return true;
} else if (*it2 < *it) {
return false;
}
}
return false;
}
bool equivalentTo(const RankedValue &other) const {
if (chiralAtomItems.size() != other.chiralAtomItems.size()) {
return false;
}
if (chiralBondItems.size() != other.chiralBondItems.size()) {
return false;
}
for (auto it = chiralAtomItems.begin(), it2 = other.chiralAtomItems.begin();
it != chiralAtomItems.end(); ++it, ++it2) {
if ((*it).getAtomId() != (*it2).getAtomId()) {
return false;
}
}
for (auto it = chiralBondItems.begin(), it2 = other.chiralBondItems.begin();
it != chiralBondItems.end(); ++it, ++it2) {
if ((*it).getAtomId1() != (*it2).getAtomId1() ||
(*it).getAtomId2() != (*it2).getAtomId2()) {
return false;
}
}
return true;
}
bool operator==(const RankedValue &other) const {
if (chiralAtomItems.size() != other.chiralAtomItems.size()) {
return false;
}
if (chiralBondItems.size() != other.chiralBondItems.size()) {
return false;
}
for (auto it = chiralAtomItems.begin(), it2 = other.chiralAtomItems.begin();
it != chiralAtomItems.end(); ++it, ++it2) {
if (*it != *it2) {
return false;
}
}
for (auto it = chiralBondItems.begin(), it2 = other.chiralBondItems.begin();
it != chiralBondItems.end(); ++it, ++it2) {
if (*it != *it2) {
return false;
}
}
return true;
}
};
bool doesAtomChiralityVary(const std::set<RankedValue> &allRankedValues,
unsigned int index) {
PRECONDITION(!allRankedValues.empty(), "bad allRankedValues size");
PRECONDITION(allRankedValues.begin()->getNumChiralAtoms() > index,
"index out of range");
const auto firstChiralVal =
allRankedValues.begin()->getChiralAtoms()[index].getChiralType();
for (const auto &rankedValue : allRankedValues) {
if (rankedValue.getChiralAtoms()[index].getChiralType() != firstChiralVal) {
return true;
}
}
return false;
}
bool doesBondStereoVary(const std::set<RankedValue> &allRankedValues,
unsigned int index) {
PRECONDITION(!allRankedValues.empty(), "bad allRankedValues size");
PRECONDITION(allRankedValues.begin()->getNumChiralBonds() > index,
"index out of range");
const auto firstStereoVal =
allRankedValues.begin()->getChiralBonds()[index].getStereoType();
for (const auto &rankedValue : allRankedValues) {
if (rankedValue.getChiralBonds()[index].getStereoType() != firstStereoVal) {
return true;
}
}
return false;
}
bool doTwoAtomsVaryTheSame(const std::set<RankedValue> &allRankedValues,
unsigned int index1, unsigned int index2) {
PRECONDITION(!allRankedValues.empty(), "bad allRankedValues size");
PRECONDITION(allRankedValues.begin()->getNumChiralAtoms() > index1,
"index1 out of range");
PRECONDITION(allRankedValues.begin()->getNumChiralAtoms() > index2,
"index2 out of range");
const auto firstChiralVal1 =
allRankedValues.begin()->getChiralAtoms()[index1].getChiralType();
const auto firstChiralVal2 =
allRankedValues.begin()->getChiralAtoms()[index2].getChiralType();
for (const auto &rankedValue : allRankedValues) {
if ((firstChiralVal1 ==
rankedValue.getChiralAtoms()[index1].getChiralType()) !=
(firstChiralVal2 ==
rankedValue.getChiralAtoms()[index2].getChiralType())) {
return false;
}
}
return true;
}
bool doAtomAndBondVaryTheSame(const std::set<RankedValue> &allRankedValues,
unsigned int atomIndex1,
unsigned int bondIndex2) {
PRECONDITION(!allRankedValues.empty(), "bad allMols size");
PRECONDITION(allRankedValues.begin()->getNumChiralAtoms() > atomIndex1,
"atomIndex1 out of range");
PRECONDITION(allRankedValues.begin()->getNumChiralBonds() > bondIndex2,
"bondIndex2 out of range");
const auto firstChiralVal1 =
allRankedValues.begin()->getChiralAtoms()[atomIndex1].getChiralType();
const auto firstStereoVal2 =
allRankedValues.begin()->getChiralBonds()[bondIndex2].getStereoType();
for (const auto &rankedValue : allRankedValues) {
if ((firstChiralVal1 ==
rankedValue.getChiralAtoms()[atomIndex1].getChiralType()) !=
(firstStereoVal2 ==
rankedValue.getChiralBonds()[bondIndex2].getStereoType())) {
return false;
}
}
return true;
}
bool doTwoBondsVaryTheSame(const std::set<RankedValue> &allRankedValues,
unsigned int bondIndex1, unsigned int bondIndex2) {
PRECONDITION(!allRankedValues.empty(), "bad allMols size");
PRECONDITION(allRankedValues.begin()->getNumChiralBonds() > bondIndex1,
"atomIndex1 out of range");
PRECONDITION(allRankedValues.begin()->getNumChiralBonds() > bondIndex2,
"bondIndex2 out of range");
const auto firstStereoVal1 =
allRankedValues.begin()->getChiralBonds()[bondIndex1].getStereoType();
const auto firstStereoVal2 =
allRankedValues.begin()->getChiralBonds()[bondIndex2].getStereoType();
for (const auto &rankedValue : allRankedValues) {
if ((firstStereoVal1 ==
rankedValue.getChiralBonds()[bondIndex1].getStereoType()) !=
(firstStereoVal2 ==
rankedValue.getChiralBonds()[bondIndex2].getStereoType())) {
return false;
}
}
return true;
}
unsigned int countSwaps(std::vector<unsigned int> &nbrs) {
unsigned int swaps = 0;
for (unsigned int i = 0; i < nbrs.size(); ++i) {
for (unsigned int j = i + 1; j < nbrs.size(); ++j) {
if (nbrs[i] > nbrs[j]) {
++swaps;
}
}
}
return swaps;
}
} // namespace
// the call to renumberAtoms will NOT invert chiral atoms.
// it does return the atoms in the order handed to it, which could be the order
// of atoms for a possible smiles string.
//
// RDKit internally bases the chiral atoms on the order of the bonds
// to an atom, and the renumber function below does not change the order of the
// bonds to an atom. So, the chiral atoms are still correct and are unchanged
// by renumber.
//
// this routine determines which atoms would be inverted in an actual
// smiles were it to be generated. This allows processing of a mol in a
// smiles-like order without actually generating a smiles string.
void getAtomsToInvert2(const RDKit::ROMol &mol,
const std::vector<unsigned int> &newOrder,
const std::vector<int> &reversedOrder,
std::vector<unsigned int> &atomsToInvert) {
unsigned int nAts = mol.getNumAtoms();
PRECONDITION(newOrder.size() == nAts, "bad newOrder size");
// copy over the atoms:
for (unsigned int nIdx = 0; nIdx < nAts; ++nIdx) {
unsigned int oIdx = newOrder[nIdx];
const RDKit::Atom *oAtom = mol.getAtomWithIdx(oIdx);
if (oAtom->getChiralTag() != RDKit::Atom::CHI_UNSPECIFIED) {
// get the neighbors in the new order
std::vector<unsigned int> nbrs;
nbrs.reserve(oAtom->getDegree());
for (const auto &nbr : mol.atomNeighbors(oAtom)) {
nbrs.push_back(reversedOrder[nbr->getIdx()]);
}
if (RDKit::countSwaps(nbrs) % 2) {
atomsToInvert.push_back(nIdx);
}
}
}
return;
}
void addSingleAbsGroup(ROMol &mol) {
// all chiral centers are added to an abs group
// if there are not chiral centers, no group is added
std::vector<StereoGroup> sgs;
std::vector<Atom *> chiralAtoms;
std::vector<Bond *> chiralBonds;
for (auto &atom : mol.atoms()) {
if (atom->getChiralTag() == Atom::ChiralType::CHI_TETRAHEDRAL_CCW ||
atom->getChiralTag() == Atom::ChiralType::CHI_TETRAHEDRAL_CW) {
chiralAtoms.push_back(atom);
}
}
for (auto &bond : mol.bonds()) {
if (bond->getStereo() == Bond::BondStereo::STEREOATROPCW ||
bond->getStereo() == Bond::BondStereo::STEREOATROPCCW) {
chiralBonds.push_back(bond);
}
}
if (!chiralAtoms.empty() || !chiralBonds.empty()) {
sgs.emplace_back(StereoGroupType::STEREO_ABSOLUTE, chiralAtoms,
chiralBonds);
}
mol.setStereoGroups(sgs); // could be empty, or have one abs group
}
void clearStereoGroups(ROMol &mol) {
// all chiral centers are added to an abs group
// if there are not chiral centers, no group is added
std::vector<StereoGroup> sgs;
mol.setStereoGroups(sgs);
}
void canonicalizeStereoGroups_internal(
std::unique_ptr<RDKit::ROMol> &mol, RDKit::StereoGroupType stereoGroupType,
RDKit::StereoGroupAbsOptions outputAbsoluteGroups) {
// this expands a mol with stereo groups to a vector of values that are the
// result of expanding the stereo groups, then determines the stereo groups
// from that set
std::set<RDKit::RankedValue> allRankedValues;
std::vector<RDKit::StereoGroup> groupsToProcess;
std::vector<RDKit::StereoGroup> andGroupsToKeep;
for (auto &grp : mol->getStereoGroups()) {
if (stereoGroupType == grp.getGroupType()) {
groupsToProcess.push_back(grp);
} else if (stereoGroupType == RDKit::StereoGroupType::STEREO_OR &&
grp.getGroupType() == RDKit::StereoGroupType::STEREO_AND) {
andGroupsToKeep.push_back(grp);
}
}
mol->setStereoGroups(
andGroupsToKeep); // these groups might be empty, especially if we
// are PROCESSING AND groups
std::unique_ptr<RDKit::ROMol> bestNewMol;
auto newMolCount = std::pow(2, groupsToProcess.size());
for (unsigned int molIndex = 0; molIndex < newMolCount; ++molIndex) {
auto newMol = std::unique_ptr<RDKit::ROMol>(new RDKit::RWMol(*(mol.get())));
for (unsigned int grpIndex = 0; grpIndex < groupsToProcess.size();
++grpIndex) {
if (molIndex & (1 << grpIndex)) {
for (auto atomPtr : groupsToProcess[grpIndex].getAtoms()) {
if (atomPtr->getChiralTag() == RDKit::Atom::CHI_TETRAHEDRAL_CW) {
newMol->getAtomWithIdx(atomPtr->getIdx())
->setChiralTag(RDKit::Atom::CHI_TETRAHEDRAL_CCW);
} else if (atomPtr->getChiralTag() ==
RDKit::Atom::CHI_TETRAHEDRAL_CCW) {
newMol->getAtomWithIdx(atomPtr->getIdx())
->setChiralTag(RDKit::Atom::CHI_TETRAHEDRAL_CW);
}
}
// do any atropisomer bonds in this stereo group
for (auto bond : groupsToProcess[grpIndex].getBonds()) {
if (bond->getStereo() == RDKit::Bond::STEREOATROPCW) {
newMol->getBondWithIdx(bond->getIdx())
->setStereo(RDKit::Bond::STEREOATROPCCW);
} else if (bond->getStereo() == RDKit::Bond::STEREOATROPCCW) {
newMol->getBondWithIdx(bond->getIdx())
->setStereo(RDKit::Bond::STEREOATROPCW);
}
}
}
}
if (!andGroupsToKeep.empty()) {
canonicalizeStereoGroups_internal(
newMol, RDKit::StereoGroupType::STEREO_AND,
RDKit::StereoGroupAbsOptions::NeverInclude);
}
std::vector<unsigned int> ranks(mol->getNumAtoms());
const bool breakTies = true;
const bool includeChirality = true;
const bool includeIsotopes = false;
const bool includeAtomMaps = true;
const bool useNonStereoRanks = true;
const bool includeChiralPresence = true;
const bool includeStereoGroups = true;
RDKit::Canon::rankMolAtoms(*newMol, ranks, breakTies, includeChirality,
includeIsotopes, includeAtomMaps,
includeChiralPresence, includeStereoGroups,
useNonStereoRanks);
// create an atoms ordering as if a smiles, but do this for the entire
// mol - not fragments - it really is NOT the same order as generating a
// smiles
std::vector<unsigned int> chosenOrder;
std::vector<int> reversedOrder(newMol->getNumAtoms(), -1);
while (true) {
int startingAtomIndex = -1;
unsigned int lowestRank = UINT_MAX;
for (unsigned int i = 0; i < newMol->getNumAtoms(); ++i) {
if (reversedOrder[i] != -1) {
continue;
}
if (ranks[i] < lowestRank) {
lowestRank = ranks[i];
startingAtomIndex = i;
}
}
if (startingAtomIndex == -1) {
break; // all atoms are done
}
RDKit::buildTree(startingAtomIndex, newMol.get(), chosenOrder,
reversedOrder, ranks);
}
if (newMol->getNumAtoms() != chosenOrder.size()) {
throw ValueErrorException("atomOrdering size mismatch");
}
// the call to renumberAtoms will NOT invert chiral atoms as would
// happen if a smiles string were to be generated.
//
// the call to getAtomsToInvert will determine which atoms would be
// inverted in a smiles string
std::vector<unsigned int> atomsToInvert;
RDKit::getAtomsToInvert2(*newMol.get(), chosenOrder, reversedOrder,
atomsToInvert);
newMol.reset((RDKit::RWMol *)RDKit::MolOps::renumberAtoms(*newMol.get(),
chosenOrder));
RDKit::RankedValue newRankedValue;
boost::dynamic_bitset<> atomIndicesInStereoGroups(newMol->getNumAtoms());
boost::dynamic_bitset<> bondIndicesInStereoGroups(newMol->getNumBonds());
for (auto grp : newMol->getStereoGroups()) {
for (auto atomPtr : grp.getAtoms()) {
atomIndicesInStereoGroups.set(atomPtr->getIdx());
}
for (auto bondPtr : grp.getBonds()) {
bondIndicesInStereoGroups.set(bondPtr->getIdx());
}
}
// now get all chiral centers and atrop bonds that are not in the stereo
// groups
for (auto atom : newMol->atoms()) {
if ((atom->getChiralTag() == RDKit::Atom::CHI_TETRAHEDRAL_CCW ||
atom->getChiralTag() == RDKit::Atom::CHI_TETRAHEDRAL_CW) &&
!atomIndicesInStereoGroups[atom->getIdx()]) {
newRankedValue.AddAtom(atom, atomsToInvert);
}
}
for (auto bond : newMol->bonds()) {
if ((bond->getStereo() == RDKit::Bond::BondStereo::STEREOATROPCCW ||
bond->getStereo() == RDKit::Bond::BondStereo::STEREOATROPCW) &&
!bondIndicesInStereoGroups[bond->getIdx()]) {
newRankedValue.AddBond(bond);
}
}
atomIndicesInStereoGroups.clear(); // not needed past here
bondIndicesInStereoGroups.clear(); // not needed past here
if (!allRankedValues.empty() &&
!newRankedValue.equivalentTo(*allRankedValues.begin())) {
throw RDKit::RigorousEnhancedStereoException(
"ranked items are not equivalent");
}
auto insertResult = allRankedValues.insert(newRankedValue);
if (insertResult.second && newRankedValue == *allRankedValues.begin()) {
bestNewMol = std::move(newMol);
}
}
// now figure out the stereo groups to create
std::vector<bool> atomsDone(allRankedValues.begin()->getNumChiralAtoms(),
false);
std::vector<bool> bondsDone(allRankedValues.begin()->getNumChiralBonds(),
false);
std::vector<RDKit::Atom *> absGroupAtoms;
std::vector<RDKit::Bond *> absGroupBonds;
// if there is only one smiles, then there is no variation and
// add stereo groups are actual abs (and there is only one group)
std::vector<RDKit::StereoGroup> newGroups;
if (allRankedValues.size() == 1) {
if (outputAbsoluteGroups == RDKit::StereoGroupAbsOptions::NeverInclude) {
mol.swap(bestNewMol);
return;
}
for (const auto &chiralAtom : allRankedValues.begin()->getChiralAtoms()) {
absGroupAtoms.push_back(
bestNewMol->getAtomWithIdx(chiralAtom.getAtomId()));
}
for (const auto &chiralBond : allRankedValues.begin()->getChiralBonds()) {
absGroupBonds.push_back(
bestNewMol->getBondWithIdx(chiralBond.getBondId()));
}
} else {
// Now make the new stereo-enhanced mol
unsigned int groupCount = 0;
for (unsigned int index1 = 0;
index1 < allRankedValues.begin()->getNumChiralAtoms(); ++index1) {
if (atomsDone[index1]) {
continue;
}
unsigned int atomIndex1 =
allRankedValues.begin()->getChiralAtoms()[index1].getAtomId();
if (!doesAtomChiralityVary(allRankedValues, index1)) {
if (outputAbsoluteGroups !=
RDKit::StereoGroupAbsOptions::NeverInclude) {
absGroupAtoms.push_back(bestNewMol->getAtomWithIdx(atomIndex1));
}
atomsDone[index1] = true;
continue;
}
std::vector<RDKit::Atom *> atomsToAdd;
atomsToAdd.push_back(bestNewMol->getAtomWithIdx(atomIndex1));
atomsDone[index1] = true;
// now look through all other possible atoms and bonds to see if they
// vary the same way as the first one in the group
for (unsigned int index2 = index1 + 1;
index2 < allRankedValues.begin()->getNumChiralAtoms(); ++index2) {
if (atomsDone[index2]) {
continue;
}
unsigned int atomIndex2 =
allRankedValues.begin()->getChiralAtoms()[index2].getAtomId();
if (doTwoAtomsVaryTheSame(allRankedValues, index1, index2)) {
atomsToAdd.push_back(bestNewMol->getAtomWithIdx(atomIndex2));
atomsDone[index2] = true;
}
}
std::vector<RDKit::Bond *> bondsToAdd;
for (unsigned int index2 = 0;
index2 < allRankedValues.begin()->getNumChiralBonds(); ++index2) {
if (bondsDone[index2]) {
continue;
}
auto bondIndex2 =
allRankedValues.begin()->getChiralBonds()[index2].getBondId();
if (doAtomAndBondVaryTheSame(allRankedValues, index1, index2)) {
bondsToAdd.push_back(bestNewMol->getBondWithIdx(bondIndex2));
bondsDone[index2] = true;
}
}
std::sort(atomsToAdd.begin(), atomsToAdd.end(),
[](const RDKit::Atom *a, const RDKit::Atom *b) {
return a->getIdx() < b->getIdx();
});
std::sort(bondsToAdd.begin(), bondsToAdd.end(),
[](const RDKit::Bond *a, const RDKit::Bond *b) {
return a->getIdx() < b->getIdx();
});
newGroups.emplace_back(stereoGroupType, atomsToAdd, bondsToAdd,
++groupCount);
}
// now any groups that only involve bonds
for (unsigned int index1 = 0;
index1 < allRankedValues.begin()->getNumChiralBonds(); ++index1) {
if (bondsDone[index1]) {
continue;
}
unsigned int bondIndex1 =
allRankedValues.begin()->getChiralBonds()[index1].getBondId();
if (!doesBondStereoVary(allRankedValues, index1)) {
if (outputAbsoluteGroups !=
RDKit::StereoGroupAbsOptions::NeverInclude) {
absGroupBonds.push_back(bestNewMol->getBondWithIdx(bondIndex1));
}
bondsDone[index1] = true;
continue;
}
std::vector<RDKit::Bond *> bondsToAdd;
bondsToAdd.push_back(bestNewMol->getBondWithIdx(bondIndex1));
bondsDone[index1] = true;
// now look through all other possible bonds to see if they vary
// the same way as the first one in the group
for (unsigned int index2 = index1 + 1;
index2 < allRankedValues.begin()->getNumChiralBonds(); ++index2) {
if (bondsDone[index2]) {
continue;
}
unsigned int bondIndex2 =
allRankedValues.begin()->getChiralBonds()[index2].getBondId();
if (doTwoBondsVaryTheSame(allRankedValues, bondIndex1, bondIndex2)) {
bondsToAdd.push_back(bestNewMol->getBondWithIdx(bondIndex2));
bondsDone[index2] = true;
}
}
std::sort(bondsToAdd.begin(), bondsToAdd.end(),
[](const RDKit::Bond *a, const RDKit::Bond *b) {
return a->getIdx() < b->getIdx();
});
std::vector<RDKit::Atom *> atomsToAdd; // nothing added to this one here
newGroups.emplace_back(stereoGroupType, atomsToAdd, bondsToAdd,
++groupCount);
}
}
// keep the groups from the best mol, if it had them from a call to this
// routine for the other kind of stereo groups.
if (!bestNewMol->getStereoGroups().empty()) {
for (auto grp : bestNewMol->getStereoGroups()) {
newGroups.push_back(grp);
}
}
// if the abs group is not empty, add it
if ((outputAbsoluteGroups == RDKit::StereoGroupAbsOptions::AlwaysInclude ||
(outputAbsoluteGroups ==
RDKit::StereoGroupAbsOptions::OnlyIncludeWhenOtherGroupsExist &&
!newGroups.empty())) &&
(!absGroupAtoms.empty() || !absGroupBonds.empty())) {
std::sort(absGroupAtoms.begin(), absGroupAtoms.end(),
[](const RDKit::Atom *a, const RDKit::Atom *b) {
return a->getIdx() < b->getIdx();
});
std::sort(absGroupBonds.begin(), absGroupBonds.end(),
[](const RDKit::Bond *a, const RDKit::Bond *b) {
return a->getIdx() < b->getIdx();
});
newGroups.emplace_back(RDKit::StereoGroupType::STEREO_ABSOLUTE,
absGroupAtoms, absGroupBonds, 0);
}
bestNewMol->setStereoGroups(newGroups);
mol = std::unique_ptr<RDKit::ROMol>(bestNewMol.release());
return;
}
void canonicalizeStereoGroups(std::unique_ptr<ROMol> &mol,
StereoGroupAbsOptions outputAbsoluteGroups) {
// this returns a mol that has a caononical rep for the enhanced stereo
// groups it expands the given mol to all possible non-stereo-group mols,
// then determines a single set of stereo groups that uniquely represent
// that group.
// if there are both OR and AND groups, the AND groups are done first
// by haveing the working routine call itself for pre-prosing the AND
// groups
auto sgCount = mol->getStereoGroups().size();
if (sgCount == 0 ||
(sgCount == 1 && mol->getStereoGroups()[0].getGroupType() ==
StereoGroupType::STEREO_ABSOLUTE)) {
if (outputAbsoluteGroups == StereoGroupAbsOptions::AlwaysInclude) {
addSingleAbsGroup(*mol);
} else {
clearStereoGroups(*mol);
}
return;
}
// see if it is a simple compound, which has only one stereo group (not
// abs)
// and if has two or fewer atoms in the group, and all chiral atoms are in
// that group.
//
// furthermore, if the findMeso routine matches the simple group, it
// should be removed
//
if (sgCount == 1) {
const auto &sg = mol->getStereoGroups()[0];
const auto &sgats = sg.getAtoms();
const auto &sgBonds = sg.getBonds();
if (sgats.size() <= 2 && sgBonds.size() == 0) {
bool isSimple = true;
for (auto &atom : mol->atoms()) {
if ((atom->getChiralTag() == Atom::ChiralType::CHI_TETRAHEDRAL_CCW ||
atom->getChiralTag() == Atom::ChiralType::CHI_TETRAHEDRAL_CW) &&
std::find(sgats.begin(), sgats.end(), atom) == sgats.end()) {
isSimple = false;
break;
}
}
if (isSimple) {
for (auto &bond : mol->bonds()) {
if ((bond->getStereo() == Bond::BondStereo::STEREOATROPCW ||
bond->getStereo() == Bond::BondStereo::STEREOATROPCCW) &&
std::find(sgBonds.begin(), sgBonds.end(), bond) ==
sgBonds.end()) {
isSimple = false;
break;
}
}
if (isSimple) {
auto res = Chirality::findMesoCenters(*mol);
if (res.size() == 1) {
if (outputAbsoluteGroups ==
RDKit::StereoGroupAbsOptions::AlwaysInclude) {
addSingleAbsGroup(*mol);
} else {
clearStereoGroups(*mol);
}
}
return; // we will not process the simple ones. If the meso atoms
// were found, the one group was removed
}
}
}
}
bool foundOrGroup = false;
for (auto &stg : mol->getStereoGroups()) {
if (stg.getGroupType() == StereoGroupType::STEREO_OR) {
foundOrGroup = true;
break;
}
}
if (mol->needsUpdatePropertyCache()) {
mol->updatePropertyCache(true);
}
// get the non-stereo rankings - these do NOT change as we iterate over
// the enhanced possibilties. They also do not change if the re-entrant
// call is made
std::vector<unsigned int> ranks(mol->getNumAtoms());
const bool breakTies = false;
const bool includeChirality = false;
const bool includeIsotopes = false;
const bool includeAtomMaps = true;
const bool useNonStereoRanks = false;
const bool includeChiralPresence = true;
const bool includeStereoGroups = false;
Canon::rankMolAtoms(*mol, ranks, breakTies, includeChirality, includeIsotopes,
includeAtomMaps, includeChiralPresence,
includeStereoGroups, useNonStereoRanks);
for (auto atom : mol->atoms()) {
atom->setProp(common_properties::_CanonicalRankingNumber,
ranks[atom->getIdx()]);
}
auto savedStereoGroups = mol->getStereoGroups();
try {
if (!foundOrGroup) {
RDKit::canonicalizeStereoGroups_internal(mol, StereoGroupType::STEREO_AND,
outputAbsoluteGroups);
} else {
RDKit::canonicalizeStereoGroups_internal(mol, StereoGroupType::STEREO_OR,
outputAbsoluteGroups);
}
// Fix up the mol - round trip through smiles
mol->clearComputedProps();
SmilesWriteParams wp;
wp.canonical = false;
auto finalSmiles = MolToCXSmiles(*mol, wp);
SmilesParserParams ps;
ps.sanitize = false;
mol.reset(SmilesToMol(finalSmiles, ps));
return;
} catch (const RigorousEnhancedStereoException &e) {
mol->setStereoGroups(savedStereoGroups);
return;
}
}
} // namespace RDKit
|