File: new_canon.cpp

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (875 lines) | stat: -rw-r--r-- 31,009 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
//
//  Copyright (C) 2014 Greg Landrum
//  Adapted from pseudo-code from Roger Sayle
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include "new_canon.h"
#include <GraphMol/RDKitBase.h>
#include <GraphMol/QueryOps.h>
#include <GraphMol/Atropisomers.h>
#include <cstdint>
#include <cstring>
#include <iostream>
#include <cassert>
// #define VERBOSE_CANON 1

namespace RDKit {
namespace Canon {

namespace {
void flipIfNeeded(Bond::BondStereo &st1,
                  const canon_atom *const *controllingAtoms) {
  CHECK_INVARIANT(controllingAtoms[0], "missing controlling atom");
  CHECK_INVARIANT(controllingAtoms[2], "missing controlling atom");
  bool flip = false;
  if (controllingAtoms[1] &&
      controllingAtoms[1]->index > controllingAtoms[0]->index) {
    flip = !flip;
  }
  if (controllingAtoms[3] &&
      controllingAtoms[3]->index > controllingAtoms[2]->index) {
    flip = !flip;
  }
  if (flip) {
    if (st1 == Bond::BondStereo::STEREOCIS) {
      st1 = Bond::BondStereo::STEREOTRANS;
    } else if (st1 == Bond::BondStereo::STEREOTRANS) {
      st1 = Bond::BondStereo::STEREOCIS;
    }
  }
}
}  // namespace

int bondholder::compareStereo(const bondholder &o) const {
  auto st1 = stype;
  auto st2 = o.stype;
  if (st1 == Bond::BondStereo::STEREONONE) {
    if (st2 == Bond::BondStereo::STEREONONE) {
      return 0;
    } else {
      return -1;
    }
  }
  if (st2 == Bond::BondStereo::STEREONONE) {
    return 1;
  }
  if (st1 == Bond::BondStereo::STEREOANY) {
    if (st2 == Bond::BondStereo::STEREOANY) {
      return 0;
    } else {
      return -1;
    }
  }
  if (st2 == Bond::BondStereo::STEREOANY) {
    return 1;
  }
  // we have some kind of specified stereo on both bonds, work is required

  // if both have absolute stereo labels we can compare them directly
  if ((st1 == Bond::BondStereo::STEREOE || st1 == Bond::BondStereo::STEREOZ) &&
      (st2 == Bond::BondStereo::STEREOE || st2 == Bond::BondStereo::STEREOZ)) {
    if (st1 < st2) {
      return -1;
    } else if (st1 > st2) {
      return 1;
    }
    return 0;
  }

  // check to see if we need to flip the controlling atoms due to atom ranks
  flipIfNeeded(st1, controllingAtoms);
  flipIfNeeded(st2, o.controllingAtoms);
  if (st1 < st2) {
    return -1;
  } else if (st1 > st2) {
    return 1;
  }
  return 0;
}

void CreateSinglePartition(unsigned int nAtoms, int *order, int *count,
                           canon_atom *atoms) {
  PRECONDITION(order, "bad pointer");
  PRECONDITION(count, "bad pointer");
  PRECONDITION(atoms, "bad pointer");

  for (unsigned int i = 0; i < nAtoms; i++) {
    atoms[i].index = 0;
    order[i] = i;
    count[i] = 0;
  }
  count[0] = nAtoms;
}

void ActivatePartitions(unsigned int nAtoms, int *order, int *count,
                        int &activeset, int *next, int *changed) {
  PRECONDITION(order, "bad pointer");
  PRECONDITION(count, "bad pointer");
  PRECONDITION(next, "bad pointer");
  PRECONDITION(changed, "bad pointer");
  unsigned int i, j;
  activeset = -1;
  for (i = 0; i < nAtoms; i++) {
    next[i] = -2;
  }

  i = 0;
  do {
    j = order[i];
    if (count[j] > 1) {
      next[j] = activeset;
      activeset = j;
      i += count[j];
    } else {
      i++;
    }
  } while (i < nAtoms);

  for (i = 0; i < nAtoms; i++) {
    j = order[i];
    int flag = 1;
    // #define SKIP_NODE_CHANGED_OPTIMIZATION 0
    // #ifndef SKIP_NODE_CHANGED_OPTIMIZATION
    //         if(count[j]){
    //           std::cout << "j " << j << std::endl;
    //           flag=(next[j]!=-2);
    //         }
    // #endif
    changed[j] = flag;
  }
}

void compareRingAtomsConcerningNumNeighbors(Canon::canon_atom *atoms,
                                            unsigned int nAtoms,
                                            const ROMol &mol) {
  PRECONDITION(atoms, "bad pointer");
  RingInfo *ringInfo = mol.getRingInfo();

  auto visited = std::make_unique<char[]>(nAtoms);
  auto lastLevelNbrs = std::make_unique<char[]>(nAtoms);
  auto currentLevelNbrs = std::make_unique<char[]>(nAtoms);
  auto revisitedNeighbors = std::make_unique<int[]>(nAtoms);
  for (unsigned idx = 0; idx < nAtoms; ++idx) {
    const Canon::canon_atom &a = atoms[idx];
    if (!ringInfo->isInitialized() ||
        ringInfo->numAtomRings(a.atom->getIdx()) < 1) {
      continue;
    }
    std::deque<int> neighbors;
    neighbors.push_back(idx);
    unsigned currentRNIdx = 0;
    atoms[idx].neighborNum.reserve(1000);
    atoms[idx].revistedNeighbors.assign(1000, 0);

    memset(visited.get(), 0, nAtoms * sizeof(char));
    memset(lastLevelNbrs.get(), 0, nAtoms * sizeof(char));
    memset(currentLevelNbrs.get(), 0, nAtoms * sizeof(char));
    memset(revisitedNeighbors.get(), 0, nAtoms * sizeof(int));
    std::vector<int> nextLevelNbrs;
    while (!neighbors.empty()) {
      unsigned int numLevelNbrs = 0;
      nextLevelNbrs.resize(0);
      while (!neighbors.empty()) {
        int nidx = neighbors.front();
        neighbors.pop_front();
        const Canon::canon_atom &atom = atoms[nidx];
        if (!ringInfo->isInitialized() ||
            ringInfo->numAtomRings(atom.atom->getIdx()) < 1) {
          continue;
        }
        lastLevelNbrs[nidx] = 1;
        visited[nidx] = 1;
        for (unsigned int j = 0; j < atom.degree; j++) {
          int iidx = atom.nbrIds[j];
          if (!visited[iidx]) {
            currentLevelNbrs[iidx] = 1;
            numLevelNbrs++;
            visited[iidx] = 1;
            nextLevelNbrs.push_back(iidx);
          }
        }
      }
      for (unsigned i = 0; i < nAtoms; ++i) {
        if (currentLevelNbrs[i]) {
          const Canon::canon_atom &natom = atoms[i];
          for (unsigned int k = 0; k < natom.degree; k++) {
            int jidx = natom.nbrIds[k];
            if (currentLevelNbrs[jidx] || lastLevelNbrs[jidx]) {
              revisitedNeighbors[jidx] += 1;
            }
          }
        }
      }
      memset(lastLevelNbrs.get(), 0, nAtoms * sizeof(char));
      for (unsigned i = 0; i < nAtoms; ++i) {
        if (currentLevelNbrs[i]) {
          lastLevelNbrs[i] = 1;
        }
      }
      memset(currentLevelNbrs.get(), 0, nAtoms * sizeof(char));
      std::vector<int> tmp;
      tmp.reserve(30);
      for (unsigned i = 0; i < nAtoms; ++i) {
        if (revisitedNeighbors[i] > 0) {
          tmp.push_back(revisitedNeighbors[i]);
        }
      }
      std::sort(tmp.begin(), tmp.end());
      tmp.push_back(-1);
      for (int i : tmp) {
        if (currentRNIdx >= atoms[idx].revistedNeighbors.size()) {
          atoms[idx].revistedNeighbors.resize(
              atoms[idx].revistedNeighbors.size() + 1000);
        }
        atoms[idx].revistedNeighbors[currentRNIdx] = i;
        currentRNIdx++;
      }
      memset(revisitedNeighbors.get(), 0, nAtoms * sizeof(int));

      atoms[idx].neighborNum.push_back(numLevelNbrs);
      atoms[idx].neighborNum.push_back(-1);

      neighbors.insert(neighbors.end(), nextLevelNbrs.begin(),
                       nextLevelNbrs.end());
    }
    atoms[idx].revistedNeighbors.resize(currentRNIdx);
  }
}

namespace detail {
template <typename T>
void rankWithFunctor(T &ftor, bool breakTies, int *order, bool useSpecial,
                     bool useChirality,
                     const boost::dynamic_bitset<> *atomsInPlay,
                     const boost::dynamic_bitset<> *bondsInPlay) {
  PRECONDITION(order, "bad pointer");
  const ROMol &mol = *ftor.dp_mol;
  canon_atom *atoms = ftor.dp_atoms;
  unsigned int nAts = mol.getNumAtoms();

  //  auto order = std::make_unique<int[]>(mol.getNumAtoms());

  auto count = std::make_unique<int[]>(nAts);
  auto next = std::make_unique<int[]>(nAts);
  auto changed = std::make_unique<int[]>(nAts);
  memset(changed.get(), 1, nAts * sizeof(int));
  auto touched = std::make_unique<char[]>(nAts);
  memset(touched.get(), 0, nAts * sizeof(char));
  int activeset;
  CreateSinglePartition(nAts, order, count.get(), atoms);
// ActivatePartitions(nAts,order,count,activeset,next,changed);
// RefinePartitions(mol,atoms,ftor,false,order,count,activeset,next,changed,touched);
#ifdef VERBOSE_CANON
  std::cerr << "1--------" << std::endl;
  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    std::cerr << order[i] + 1 << " " << " index: " << atoms[order[i]].index
              << " count: " << count[order[i]] << std::endl;
  }
#endif
  ftor.df_useNbrs = true;
  ActivatePartitions(nAts, order, count.get(), activeset, next.get(),
                     changed.get());
#ifdef VERBOSE_CANON
  std::cerr << "1a--------" << std::endl;
  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    std::cerr << order[i] + 1 << " " << " index: " << atoms[order[i]].index
              << " count: " << count[order[i]] << std::endl;
  }
#endif
  RefinePartitions(mol, atoms, ftor, true, order, count.get(), activeset,
                   next.get(), changed.get(), touched.get());
#ifdef VERBOSE_CANON
  std::cerr << "2--------" << std::endl;
  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    std::cerr << order[i] + 1 << " " << " index: " << atoms[order[i]].index
              << " count: " << count[order[i]] << std::endl;
  }
#endif
  bool ties = false;
  for (unsigned i = 0; i < nAts; ++i) {
    if (!count[i]) {
      ties = true;
    }
  }
  if (useChirality && ties) {
    SpecialChiralityAtomCompareFunctor scftor(atoms, mol, atomsInPlay,
                                              bondsInPlay);
    ActivatePartitions(nAts, order, count.get(), activeset, next.get(),
                       changed.get());
    RefinePartitions(mol, atoms, scftor, true, order, count.get(), activeset,
                     next.get(), changed.get(), touched.get());
#ifdef VERBOSE_CANON
    std::cerr << "2a--------" << std::endl;
    for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
      std::cerr << order[i] + 1 << " " << " index: " << atoms[order[i]].index
                << " count: " << count[order[i]] << std::endl;
    }
#endif
  }
  ties = false;
  unsigned symRingAtoms = 0;
  unsigned ringAtoms = 0;
  bool branchingRingAtom = false;
  RingInfo *ringInfo = mol.getRingInfo();
  for (unsigned i = 0; i < nAts; ++i) {
    if (ringInfo->isInitialized() && ringInfo->numAtomRings(order[i])) {
      if (count[order[i]] > 2) {
        symRingAtoms += count[order[i]];
      }
      ringAtoms++;
      if (ringInfo->isInitialized() && ringInfo->numAtomRings(order[i]) > 1 &&
          count[order[i]] > 1) {
        branchingRingAtom = true;
      }
    }
    if (!count[i]) {
      ties = true;
    }
  }
  //      std::cout << " " << ringAtoms << " "  << symRingAtoms << std::endl;
  if (useSpecial && ties && ringAtoms > 0 &&
      static_cast<float>(symRingAtoms) / ringAtoms > 0.5 && branchingRingAtom) {
    SpecialSymmetryAtomCompareFunctor sftor(atoms, mol, atomsInPlay,
                                            bondsInPlay);
    compareRingAtomsConcerningNumNeighbors(atoms, nAts, mol);
    ActivatePartitions(nAts, order, count.get(), activeset, next.get(),
                       changed.get());
    RefinePartitions(mol, atoms, sftor, true, order, count.get(), activeset,
                     next.get(), changed.get(), touched.get());
#ifdef VERBOSE_CANON
    std::cerr << "2b--------" << std::endl;
    for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
      std::cerr << order[i] + 1 << " " << " index: " << atoms[order[i]].index
                << " count: " << count[order[i]] << std::endl;
    }
#endif
  }
  if (breakTies) {
    BreakTies(mol, atoms, ftor, true, order, count.get(), activeset, next.get(),
              changed.get(), touched.get());
#ifdef VERBOSE_CANON
    std::cerr << "3--------" << std::endl;
    for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
      std::cerr << order[i] + 1 << " " << " index: " << atoms[order[i]].index
                << " count: " << count[order[i]] << std::endl;
    }
#endif
  }
}
}  // namespace detail
namespace {
bool hasRingNbr(const ROMol &mol, const Atom *at) {
  PRECONDITION(at, "bad pointer");
  for (const auto nbr : mol.atomNeighbors(at)) {
    if ((nbr->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
         nbr->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) &&
        nbr->hasProp(common_properties::_ringStereoAtoms)) {
      return true;
    }
  }
  return false;
}

void getNbrs(const ROMol &mol, const Atom *at, int *ids) {
  PRECONDITION(at, "bad pointer");
  PRECONDITION(ids, "bad pointer");
  ROMol::ADJ_ITER beg, end;
  boost::tie(beg, end) = mol.getAtomNeighbors(at);
  unsigned int idx = 0;
  while (beg != end) {
    ids[idx++] = static_cast<int>(*beg++);
  }
}

bondholder makeBondHolder(const Bond *bond, unsigned int otherIdx,
                          bool includeChirality,
                          const std::vector<Canon::canon_atom> &atoms) {
  PRECONDITION(bond, "bad pointer");
  Bond::BondStereo stereo = Bond::STEREONONE;
  if (includeChirality) {
    stereo = bond->getStereo();
  }
  Bond::BondType bt =
      bond->getIsAromatic() ? Bond::AROMATIC : bond->getBondType();
  bondholder res(bt, stereo, otherIdx, 0, bond->getIdx());
  if (includeChirality) {
    res.stype = bond->getStereo();
    if (res.stype == Bond::BondStereo::STEREOCIS ||
        res.stype == Bond::BondStereo::STEREOTRANS) {
      res.controllingAtoms[0] = &atoms[bond->getStereoAtoms()[0]];
      res.controllingAtoms[2] = &atoms[bond->getStereoAtoms()[1]];
      if (bond->getBeginAtom()->getDegree() > 2) {
        for (const auto nbr :
             bond->getOwningMol().atomNeighbors(bond->getBeginAtom())) {
          if (nbr->getIdx() != bond->getEndAtomIdx() &&
              nbr->getIdx() !=
                  static_cast<unsigned int>(bond->getStereoAtoms()[0])) {
            res.controllingAtoms[1] = &atoms[nbr->getIdx()];
          }
        }
      }
      if (bond->getEndAtom()->getDegree() > 2) {
        for (const auto nbr :
             bond->getOwningMol().atomNeighbors(bond->getEndAtom())) {
          if (nbr->getIdx() != bond->getBeginAtomIdx() &&
              nbr->getIdx() !=
                  static_cast<unsigned int>(bond->getStereoAtoms()[1])) {
            res.controllingAtoms[3] = &atoms[nbr->getIdx()];
          }
        }
      }
    }

    if (res.stype == Bond::BondStereo::STEREOATROPCCW ||
        res.stype == Bond::BondStereo::STEREOATROPCW) {
      Atropisomers::AtropAtomAndBondVec atropAtomAndBondVecs[2];
      CHECK_INVARIANT(Atropisomers::getAtropisomerAtomsAndBonds(
                          bond, atropAtomAndBondVecs, bond->getOwningMol()),
                      "Could not find atropisomer controlling atoms")

      res.controllingAtoms[0] =
          &atoms[atropAtomAndBondVecs[0]
                     .second[0]
                     ->getOtherAtom(atropAtomAndBondVecs[0].first)
                     ->getIdx()];
      res.controllingAtoms[2] =
          &atoms[atropAtomAndBondVecs[1]
                     .second[0]
                     ->getOtherAtom(atropAtomAndBondVecs[1].first)
                     ->getIdx()];
      if (atropAtomAndBondVecs[0].second.size() > 1) {
        res.controllingAtoms[1] =
            &atoms[atropAtomAndBondVecs[0]
                       .second[1]
                       ->getOtherAtom(atropAtomAndBondVecs[0].first)
                       ->getIdx()];
      }
      if (atropAtomAndBondVecs[1].second.size() > 1) {
        res.controllingAtoms[3] =
            &atoms[atropAtomAndBondVecs[1]
                       .second[1]
                       ->getOtherAtom(atropAtomAndBondVecs[1].first)
                       ->getIdx()];
      }
    }
  }
  return res;
}
void getBonds(const ROMol &mol, const Atom *at, std::vector<bondholder> &nbrs,
              bool includeChirality,
              const std::vector<Canon::canon_atom> &atoms) {
  PRECONDITION(at, "bad pointer");
  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = mol.getAtomBonds(at);
  while (beg != end) {
    const Bond *bond = (mol)[*beg];
    ++beg;
    nbrs.push_back(makeBondHolder(bond, bond->getOtherAtomIdx(at->getIdx()),
                                  includeChirality, atoms));
  }
  std::sort(nbrs.begin(), nbrs.end(), bondholder::greater);
}

void getChiralBonds(const ROMol &mol, const Atom *at,
                    std::vector<bondholder> &nbrs) {
  PRECONDITION(at, "bad pointer");
  ROMol::OEDGE_ITER beg, end;
  boost::tie(beg, end) = mol.getAtomBonds(at);
  while (beg != end) {
    const Bond *bond = (mol)[*beg];
    ++beg;
    unsigned int nbrIdx = bond->getOtherAtomIdx(at->getIdx());
    const Atom *nbr = mol.getAtomWithIdx(nbrIdx);
    unsigned int degreeNbr = nbr->getDegree();
    unsigned int nReps = 1;
    unsigned int stereo = 0;
    // FIX: Since the user can set the stereoatoms, the use of STEREOCIS and
    // STEREOTRANS here isn't actually canonical. In order for that to work we
    // would need to be able to canonicalize the CIS/TRANS assignment, which
    // is not currently being done
    switch (bond->getStereo()) {
      case Bond::STEREOZ:
      case Bond::STEREOCIS:
        stereo = 1;
        break;
      case Bond::STEREOE:
      case Bond::STEREOTRANS:
        stereo = 2;
        break;
      default:
        stereo = 0;
    }
    if (bond->getBondType() == Bond::DOUBLE && nbr->getAtomicNum() == 15 &&
        (degreeNbr == 4 || degreeNbr == 3)) {
      // a special case for chiral phosphorous compounds
      // (this was leading to incorrect assignment of
      // R/S labels ):
      nReps = 1;
      // general justification of this is:
      // Paragraph 2.2. in the 1966 article is "Valence-Bond Conventions:
      // Multiple-Bond Unsaturation and Aromaticity". It contains several
      // conventions of which convention (b) is the one applying here:
      // "(b) Contributions by d orbitals to bonds of quadriligant atoms are
      // neglected."
      // FIX: this applies to more than just P
    } else {
      nReps =
          static_cast<unsigned int>(floor(2. * bond->getBondTypeAsDouble()));
    }
    unsigned int symclass =
        nbr->getAtomicNum() * ATNUM_CLASS_OFFSET + nbrIdx + 1;
    bondholder bh(
        bondholder(Bond::SINGLE, stereo, nbrIdx, symclass, bond->getIdx()));
    auto iPos = std::lower_bound(nbrs.begin(), nbrs.end(), bh);
    nbrs.insert(iPos, nReps, bh);
  }
  std::reverse(nbrs.begin(), nbrs.end());

  if (!at->needsUpdatePropertyCache()) {
    for (unsigned int ii = 0; ii < at->getTotalNumHs(); ++ii) {
      nbrs.emplace_back(Bond::SINGLE, Bond::STEREONONE, ATNUM_CLASS_OFFSET,
                        ATNUM_CLASS_OFFSET, 0);
      nbrs.emplace_back(Bond::SINGLE, Bond::STEREONONE, ATNUM_CLASS_OFFSET,
                        ATNUM_CLASS_OFFSET, 0);
    }
  }
}

void basicInitCanonAtom(const ROMol &mol, Canon::canon_atom &atom,
                        const int &idx) {
  atom.atom = mol.getAtomWithIdx(idx);
  atom.index = idx;
  atom.p_symbol = nullptr;
  atom.degree = atom.atom->getDegree();
  atom.nbrIds = std::make_unique<int[]>(atom.degree);
  getNbrs(mol, atom.atom, atom.nbrIds.get());
}

void advancedInitCanonAtom(const ROMol &mol, Canon::canon_atom &atom,
                           const int &) {
  atom.totalNumHs = atom.atom->getTotalNumHs();
  atom.isRingStereoAtom =
      (atom.atom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
       atom.atom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) &&
      atom.atom->hasProp(common_properties::_ringStereoAtoms);
  atom.hasRingNbr = hasRingNbr(mol, atom.atom);
}
}  // end anonymous namespace

void initCanonAtoms(const ROMol &mol, std::vector<Canon::canon_atom> &atoms,
                    bool includeChirality, bool includeStereoGroups) {
  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    basicInitCanonAtom(mol, atoms[i], i);
    advancedInitCanonAtom(mol, atoms[i], i);
    atoms[i].bonds.reserve(atoms[i].degree);
    getBonds(mol, atoms[i].atom, atoms[i].bonds, includeChirality, atoms);
  }
  if (includeChirality && includeStereoGroups) {
    unsigned int sgidx = 1;
    for (auto &sg : mol.getStereoGroups()) {
      for (auto atom : sg.getAtoms()) {
        atoms[atom->getIdx()].whichStereoGroup = sgidx;
        atoms[atom->getIdx()].typeOfStereoGroup = sg.getGroupType();
      }
      ++sgidx;
    }
  }
}
namespace detail {

void initFragmentCanonAtoms(const ROMol &mol,
                            std::vector<Canon::canon_atom> &atoms,
                            bool includeChirality,
                            const std::vector<std::string> *atomSymbols,
                            const std::vector<std::string> *bondSymbols,
                            const boost::dynamic_bitset<> &atomsInPlay,
                            const boost::dynamic_bitset<> &bondsInPlay,
                            bool needsInit) {
  needsInit = true;
  PRECONDITION(!atomSymbols || atomSymbols->size() == mol.getNumAtoms(),
               "bad atom symbols");
  PRECONDITION(!bondSymbols || bondSymbols->size() == mol.getNumBonds(),
               "bad bond symbols");
  // start by initializing the atoms
  for (const auto atom : mol.atoms()) {
    auto i = atom->getIdx();
    auto &atomsi = atoms[i];
    atomsi.atom = atom;
    atomsi.index = i;
    // we don't care about overall degree, so we start that at zero, and
    // then count the degree in the fragment itself below.
    atomsi.degree = 0;
    if (atomsInPlay[i]) {
      if (atomSymbols) {
        atomsi.p_symbol = &(*atomSymbols)[i];
      } else {
        atomsi.p_symbol = nullptr;
      }
      if (needsInit) {
        atomsi.nbrIds = std::make_unique<int[]>(atom->getDegree());
        advancedInitCanonAtom(mol, atomsi, i);
        atomsi.bonds.reserve(4);
      }
    }
  }

  // now deal with the bonds in the fragment.
  // these set the atomic degrees and update the neighbor lists
  if (needsInit) {
    for (const auto bond : mol.bonds()) {
      if (!bondsInPlay[bond->getIdx()] ||
          !atomsInPlay[bond->getBeginAtomIdx()] ||
          !atomsInPlay[bond->getEndAtomIdx()]) {
        continue;
      }
      Canon::canon_atom &begAt = atoms[bond->getBeginAtomIdx()];
      Canon::canon_atom &endAt = atoms[bond->getEndAtomIdx()];
      begAt.nbrIds[begAt.degree++] = bond->getEndAtomIdx();
      endAt.nbrIds[endAt.degree++] = bond->getBeginAtomIdx();
      begAt.bonds.push_back(
          makeBondHolder(bond, bond->getEndAtomIdx(), includeChirality, atoms));
      endAt.bonds.push_back(makeBondHolder(bond, bond->getBeginAtomIdx(),
                                           includeChirality, atoms));
      if (bondSymbols) {
        begAt.bonds.back().p_symbol = &(*bondSymbols)[bond->getIdx()];
        endAt.bonds.back().p_symbol = &(*bondSymbols)[bond->getIdx()];
      }
    }
  } else {
    if (bondSymbols) {
      for (auto &atom : atoms) {
        for (auto &bond : atom.bonds) {
          bond.p_symbol = &(*bondSymbols)[bond.bondIdx];
        }
      }
    }
  }

  // and now we can do the last bit for each atom
  for (size_t i = 0; i < mol.getNumAtoms(); ++i) {
    if (!atomsInPlay[i]) {
      continue;
    }
    auto &atomsi = atoms[i];
    if (needsInit) {
      // this is the fix for github #1567: we let the atom's degree
      // in the original molecule influence its degree in the fragment
      atomsi.totalNumHs += (mol.getAtomWithIdx(i)->getDegree() - atomsi.degree);
    }

    // and sort our list of neighboring bonds
    std::sort(atomsi.bonds.begin(), atomsi.bonds.end(), bondholder::greater);
  }
}

void initChiralCanonAtoms(const ROMol &mol,
                          std::vector<Canon::canon_atom> &atoms) {
  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    basicInitCanonAtom(mol, atoms[i], i);
    getChiralBonds(mol, atoms[i].atom, atoms[i].bonds);
  }
}

}  // namespace detail
void updateAtomNeighborIndex(canon_atom *atoms, std::vector<bondholder> &nbrs) {
  PRECONDITION(atoms, "bad pointer");
  for (auto &nbr : nbrs) {
    unsigned nbrIdx = nbr.nbrIdx;
    unsigned newSymClass = atoms[nbrIdx].index;
    nbr.nbrSymClass = newSymClass;
  }
  std::sort(nbrs.begin(), nbrs.end(), bondholder::greater);
}

// This routine calculates the number of swaps that would be required to
// determine what the smiles chirality value would be for a given chiral atom
// given that the atom is visited first from the atom of interest.
// This is used to determine which of two atoms has priority based on the
// neighbor's chirality
//
// If the chiral neighbor has two equivlent (at least so far) neighbors that are
// not the atom of interest, it cannot be used to determine the priority of the
// atom of interest.  For this reason, we keep track of the number of neighbors
// that have the same priority so far.  If any two are the same, we do NOT use
// that neighbor to determine the priority of the atom of interest.

void updateAtomNeighborNumSwaps(
    canon_atom *atoms, std::vector<bondholder> &nbrs, unsigned int atomIdx,
    std::vector<std::pair<unsigned int, unsigned int>> &result) {
  bool isRingAtom = queryIsAtomInRing(atoms[atomIdx].atom);
  for (auto &nbr : nbrs) {
    unsigned nbrIdx = nbr.nbrIdx;

    std::list<unsigned int> neighborsSeen;
    bool tooManySimilarNbrs = false;
    if (isRingAtom && atoms[nbrIdx].atom->getChiralTag() != 0) {
      std::vector<int> ref, probe;
      for (unsigned i = 0; i < atoms[nbrIdx].degree; ++i) {
        auto nbrNbrId =
            atoms[nbrIdx].nbrIds[i];  // id of the neighbor's neighbor
        ref.push_back(nbrNbrId);
        if ((int)atomIdx != nbrNbrId) {
          if ((std::find(neighborsSeen.begin(), neighborsSeen.end(),
                         atoms[nbrNbrId].index) != neighborsSeen.end())) {
            tooManySimilarNbrs = true;
          } else {
            neighborsSeen.push_back(atoms[nbrNbrId].index);
          }
        }
      }

      probe.push_back(atomIdx);
      for (auto &bond : atoms[nbrIdx].bonds) {
        if (bond.nbrIdx != atomIdx) {
          probe.push_back(bond.nbrIdx);
        }
      }

      if (tooManySimilarNbrs) {
        result.emplace_back(nbr.nbrSymClass, 0);
      } else {
        int nSwaps = static_cast<int>(countSwapsToInterconvert(ref, probe));
        if (atoms[nbrIdx].atom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW) {
          if (nSwaps % 2) {
            result.emplace_back(nbr.nbrSymClass, 2);
          } else {
            result.emplace_back(nbr.nbrSymClass, 1);
          }
        } else if (atoms[nbrIdx].atom->getChiralTag() ==
                   Atom::CHI_TETRAHEDRAL_CCW) {
          if (nSwaps % 2) {
            result.emplace_back(nbr.nbrSymClass, 1);
          } else {
            result.emplace_back(nbr.nbrSymClass, 2);
          }
        }
      }
    } else {
      result.emplace_back(nbr.nbrSymClass, 0);
    }
  }
  sort(result.begin(), result.end());
}

void rankMolAtoms(const ROMol &mol, std::vector<unsigned int> &res,
                  bool breakTies, bool includeChirality, bool includeIsotopes,
                  bool includeAtomMaps, bool includeChiralPresence,
                  bool includeStereoGroups, bool useNonStereoRanks) {
  if (!mol.getNumAtoms()) {
    return;
  }

  bool clearRings = false;
  if (!mol.getRingInfo()->isFindFastOrBetter()) {
    MolOps::fastFindRings(mol);
    clearRings = true;
  }
  res.resize(mol.getNumAtoms());

  std::vector<Canon::canon_atom> atoms(mol.getNumAtoms());
  initCanonAtoms(mol, atoms, includeChirality, includeStereoGroups);
  AtomCompareFunctor ftor(&atoms.front(), mol);
  ftor.df_useIsotopes = includeIsotopes;
  ftor.df_useChirality = includeChirality;
  ftor.df_useChiralityRings = includeChirality;
  ftor.df_useAtomMaps = includeAtomMaps;
  ftor.df_useNonStereoRanks = useNonStereoRanks;
  ftor.df_useChiralPresence = includeChiralPresence;

  auto order = std::make_unique<int[]>(mol.getNumAtoms());
  detail::rankWithFunctor(ftor, breakTies, order.get(), true, includeChirality);

  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    res[order[i]] = atoms[order[i]].index;
  }

  if (clearRings) {
    mol.getRingInfo()->reset();
  }
}  // end of rankMolAtoms()

void rankFragmentAtoms(const ROMol &mol, std::vector<unsigned int> &res,
                       const boost::dynamic_bitset<> &atomsInPlay,
                       const boost::dynamic_bitset<> &bondsInPlay,
                       const std::vector<std::string> *atomSymbols,
                       const std::vector<std::string> *bondSymbols,
                       bool breakTies, bool includeChirality,
                       bool includeIsotopes, bool includeAtomMaps,
                       bool includeChiralPresence) {
  PRECONDITION(atomsInPlay.size() == mol.getNumAtoms(), "bad atomsInPlay size");
  PRECONDITION(bondsInPlay.size() == mol.getNumBonds(), "bad bondsInPlay size");
  PRECONDITION(!atomSymbols || atomSymbols->size() == mol.getNumAtoms(),
               "bad atomSymbols size");
  PRECONDITION(!bondSymbols || bondSymbols->size() == mol.getNumBonds(),
               "bad bondSymbols size");

  if (!mol.getNumAtoms()) {
    return;
  }

  bool clearRings = false;
  if (!mol.getRingInfo()->isFindFastOrBetter()) {
    MolOps::fastFindRings(mol);
    clearRings = true;
  }
  res.resize(mol.getNumAtoms());

  std::vector<Canon::canon_atom> atoms(mol.getNumAtoms());
  detail::initFragmentCanonAtoms(mol, atoms, includeChirality, atomSymbols,
                                 bondSymbols, atomsInPlay, bondsInPlay, true);

  AtomCompareFunctor ftor(&atoms.front(), mol, &atomsInPlay, &bondsInPlay);
  ftor.df_useIsotopes = includeIsotopes;
  ftor.df_useChirality = includeChirality;
  ftor.df_useAtomMaps = includeAtomMaps;
  ftor.df_useChiralityRings = includeChirality;
  ftor.df_useChiralPresence = includeChiralPresence;

  auto order = std::make_unique<int[]>(mol.getNumAtoms());
  detail::rankWithFunctor(ftor, breakTies, order.get(), true, includeChirality,
                          &atomsInPlay, &bondsInPlay);

  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    res[order[i]] = atoms[order[i]].index;
  }

  if (clearRings) {
    mol.getRingInfo()->reset();
  }
}  // end of rankFragmentAtoms()

void chiralRankMolAtoms(const ROMol &mol, std::vector<unsigned int> &res) {
  if (!mol.getNumAtoms()) {
    return;
  }

  bool clearRings = false;
  if (!mol.getRingInfo()->isFindFastOrBetter()) {
    MolOps::fastFindRings(mol);
    clearRings = true;
  }
  res.resize(mol.getNumAtoms());

  std::vector<Canon::canon_atom> atoms(mol.getNumAtoms());
  detail::initChiralCanonAtoms(mol, atoms);
  ChiralAtomCompareFunctor ftor(&atoms.front(), mol);

  auto order = std::make_unique<int[]>(mol.getNumAtoms());
  detail::rankWithFunctor(ftor, false, order.get());

  for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
    res[order[i]] = atoms[order[i]].index;
  }

  if (clearRings) {
    mol.getRingInfo()->reset();
  }
}
}  // namespace Canon
}  // namespace RDKit