File: PowerEigenSolver.h

package info (click to toggle)
rdkit 202503.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 220,160 kB
  • sloc: cpp: 399,240; python: 77,453; ansic: 25,517; java: 8,173; javascript: 4,005; sql: 2,389; yacc: 1,565; lex: 1,263; cs: 1,081; makefile: 580; xml: 229; fortran: 183; sh: 105
file content (68 lines) | stat: -rw-r--r-- 2,106 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
//
//  Copyright (C) 2004-2006 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <RDGeneral/export.h>
#ifndef _RD_POWER_EIGENSOLVER_H
#define _RD_POWER_EIGENSOLVER_H

#include <Numerics/Vector.h>
#include <Numerics/Matrix.h>
#include <Numerics/SymmMatrix.h>

namespace RDNumeric {
namespace EigenSolvers {
//! Compute the \c numEig largest eigenvalues and, optionally,  the
/// corresponding
//! eigenvectors.
/*!

\param numEig       the number of eigenvalues we are interested in
\param mat          symmetric input matrix of dimension N*N
\param eigenValues  Vector used to return the eigenvalues (size = numEig)
\param eigenVectors Optional matrix used to return the eigenvectors (size =
N*numEig)
\param seed         Optional values to seed the random value generator used to
                    initialize the eigen vectors
\return a boolean indicating whether or not the calculation converged.

<b>Notes:</b>
- The matrix, \c mat, is changed in this function

<b>Algorithm:</b>

We use the iterative power method, which works like this:

\verbatim
 u = arbitrary unit vector
 tol = 0.001
 currEigVal = 0.0;
 prevEigVal = -1.0e100
 while (abs(currEigVal - prevEigVal) > tol) :
     v = Au
     prevEigVal = currEigVal
     currEigVal = v[i] // where i is the id of the largest absolute component
     u = c*v
\endverbatim


*/
bool RDKIT_EIGENSOLVERS_EXPORT powerEigenSolver(
    unsigned int numEig, DoubleSymmMatrix &mat, DoubleVector &eigenValues,
    DoubleMatrix *eigenVectors = nullptr, int seed = -1);
//! \overload
static inline bool powerEigenSolver(unsigned int numEig, DoubleSymmMatrix &mat,
                                    DoubleVector &eigenValues,
                                    DoubleMatrix &eigenVectors, int seed = -1) {
  return powerEigenSolver(numEig, mat, eigenValues, &eigenVectors, seed);
}
};  // namespace EigenSolvers
};  // namespace RDNumeric

#endif