1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
|
//
// Copyright (C) 2003-2025 Greg Landrum and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "RDKitBase.h"
#include <list>
#include "QueryAtom.h"
#include "QueryOps.h"
#include "MonomerInfo.h"
#include "Chirality.h"
#include <Geometry/Transform3D.h>
#include <Geometry/point.h>
#include <boost/algorithm/string/classification.hpp>
#include <boost/dynamic_bitset.hpp>
#include <boost/range/iterator_range.hpp>
constexpr double sq_dist_zero_tol = 1.e-4;
namespace RDKit {
// Local utility functionality:
namespace {
Atom *getAtomNeighborNot(ROMol *mol, const Atom *atom, const Atom *other) {
PRECONDITION(mol, "bad molecule");
PRECONDITION(atom, "bad atom");
PRECONDITION(atom->getDegree() > 1, "bad degree");
PRECONDITION(other, "bad atom");
Atom *res = nullptr;
ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(atom);
while (nbrIdx != endNbrs) {
if (*nbrIdx != other->getIdx()) {
res = mol->getAtomWithIdx(*nbrIdx);
break;
}
++nbrIdx;
}
POSTCONDITION(res, "no neighbor found");
return res;
}
void AssignHsResidueInfo(RWMol &mol) {
int max_serial = 0;
unsigned int stopIdx = mol.getNumAtoms();
for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) {
auto *info =
(AtomPDBResidueInfo *)(mol.getAtomWithIdx(aidx)->getMonomerInfo());
if (info && info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE &&
info->getSerialNumber() > max_serial) {
max_serial = info->getSerialNumber();
}
}
AtomPDBResidueInfo *current_info = nullptr;
int current_h_id = 0;
for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) {
Atom *newAt = mol.getAtomWithIdx(aidx);
auto *info = (AtomPDBResidueInfo *)(newAt->getMonomerInfo());
if (info && info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE) {
ROMol::ADJ_ITER begin, end;
boost::tie(begin, end) = mol.getAtomNeighbors(newAt);
while (begin != end) {
if (mol.getAtomWithIdx(*begin)->getAtomicNum() == 1) {
// Make all Hs unique - increment id even for existing
++current_h_id;
// skip if hydrogen already has PDB info
auto *h_info = (AtomPDBResidueInfo *)mol.getAtomWithIdx(*begin)
->getMonomerInfo();
if (h_info &&
h_info->getMonomerType() == AtomMonomerInfo::PDBRESIDUE) {
continue;
}
// the hydrogens have unique names on residue basis (H1, H2, ...)
if (!current_info ||
current_info->getResidueNumber() != info->getResidueNumber() ||
current_info->getChainId() != info->getChainId()) {
current_h_id = 1;
current_info = info;
}
std::string h_label = std::to_string(current_h_id);
if (h_label.length() > 3) {
h_label = h_label.substr(h_label.length() - 3, 3);
}
while (h_label.length() < 3) {
h_label = h_label + " ";
}
h_label = "H" + h_label;
// wrap around id to '3H12'
h_label = h_label.substr(3, 1) + h_label.substr(0, 3);
AtomPDBResidueInfo *newInfo = new AtomPDBResidueInfo(
h_label, max_serial, "", info->getResidueName(),
info->getResidueNumber(), info->getChainId(), "", 1.0, 0.0,
info->getIsHeteroAtom());
mol.getAtomWithIdx(*begin)->setMonomerInfo(newInfo);
++max_serial;
}
++begin;
}
}
}
}
std::map<unsigned int, std::vector<unsigned int>> getIsoMap(const ROMol &mol) {
std::map<unsigned int, std::vector<unsigned int>> isoMap;
for (auto atom : mol.atoms()) {
if (atom->hasProp(common_properties::_isotopicHs)) {
atom->clearProp(common_properties::_isotopicHs);
}
}
for (auto bond : mol.bonds()) {
auto ba = bond->getBeginAtom();
auto ea = bond->getEndAtom();
int ha = -1;
unsigned int iso;
if (ba->getAtomicNum() == 1 && ba->getIsotope() &&
ea->getAtomicNum() != 1) {
ha = ea->getIdx();
iso = ba->getIsotope();
} else if (ea->getAtomicNum() == 1 && ea->getIsotope() &&
ba->getAtomicNum() != 1) {
ha = ba->getIdx();
iso = ea->getIsotope();
}
if (ha == -1) {
continue;
}
auto &v = isoMap[ha];
v.push_back(iso);
}
return isoMap;
}
bool may_need_extra_H(const ROMol &mol, const Atom *atom) {
unsigned single_bonds = 0;
unsigned aromatic_bonds = 0;
for (auto bond : mol.atomBonds(atom)) {
if (bond->getBondType() == Bond::SINGLE) {
++single_bonds;
} else if (bond->getBondType() == Bond::AROMATIC) {
++aromatic_bonds;
} else {
return false;
}
}
return single_bonds == 1 && aromatic_bonds == 2 &&
atom->getTotalValence() == 3;
}
} // end of unnamed namespace
namespace MolOps {
namespace {
RDGeom::Point3D pickBisector(const RDGeom::Point3D &nbr1Vect,
const RDGeom::Point3D &nbr2Vect,
const RDGeom::Point3D &nbr3Vect) {
auto dirVect = nbr2Vect + nbr3Vect;
if (dirVect.lengthSq() < sq_dist_zero_tol) {
// nbr2Vect and nbr3Vect are anti-parallel (was #3854)
dirVect = nbr2Vect;
std::swap(dirVect.x, dirVect.y);
dirVect.x *= -1;
}
if (dirVect.dotProduct(nbr1Vect) < 0) {
dirVect *= -1;
}
return dirVect;
}
} // namespace
void setTerminalAtomCoords(ROMol &mol, unsigned int idx,
unsigned int otherIdx) {
// we will loop over all the coordinates
PRECONDITION(otherIdx != idx, "degenerate atoms");
Atom *atom = mol.getAtomWithIdx(idx);
PRECONDITION(mol.getAtomDegree(atom) == 1, "bad atom degree");
const Bond *bond = mol.getBondBetweenAtoms(otherIdx, idx);
PRECONDITION(bond, "no bond between atoms");
const Atom *otherAtom = mol.getAtomWithIdx(otherIdx);
double bondLength =
PeriodicTable::getTable()->getRb0(1) +
PeriodicTable::getTable()->getRb0(otherAtom->getAtomicNum());
RDGeom::Point3D dirVect(0, 0, 0);
RDGeom::Point3D perpVect, rotnAxis, nbrPerp;
RDGeom::Point3D nbr1Vect, nbr2Vect, nbr3Vect;
RDGeom::Transform3D tform;
RDGeom::Point3D otherPos, atomPos;
const Atom *nbr1 = nullptr, *nbr2 = nullptr, *nbr3 = nullptr;
const Bond *nbrBond;
ROMol::ADJ_ITER nbrIdx, endNbrs;
switch (otherAtom->getDegree()) {
case 1:
// --------------------------------------------------------------------------
// No other atoms present:
// --------------------------------------------------------------------------
// loop over the conformations and set the coordinates
for (auto cfi = mol.beginConformers(); cfi != mol.endConformers();
cfi++) {
if ((*cfi)->is3D()) {
dirVect.z = 1;
} else {
dirVect.x = 1;
}
otherPos = (*cfi)->getAtomPos(otherIdx);
atomPos = otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
}
break;
case 2:
// --------------------------------------------------------------------------
// One other neighbor:
// --------------------------------------------------------------------------
nbr1 = getAtomNeighborNot(&mol, otherAtom, atom);
for (auto cfi = mol.beginConformers(); cfi != mol.endConformers();
++cfi) {
otherPos = (*cfi)->getAtomPos(otherIdx);
RDGeom::Point3D nbr1Pos = (*cfi)->getAtomPos(nbr1->getIdx());
// get a normalized vector pointing away from the neighbor:
nbr1Vect = nbr1Pos - otherPos;
if (nbr1Vect.lengthSq() < sq_dist_zero_tol) {
// no difference, which likely indicates that we have redundant atoms.
// just put it on top of the heavy atom. This was #678
(*cfi)->setAtomPos(idx, otherPos);
continue;
}
nbr1Vect.normalize();
nbr1Vect *= -1;
// ok, nbr1Vect points away from the other atom, figure out where
// this H goes:
switch (otherAtom->getHybridization()) {
case Atom::SP3:
// get a perpendicular to nbr1Vect:
if ((*cfi)->is3D()) {
perpVect = nbr1Vect.getPerpendicular();
} else {
perpVect.z = 1.0;
}
// and move off it:
tform.SetRotation((180 - 109.471) * M_PI / 180., perpVect);
dirVect = tform * nbr1Vect;
atomPos = otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
break;
case Atom::SP2:
// default 3D position is to just take an arbitrary perpendicular
// for 2D we take the normal to the xy plane
if ((*cfi)->is3D()) {
perpVect = nbr1Vect.getPerpendicular();
} else {
perpVect.z = 1.0;
}
if (nbr1->getDegree() > 1) {
// can we use the neighboring atom to establish a perpendicular?
nbrBond = mol.getBondBetweenAtoms(otherIdx, nbr1->getIdx());
if (nbrBond->getIsAromatic() ||
nbrBond->getBondType() == Bond::DOUBLE ||
nbrBond->getIsConjugated()) {
nbr2 = getAtomNeighborNot(&mol, nbr1, otherAtom);
nbr2Vect =
nbr1Pos.directionVector((*cfi)->getAtomPos(nbr2->getIdx()));
auto crossProd = nbr2Vect.crossProduct(nbr1Vect);
// if nbr1 and nbr2 are aligned, the perpendicular will be null,
// and we'll just keep the default calculated above. Otherwise
// we use the cross product
if (crossProd.lengthSq() >= sq_dist_zero_tol) {
perpVect = crossProd;
}
}
}
perpVect.normalize();
// rotate the nbr1Vect 60 degrees about perpVect and we're done:
tform.SetRotation(60. * M_PI / 180., perpVect);
dirVect = tform * nbr1Vect;
atomPos = otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
break;
case Atom::SP:
// just lay the H along the vector:
dirVect = nbr1Vect;
atomPos = otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
break;
default:
// FIX: handle other hybridizations
// for now, just lay the H along the vector:
dirVect = nbr1Vect;
atomPos = otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
}
}
break;
case 3:
// --------------------------------------------------------------------------
// Two other neighbors:
// --------------------------------------------------------------------------
boost::tie(nbrIdx, endNbrs) = mol.getAtomNeighbors(otherAtom);
while (nbrIdx != endNbrs) {
if (*nbrIdx != idx) {
if (!nbr1) {
nbr1 = mol.getAtomWithIdx(*nbrIdx);
} else {
nbr2 = mol.getAtomWithIdx(*nbrIdx);
}
}
++nbrIdx;
}
TEST_ASSERT(nbr1);
TEST_ASSERT(nbr2);
for (auto cfi = mol.beginConformers(); cfi != mol.endConformers();
++cfi) {
// start along the average of the two vectors:
otherPos = (*cfi)->getAtomPos(otherIdx);
nbr1Vect = otherPos - (*cfi)->getAtomPos(nbr1->getIdx());
nbr2Vect = otherPos - (*cfi)->getAtomPos(nbr2->getIdx());
if (nbr1Vect.lengthSq() < sq_dist_zero_tol ||
nbr2Vect.lengthSq() < sq_dist_zero_tol) {
// no difference, which likely indicates that we have redundant atoms.
// just put it on top of the heavy atom. This was #678
(*cfi)->setAtomPos(idx, otherPos);
continue;
}
nbr1Vect.normalize();
nbr2Vect.normalize();
dirVect = nbr1Vect + nbr2Vect;
if (dirVect.lengthSq() < sq_dist_zero_tol) {
// nbr1Vect and nbr2Vect are non-null, but they may
// still cancel each other out
continue;
}
dirVect.normalize();
if ((*cfi)->is3D()) {
switch (otherAtom->getHybridization()) {
case Atom::SP3:
// get the perpendicular to the neighbors:
nbrPerp = nbr1Vect.crossProduct(nbr2Vect);
// and the perpendicular to that:
rotnAxis = nbrPerp.crossProduct(dirVect);
// and then rotate about that:
rotnAxis.normalize();
tform.SetRotation((109.471 / 2) * M_PI / 180., rotnAxis);
dirVect = tform * dirVect;
atomPos =
otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
break;
case Atom::SP2:
// don't need to do anything here, the H atom goes right on the
// direction vector
atomPos =
otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
break;
default:
// FIX: handle other hybridizations
// for now, just lay the H along the neighbor vector;
atomPos =
otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
break;
}
} else {
// don't need to do anything here, the H atom goes right on the
// direction vector
atomPos = otherPos + dirVect;
(*cfi)->setAtomPos(idx, atomPos);
}
}
break;
case 4:
// --------------------------------------------------------------------------
// Three other neighbors:
// --------------------------------------------------------------------------
boost::tie(nbrIdx, endNbrs) = mol.getAtomNeighbors(otherAtom);
// We're using chiral tag for checking chirality, so we just take the
// initial order
while (nbrIdx != endNbrs) {
if (*nbrIdx != idx) {
if (!nbr1) {
nbr1 = mol.getAtomWithIdx(*nbrIdx);
} else if (!nbr2) {
nbr2 = mol.getAtomWithIdx(*nbrIdx);
} else {
nbr3 = mol.getAtomWithIdx(*nbrIdx);
}
}
++nbrIdx;
}
TEST_ASSERT(nbr1);
TEST_ASSERT(nbr2);
TEST_ASSERT(nbr3);
for (auto cfi = mol.beginConformers(); cfi != mol.endConformers();
++cfi) {
otherPos = (*cfi)->getAtomPos(otherIdx);
nbr1Vect = otherPos - (*cfi)->getAtomPos(nbr1->getIdx());
nbr2Vect = otherPos - (*cfi)->getAtomPos(nbr2->getIdx());
nbr3Vect = otherPos - (*cfi)->getAtomPos(nbr3->getIdx());
if (nbr1Vect.lengthSq() < sq_dist_zero_tol ||
nbr2Vect.lengthSq() < sq_dist_zero_tol ||
nbr3Vect.lengthSq() < sq_dist_zero_tol) {
// no difference, which likely indicates that we have redundant atoms.
// just put it on top of the heavy atom. This was #678
(*cfi)->setAtomPos(idx, otherPos);
continue;
}
nbr1Vect.normalize();
nbr2Vect.normalize();
nbr3Vect.normalize();
// if three neighboring atoms are more or less planar, this
// is going to be in a quasi-random (but almost definitely bad)
// direction...
// correct for this (issue 2951221):
if ((*cfi)->is3D()) {
if (fabs(nbr3Vect.dotProduct(nbr1Vect.crossProduct(nbr2Vect))) <
0.1) {
// compute the normal:
dirVect = nbr1Vect.crossProduct(nbr2Vect);
// Each of the nbr vectors is non-null, but there might be pairs
// that cancel each other out. Try to find a direction from atoms
// that do not overlap.
if (dirVect.lengthSq() < sq_dist_zero_tol) {
// This definition of dirVect reverses the parity around otherIdx
// the change of sign restores it
dirVect = nbr1Vect.crossProduct(nbr3Vect) * -1;
}
if (dirVect.lengthSq() < sq_dist_zero_tol) {
dirVect = nbr2Vect.crossProduct(nbr3Vect);
}
// We couldn't find a good direction
if (dirVect.lengthSq() < sq_dist_zero_tol) {
continue;
}
std::string cipCode;
if (otherAtom->getPropIfPresent(common_properties::_CIPCode,
cipCode)) {
// the heavy atom is a chiral center, make sure
// that we went go the right direction to preserve
// its chirality. We use the chiral volume for this:
RDGeom::Point3D v1 = dirVect - nbr3Vect;
RDGeom::Point3D v2 = nbr1Vect - nbr3Vect;
RDGeom::Point3D v3 = nbr2Vect - nbr3Vect;
double vol = v1.dotProduct(v2.crossProduct(v3));
if ((otherAtom->getChiralTag() ==
Atom::ChiralType::CHI_TETRAHEDRAL_CCW &&
vol < 0) ||
(otherAtom->getChiralTag() ==
Atom::ChiralType::CHI_TETRAHEDRAL_CW &&
vol > 0)) {
dirVect *= -1;
}
}
} else {
dirVect = nbr1Vect + nbr2Vect + nbr3Vect;
}
} else {
// we're in flatland
// github #3879 and #908: find the two neighbors with the largest
// outer angle between them and then place the H to bisect that angle
// This is recommendation ST-1.1.4 from the 2006 IUPAC "Graphical
// representation of stereochemical configuration" guideline
auto angle12 = nbr1Vect.angleTo(nbr2Vect);
auto angle13 = nbr1Vect.angleTo(nbr3Vect);
auto angle23 = nbr2Vect.angleTo(nbr3Vect);
auto accum1 = angle12 + angle13;
auto accum2 = angle12 + angle23;
auto accum3 = angle13 + angle23;
if (accum1 <= accum2 && accum1 <= accum3) {
dirVect = pickBisector(nbr1Vect, nbr2Vect, nbr3Vect);
} else if (accum2 <= accum1 && accum2 <= accum3) {
dirVect = pickBisector(nbr2Vect, nbr1Vect, nbr3Vect);
} else {
dirVect = pickBisector(nbr3Vect, nbr1Vect, nbr2Vect);
}
}
dirVect.normalize();
atomPos = otherPos + dirVect * ((*cfi)->is3D() ? bondLength : 1.0);
(*cfi)->setAtomPos(idx, atomPos);
}
break;
default:
// --------------------------------------------------------------------------
// FIX: figure out what to do here
// --------------------------------------------------------------------------
atomPos = otherPos + dirVect * bondLength;
for (auto cfi = mol.beginConformers(); cfi != mol.endConformers();
++cfi) {
(*cfi)->setAtomPos(idx, atomPos);
}
break;
}
}
namespace {
bool isQueryAtom(const RWMol &mol, const Atom &atom) {
if (atom.hasQuery()) {
return true;
}
for (const auto bnd : mol.atomBonds(&atom)) {
if (bnd->hasQuery()) {
return true;
}
}
return false;
}
} // namespace
void addHs(RWMol &mol, const AddHsParameters ¶ms,
const UINT_VECT *onlyOnAtoms) {
// when we hit each atom, clear its computed properties
// NOTE: it is essential that we not clear the ring info in the
// molecule's computed properties. We don't want to have to
// regenerate that. This caused Issue210 and Issue212:
mol.clearComputedProps(false);
// precompute the number of hydrogens we are going to add so that we can
// pre-allocate the necessary space on the conformations of the molecule
// for their coordinates
unsigned int numAddHyds = 0;
boost::dynamic_bitset<> onAtoms(mol.getNumAtoms());
if (onlyOnAtoms) {
for (auto atIdx : *onlyOnAtoms) {
onAtoms.set(atIdx);
}
} else {
onAtoms.set();
}
for (auto at : mol.atoms()) {
if (onAtoms[at->getIdx()]) {
if (params.skipQueries && isQueryAtom(mol, *at)) {
onAtoms.set(at->getIdx(), 0);
continue;
}
numAddHyds += at->getNumExplicitHs();
if (!params.explicitOnly) {
numAddHyds += at->getNumImplicitHs();
}
}
}
unsigned int nSize = mol.getNumAtoms() + numAddHyds;
// loop over the conformations of the molecule and allocate new space
// for the H locations (need to do this even if we aren't adding coords so
// that the conformers have the correct number of atoms).
for (auto cfi = mol.beginConformers(); cfi != mol.endConformers(); ++cfi) {
(*cfi)->reserve(nSize);
}
unsigned int stopIdx = mol.getNumAtoms();
for (unsigned int aidx = 0; aidx < stopIdx; ++aidx) {
if (!onAtoms[aidx]) {
continue;
}
Atom *newAt = mol.getAtomWithIdx(aidx);
std::vector<unsigned int> isoHs;
if (newAt->getPropIfPresent(common_properties::_isotopicHs, isoHs)) {
newAt->clearProp(common_properties::_isotopicHs);
}
std::vector<unsigned int>::const_iterator isoH = isoHs.begin();
unsigned int newIdx;
newAt->clearComputedProps();
// always convert explicit Hs
unsigned int onumexpl = newAt->getNumExplicitHs();
for (unsigned int i = 0; i < onumexpl; i++) {
newIdx = mol.addAtom(new Atom(1), false, true);
mol.addBond(aidx, newIdx, Bond::SINGLE);
auto hAtom = mol.getAtomWithIdx(newIdx);
hAtom->updatePropertyCache();
if (params.addCoords) {
setTerminalAtomCoords(mol, newIdx, aidx);
}
if (isoH != isoHs.end()) {
hAtom->setIsotope(*isoH);
++isoH;
}
}
// clear the local property
newAt->setNumExplicitHs(0);
if (!params.explicitOnly) {
// take care of implicits
for (unsigned int i = 0; i < mol.getAtomWithIdx(aidx)->getNumImplicitHs();
i++) {
newIdx = mol.addAtom(new Atom(1), false, true);
mol.addBond(aidx, newIdx, Bond::SINGLE);
// set the isImplicit label so that we can strip these back
// off later if need be.
auto hAtom = mol.getAtomWithIdx(newIdx);
hAtom->setProp(common_properties::isImplicit, 1);
hAtom->updatePropertyCache();
if (params.addCoords) {
setTerminalAtomCoords(mol, newIdx, aidx);
}
if (isoH != isoHs.end()) {
hAtom->setIsotope(*isoH);
++isoH;
}
}
}
// update the atom's derived properties (valence count, etc.)
// no sense in being strict here (was github #2782)
newAt->updatePropertyCache(false);
if (isoH != isoHs.end()) {
BOOST_LOG(rdWarningLog) << "extra H isotope information found on atom "
<< newAt->getIdx() << std::endl;
}
}
// take care of AtomPDBResidueInfo for Hs if root atom has it
if (params.addResidueInfo) {
AssignHsResidueInfo(mol);
}
}
namespace {
// returns whether or not an adjustment was made, in case we want that info
bool adjustStereoAtomsIfRequired(RWMol &mol, const Atom *atom,
const Atom *heavyAtom) {
PRECONDITION(atom != nullptr, "bad atom");
PRECONDITION(heavyAtom != nullptr, "bad heavy atom");
// nothing we can do if the degree is only 2 (and we should have covered
// that earlier anyway)
if (heavyAtom->getDegree() == 2) {
return false;
}
const auto &cbnd =
mol.getBondBetweenAtoms(atom->getIdx(), heavyAtom->getIdx());
if (!cbnd) {
return false;
}
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomBonds(heavyAtom))) {
Bond *bnd = mol[nbri];
if (bnd->getBondType() == Bond::DOUBLE &&
bnd->getStereo() > Bond::STEREOANY) {
auto sAtomIt = std::find(bnd->getStereoAtoms().begin(),
bnd->getStereoAtoms().end(), atom->getIdx());
if (sAtomIt != bnd->getStereoAtoms().end()) {
// sAtomIt points to the position of this atom's index in the list.
// find the index of another atom attached to the heavy atom and
// use it to update sAtomIt
unsigned int dblNbrIdx = bnd->getOtherAtomIdx(heavyAtom->getIdx());
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomNeighbors(heavyAtom))) {
const auto &nbr = mol[nbri];
if (nbr->getIdx() == dblNbrIdx || nbr->getIdx() == atom->getIdx()) {
continue;
}
*sAtomIt = nbr->getIdx();
bool madeAdjustment = true;
switch (bnd->getStereo()) {
case Bond::STEREOCIS:
bnd->setStereo(Bond::STEREOTRANS);
break;
case Bond::STEREOTRANS:
bnd->setStereo(Bond::STEREOCIS);
break;
default:
// I think we shouldn't need to do anything with E and Z...
madeAdjustment = false;
break;
}
return madeAdjustment;
}
}
}
}
return false;
}
void molRemoveH(RWMol &mol, unsigned int idx, bool updateExplicitCount) {
auto atom = mol.getAtomWithIdx(idx);
PRECONDITION(atom->getAtomicNum() == 1, "idx corresponds to a non-Hydrogen");
for (const auto bond : mol.atomBonds(atom)) {
Atom *heavyAtom = bond->getOtherAtom(atom);
int heavyAtomNum = heavyAtom->getAtomicNum();
// we'll update the neighbor's explicit H count if we were told to
// *or* if the neighbor is chiral, in which case the H is needed
// in order to complete the coordination
// *or* if the neighbor has the noImplicit flag set:
if (updateExplicitCount || heavyAtom->getNoImplicit() ||
heavyAtom->getChiralTag() != Atom::CHI_UNSPECIFIED) {
heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs() + 1);
} else {
// this is a special case related to Issue 228 and the
// "disappearing Hydrogen" problem discussed in MolOps::adjustHs
//
// If we remove a hydrogen from an aromatic N or P, or if
// the heavy atom it is connected to is not in its default
// valence state, we need to be *sure* to increment the
// explicit count, even if the H itself isn't marked as explicit
const INT_VECT &defaultVs =
PeriodicTable::getTable()->getValenceList(heavyAtomNum);
if (((heavyAtomNum == 7 || heavyAtomNum == 15 ||
may_need_extra_H(mol, heavyAtom)) &&
heavyAtom->getIsAromatic()) ||
(std::find(defaultVs.begin() + 1, defaultVs.end(),
heavyAtom->getTotalValence()) != defaultVs.end())) {
heavyAtom->setNumExplicitHs(heavyAtom->getNumExplicitHs() + 1);
}
}
// One other consequence of removing the H from the graph is
// that we may change the ordering of the bonds about a
// chiral center. This may change the chiral label at that
// atom. We deal with that by explicitly checking here:
if (heavyAtom->getChiralTag() != Atom::CHI_UNSPECIFIED) {
INT_LIST neighborIndices;
for (const auto &nbnd : mol.atomBonds(heavyAtom)) {
if (nbnd->getIdx() != bond->getIdx()) {
neighborIndices.push_back(nbnd->getIdx());
}
}
neighborIndices.push_back(bond->getIdx());
int nSwaps = heavyAtom->getPerturbationOrder(neighborIndices);
// std::cerr << "H: "<<atom->getIdx()<<" hvy:
// "<<heavyAtom->getIdx()<<" swaps: " << nSwaps<<std::endl;
if (nSwaps % 2) {
heavyAtom->invertChirality();
}
}
// If we are removing a H atom that defines bond stereo (e.g. imines),
// Then also remove the bond stereo information, as it is no longer valid.
if (heavyAtom->getDegree() == 2) {
for (auto &nbnd : mol.atomBonds(heavyAtom)) {
if (nbnd != bond) {
if (nbnd->getStereo() > Bond::STEREOANY) {
nbnd->setStereo(Bond::STEREONONE);
nbnd->getStereoAtoms().clear();
}
break;
}
}
}
// if it's a wavy bond, then we need to
// mark the beginning atom with the _UnknownStereo tag.
// so that we know later that something was affecting its
// stereochem
if (bond->getBondDir() == Bond::UNKNOWN &&
bond->getBeginAtomIdx() == heavyAtom->getIdx()) {
heavyAtom->setProp(common_properties::_UnknownStereo, 1);
} else if (bond->getBondDir() == Bond::ENDDOWNRIGHT ||
bond->getBondDir() == Bond::ENDUPRIGHT) {
// if the direction is set on this bond and the atom it's connected to
// has no other single bonds with directions set, then we need to set
// direction on one of the other neighbors in order to avoid double
// bond stereochemistry possibly being lost. This was github #754
bool foundADir = false;
Bond *oBond = nullptr;
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomBonds(heavyAtom))) {
Bond *nbnd = mol[nbri];
if (nbnd->getIdx() != bond->getIdx() &&
nbnd->getBondType() == Bond::SINGLE) {
if (nbnd->getBondDir() == Bond::NONE) {
oBond = nbnd;
} else {
foundADir = true;
}
}
}
if (!foundADir && oBond != nullptr) {
bool flipIt = (oBond->getBeginAtom() == heavyAtom) &&
(bond->getBeginAtom() == heavyAtom);
if (flipIt) {
oBond->setBondDir(bond->getBondDir() == Bond::ENDDOWNRIGHT
? Bond::ENDUPRIGHT
: Bond::ENDDOWNRIGHT);
} else {
oBond->setBondDir(bond->getBondDir());
}
}
// if this atom is one of the stereoatoms for a double bond we need
// to switch the stereo atom on this end to be the other neighbor
// This was part of github #1810
adjustStereoAtomsIfRequired(mol, atom, heavyAtom);
} else {
// if this atom is one of the stereoatoms for a double bond we need
// to switch the stereo atom on this end to be the other neighbor
// This was part of github #1810
adjustStereoAtomsIfRequired(mol, atom, heavyAtom);
}
// remove the bond from any SGroups that might include it.
for (auto &sg : getSubstanceGroups(mol)) {
sg.removeBondWithIdx(bond->getIdx());
}
}
// Finally, remove the atom from any SGroups that might include it, so that
// the SGroups don't get removed in removeAtom(). Since we allow removing
// SGroup SAP lvidx H atoms, we need to check for those and update them.
for (auto &sg : getSubstanceGroups(mol)) {
sg.removeAtomWithIdx(idx);
sg.removeParentAtomWithIdx(idx);
for (auto &sap : sg.getAttachPoints()) {
if (sap.lvIdx == static_cast<int>(idx)) {
sap.lvIdx = -1;
}
}
}
// computed properties will be cleared after all hydrogens are removed
bool clearProps = false;
mol.removeAtom(atom, clearProps);
}
bool shouldRemoveH(const RWMol &mol, const Atom *atom,
const RemoveHsParameters &ps) {
if (atom->getAtomicNum() != 1) {
return false;
}
if (!ps.removeWithQuery && atom->hasQuery()) {
return false;
}
if (!ps.removeDegreeZero && !atom->getDegree()) {
if (ps.showWarnings) {
BOOST_LOG(rdWarningLog)
<< "WARNING: not removing hydrogen atom without neighbors"
<< std::endl;
}
return false;
}
if (!ps.removeHigherDegrees && atom->getDegree() > 1) {
return false;
}
if (!ps.removeIsotopes && !ps.removeAndTrackIsotopes && atom->getIsotope()) {
return false;
}
if (!ps.removeNonimplicit && !atom->hasProp(common_properties::isImplicit)) {
return false;
}
if (!ps.removeMapped && atom->getAtomMapNum()) {
return false;
}
if (ps.removeInSGroups) {
// If removing H in SGroups, do not remove H atoms in special
// roles in the SGroup
for (const auto &sg : getSubstanceGroups(mol)) {
// The H atom is one of the "caps" of the SGroup. Technically,
// it's not part of the group, but it defines its boundaries.
for (const auto &bond_idx : sg.getBonds()) {
if (sg.getBondType(bond_idx) == SubstanceGroup::BondType::XBOND) {
auto bond = mol.getBondWithIdx(bond_idx);
if (bond->getBeginAtom() == atom || bond->getEndAtom() == atom) {
return false;
}
}
}
for (const auto &sap : sg.getAttachPoints()) {
// The H atoms is an attach point. This would be weird, but is possible.
// (if it is a 'leaving atom' we don't care, though)
if (sap.aIdx == atom->getIdx()) {
return false;
}
}
for (const auto &cs : sg.getCStates()) {
// The bond to the H atom defines a CState
auto bond = mol.getBondWithIdx(cs.bondIdx);
if (bond->getBeginAtom() == atom || bond->getEndAtom() == atom) {
return false;
}
}
}
} else {
for (const auto &sg : getSubstanceGroups(mol)) {
if (sg.includesAtom(atom->getIdx())) {
return false;
}
}
}
if (!ps.removeHydrides && atom->getFormalCharge() == -1) {
return false;
}
bool removeIt = true;
if (atom->getDegree() &&
(!ps.removeDummyNeighbors || !ps.removeDefiningBondStereo ||
!ps.removeOnlyHNeighbors || !ps.removeNontetrahedralNeighbors ||
!ps.removeWithWedgedBond)) {
bool onlyHNeighbors = true;
for (const auto nbr : mol.atomNeighbors(atom)) {
// is it a dummy?
if (!ps.removeDummyNeighbors && nbr->getAtomicNum() < 1) {
if (ps.showWarnings) {
BOOST_LOG(rdWarningLog) << "WARNING: not removing hydrogen atom "
"with dummy atom neighbors"
<< std::endl;
}
return false;
}
// does it have non-tetrahedral stereo:
if (!ps.removeNontetrahedralNeighbors &&
Chirality::hasNonTetrahedralStereo(nbr)) {
if (ps.showWarnings) {
BOOST_LOG(rdWarningLog)
<< "WARNING: not removing hydrogen atom "
"with neighbor that has non-tetrahedral stereochemistry"
<< std::endl;
}
return false;
}
if (!ps.removeOnlyHNeighbors && nbr->getAtomicNum() != 1) {
onlyHNeighbors = false;
}
if (!ps.removeWithWedgedBond) {
const auto bnd = mol.getBondBetweenAtoms(atom->getIdx(), nbr->getIdx());
if (bnd->getBondDir() == Bond::BEGINDASH ||
bnd->getBondDir() == Bond::BEGINWEDGE) {
if (ps.showWarnings) {
BOOST_LOG(rdWarningLog) << "WARNING: not removing hydrogen atom "
"with wedged bond"
<< std::endl;
}
return false;
}
}
// Check to see if the neighbor has a double bond and we're the only
// neighbor at this end. This was part of github #1810
if (!ps.removeDefiningBondStereo && nbr->getDegree() == 2) {
for (const auto bnd : mol.atomBonds(nbr)) {
if (bnd->getBondType() == Bond::DOUBLE &&
(bnd->getStereo() > Bond::STEREOANY ||
mol.getBondBetweenAtoms(atom->getIdx(), nbr->getIdx())
->getBondDir() > Bond::NONE)) {
return false;
}
}
}
}
if (removeIt && (!ps.removeOnlyHNeighbors && onlyHNeighbors)) {
return false;
}
}
return removeIt;
}
// Do not remove H atoms that are part of SGroups that only contain H atoms.
void filter_sgroup_emptying_hydrogens(const ROMol &mol,
boost::dynamic_bitset<> &atomsToRemove) {
for (const auto &sg : getSubstanceGroups(mol)) {
const auto &atoms = sg.getAtoms();
const auto &patoms = sg.getParentAtoms();
// If the SGroup already didn't have atoms, we don't care about it
if (atoms.empty() && patoms.empty()) {
continue;
}
auto would_remove_atom = [&atomsToRemove](const auto idx) {
return atomsToRemove[idx];
};
auto no_atoms = atoms.empty() ||
std::all_of(atoms.begin(), atoms.end(), would_remove_atom);
if (no_atoms) {
auto no_patoms =
patoms.empty() ||
std::all_of(patoms.begin(), patoms.end(), would_remove_atom);
if (no_patoms) {
for (auto atom : atoms) {
atomsToRemove.set(atom, false);
}
for (auto patom : patoms) {
atomsToRemove.set(patom, false);
}
}
}
}
}
} // end of anonymous namespace
void removeHs(RWMol &mol, const RemoveHsParameters &ps, bool sanitize) {
if (ps.removeAndTrackIsotopes) {
// if there are any non-isotopic Hs remove them first
// to make sure chirality is preserved
bool needRemoveHs = false;
for (auto atom : mol.atoms()) {
if (atom->getAtomicNum() == 1 && atom->getIsotope() == 0) {
needRemoveHs = true;
break;
}
}
if (needRemoveHs) {
RemoveHsParameters psCopy(ps);
psCopy.removeAndTrackIsotopes = false;
psCopy.removeIsotopes = false;
removeHs(mol, psCopy, false);
}
}
for (auto atom : mol.atoms()) {
atom->updatePropertyCache(false);
}
if (ps.removeAndTrackIsotopes) {
for (const auto &pair : getIsoMap(mol)) {
mol.getAtomWithIdx(pair.first)
->setProp(common_properties::_isotopicHs, pair.second);
}
}
boost::dynamic_bitset<> atomsToRemove{mol.getNumAtoms(), 0};
for (auto atom : mol.atoms()) {
if (shouldRemoveH(mol, atom, ps)) {
atomsToRemove.set(atom->getIdx());
}
} // end of the loop over atoms
// Once we know which H atoms would be removed, filter out those that
// would cause any SGroups to become empty
if (ps.removeInSGroups) {
filter_sgroup_emptying_hydrogens(mol, atomsToRemove);
}
// now that we know which atoms need to be removed, go ahead and remove them
// NOTE: there's too much complexity around stereochemistry here
// to be able to safely use batch editing.
for (int idx = mol.getNumAtoms() - 1; idx >= 0; --idx) {
if (atomsToRemove[idx]) {
molRemoveH(mol, idx, ps.updateExplicitCount);
}
}
mol.clearComputedProps(true);
//
// If we didn't only remove implicit Hs, which are guaranteed to
// be the highest numbered atoms, we may have altered atom indices.
// This can screw up derived properties (such as ring members), so
// do some checks:
//
if (!atomsToRemove.empty() && ps.removeNonimplicit && sanitize) {
sanitizeMol(mol);
}
};
ROMol *removeHs(const ROMol &mol, const RemoveHsParameters &ps, bool sanitize) {
auto *res = new RWMol(mol);
try {
removeHs(*res, ps, sanitize);
} catch (const MolSanitizeException &) {
delete res;
throw;
}
return static_cast<ROMol *>(res);
}
void removeHs(RWMol &mol, bool implicitOnly, bool updateExplicitCount,
bool sanitize) {
RemoveHsParameters ps;
ps.removeNonimplicit = !implicitOnly;
ps.updateExplicitCount = updateExplicitCount;
removeHs(mol, ps, sanitize);
};
ROMol *removeHs(const ROMol &mol, bool implicitOnly, bool updateExplicitCount,
bool sanitize) {
auto *res = new RWMol(mol);
RemoveHsParameters ps;
ps.removeNonimplicit = !implicitOnly;
ps.updateExplicitCount = updateExplicitCount;
try {
removeHs(*res, ps, sanitize);
} catch (const MolSanitizeException &) {
delete res;
throw;
}
return static_cast<ROMol *>(res);
}
void removeAllHs(RWMol &mol, bool sanitize) {
RemoveHsParameters ps;
ps.removeDegreeZero = true;
ps.removeHigherDegrees = true;
ps.removeOnlyHNeighbors = true;
ps.removeIsotopes = true;
ps.removeDummyNeighbors = true;
ps.removeDefiningBondStereo = true;
ps.removeWithWedgedBond = true;
ps.removeWithQuery = true;
ps.removeNonimplicit = true;
ps.removeInSGroups = true;
ps.showWarnings = false;
ps.removeHydrides = true;
ps.removeNontetrahedralNeighbors = true;
removeHs(mol, ps, sanitize);
};
ROMol *removeAllHs(const ROMol &mol, bool sanitize) {
auto *res = new RWMol(mol);
try {
removeAllHs(*res, sanitize);
} catch (const MolSanitizeException &) {
delete res;
throw;
}
return static_cast<ROMol *>(res);
}
namespace {
enum class HydrogenType {
NotAHydrogen,
UnMergableQueryHydrogen,
QueryHydrogen
};
template <class Q>
std::pair<bool, bool> queryHasHs(Q queryAtom, bool inor = false) {
for (auto childit = queryAtom->beginChildren();
childit != queryAtom->endChildren(); ++childit) {
QueryAtom::QUERYATOM_QUERY::CHILD_TYPE query = *childit;
if (query->getDescription() == "AtomOr") {
return queryHasHs(query, true);
} else if (query->getDescription() == "AtomAtomicNum") {
if (static_cast<ATOM_EQUALS_QUERY *>(query.get())->getVal() == 1 &&
!query->getNegation()) {
return std::make_pair(true, inor);
}
} else if (query->getDescription() == "AtomType") {
auto val = static_cast<ATOM_EQUALS_QUERY *>(query.get())->getVal();
// 1001 == aromtic hydrogen (not a thing, really)
// 1 == aliphatic hydrogen
if ((val == 1001 || val == 1) && !query->getNegation()) {
return std::make_pair(true, inor);
}
}
}
return std::make_pair(false, inor);
;
}
HydrogenType isQueryH(const Atom *atom) {
PRECONDITION(atom, "bogus atom");
if (atom->getAtomicNum() == 1) {
// the simple case: the atom is flagged as being an H and
// has no query
if (!atom->hasQuery() ||
(!atom->getQuery()->getNegation() &&
atom->getQuery()->getDescription() == "AtomAtomicNum")) {
return HydrogenType::QueryHydrogen;
}
}
if (!(atom->getDegree() <= 1)) {
// bonded and unbonded H atoms will continue rest will be returned
return HydrogenType::NotAHydrogen;
}
if (atom->hasQuery() && atom->getQuery()->getNegation()) {
// we will not merge negated queries
return HydrogenType::NotAHydrogen;
}
if (atom->hasQuery()) {
std::pair<bool, bool> res = std::make_pair(false, false);
if (atom->getQuery()->getDescription() == "AtomOr") {
res = queryHasHs(atom->getQuery(), true);
} else if (atom->getQuery()->getDescription() == "AtomAnd") {
res = queryHasHs(atom->getQuery(), false);
}
if (res.first) { // hasH
if (res.second) { // inOr
BOOST_LOG(rdWarningLog)
<< "WARNING: merging explicit H queries involved "
"in ORs is not supported. This query will not "
"be merged"
<< std::endl;
return HydrogenType::UnMergableQueryHydrogen;
} else {
return HydrogenType::QueryHydrogen;
}
}
}
return HydrogenType::NotAHydrogen;
}
} // namespace
//
// This routine removes explicit hydrogens (and bonds to them) from
// the molecular graph and adds them as queries to the heavy atoms
// to which they are bound. If the heavy atoms (or atom queries)
// already have hydrogen-count queries, they will be updated.
//
// NOTE:
// - Hydrogens which aren't connected to a heavy atom will not be
// removed. This prevents molecules like "[H][H]" from having
// all atoms removed.
//
// - By default all hydrogens are removed, however if
// merge_unmapped_only is true, any hydrogen participating
// in an atom map will be retained
void mergeQueryHs(RWMol &mol, bool mergeUnmappedOnly, bool mergeIsotopes) {
std::vector<unsigned int> atomsToRemove;
boost::dynamic_bitset<> hatoms(mol.getNumAtoms());
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
hatoms[i] = isQueryH(mol.getAtomWithIdx(i)) == HydrogenType::QueryHydrogen;
}
unsigned int currIdx = 0, stopIdx = mol.getNumAtoms();
while (currIdx < stopIdx) {
Atom *atom = mol.getAtomWithIdx(currIdx);
if (!hatoms[currIdx]) {
unsigned int numHsToRemove = 0;
ROMol::ADJ_ITER begin, end;
boost::tie(begin, end) = mol.getAtomNeighbors(atom);
while (begin != end) {
if (hatoms[*begin]) {
Atom &bgn = *mol.getAtomWithIdx(*begin);
bool checkUnmapped =
!mergeUnmappedOnly ||
!bgn.hasProp(common_properties::molAtomMapNumber);
bool checkIsotope = mergeIsotopes || bgn.getIsotope() == 0;
if (checkUnmapped && checkIsotope) {
atomsToRemove.push_back(rdcast<unsigned int>(*begin));
++numHsToRemove;
}
}
++begin;
}
if (numHsToRemove) {
//
// We have H neighbors:
// Add the appropriate queries to compensate for their removal.
//
// Examples:
// C[H] -> [C;!H0]
// C([H])[H] -> [C;!H0;!H1]
//
// It would be more efficient to do this using range queries like:
// C([H])[H] -> [C;H{2-}]
// but that would produce non-standard SMARTS without the user
// having started with a non-standard SMARTS.
//
if (!atom->hasQuery()) {
// it wasn't a query atom, we need to replace it so that we can add
// a query:
ATOM_EQUALS_QUERY *tmp = makeAtomNumQuery(atom->getAtomicNum());
auto *newAt = new QueryAtom;
newAt->setQuery(tmp);
newAt->updateProps(*atom);
mol.replaceAtom(atom->getIdx(), newAt);
delete newAt;
atom = mol.getAtomWithIdx(currIdx);
}
for (unsigned int i = 0; i < numHsToRemove; ++i) {
ATOM_EQUALS_QUERY *tmp = makeAtomHCountQuery(i);
tmp->setNegation(true);
atom->expandQuery(tmp);
}
} // end of numHsToRemove test
// recurse if needed (was github isusue 544)
if (atom->hasQuery()) {
if (atom->getQuery()->getDescription() == "RecursiveStructure") {
auto *rsq = dynamic_cast<RecursiveStructureQuery *>(atom->getQuery());
CHECK_INVARIANT(rsq, "could not convert recursive structure query");
RWMol *rqm = new RWMol(*rsq->getQueryMol());
mergeQueryHs(*rqm, mergeUnmappedOnly, mergeIsotopes);
rsq->setQueryMol(rqm);
}
// FIX: shouldn't be repeating this code here
std::list<QueryAtom::QUERYATOM_QUERY::CHILD_TYPE> childStack(
atom->getQuery()->beginChildren(), atom->getQuery()->endChildren());
while (childStack.size()) {
QueryAtom::QUERYATOM_QUERY::CHILD_TYPE qry = childStack.front();
childStack.pop_front();
if (qry->getDescription() == "RecursiveStructure") {
auto *rsq = dynamic_cast<RecursiveStructureQuery *>(qry.get());
CHECK_INVARIANT(rsq, "could not convert recursive structure query");
RWMol *rqm = new RWMol(*rsq->getQueryMol());
mergeQueryHs(*rqm, mergeUnmappedOnly, mergeIsotopes);
rsq->setQueryMol(rqm);
} else if (qry->beginChildren() != qry->endChildren()) {
childStack.insert(childStack.end(), qry->beginChildren(),
qry->endChildren());
}
}
} // end of recursion loop
}
++currIdx;
}
mol.beginBatchEdit();
for (auto aidx : atomsToRemove) {
mol.removeAtom(aidx);
}
mol.commitBatchEdit();
};
ROMol *mergeQueryHs(const ROMol &mol, bool mergeUnmappedOnly,
bool mergeIsotopes) {
auto *res = new RWMol(mol);
mergeQueryHs(*res, mergeUnmappedOnly, mergeIsotopes);
return static_cast<ROMol *>(res);
};
bool needsHs(const ROMol &mol) {
for (const auto atom : mol.atoms()) {
bool includeNeighbors = false;
if (atom->getTotalNumHs(includeNeighbors)) {
return true;
}
}
return false;
}
std::pair<bool, bool> hasQueryHs(const ROMol &mol) {
bool queryHs = false;
// We don't care about announcing ORs or other items during isQueryH
RDLog::LogStateSetter blocker;
for (const auto atom : mol.atoms()) {
switch (isQueryH(atom)) {
case HydrogenType::UnMergableQueryHydrogen:
return std::make_pair(true, true);
case HydrogenType::QueryHydrogen:
queryHs = true;
break;
default: // HydrogenType::NotAHydrogen:
break;
}
if (atom->hasQuery()) {
if (atom->getQuery()->getDescription() == "RecursiveStructure") {
auto *rsq = dynamic_cast<RecursiveStructureQuery *>(atom->getQuery());
CHECK_INVARIANT(rsq, "could not convert recursive structure query");
auto res = hasQueryHs(*rsq->getQueryMol());
if (res.second) { // unmergableH implies queryH
return res;
}
queryHs |= res.first;
}
// FIX: shouldn't be repeating this code here -- yet again!
std::list<QueryAtom::QUERYATOM_QUERY::CHILD_TYPE> childStack(
atom->getQuery()->beginChildren(), atom->getQuery()->endChildren());
while (!childStack.empty()) {
QueryAtom::QUERYATOM_QUERY::CHILD_TYPE qry = childStack.front();
childStack.pop_front();
if (qry->getDescription() == "RecursiveStructure") {
auto *rsq = dynamic_cast<RecursiveStructureQuery *>(qry.get());
CHECK_INVARIANT(rsq, "could not convert recursive structure query");
auto res = hasQueryHs(*rsq->getQueryMol());
if (res.second) {
return res;
}
queryHs |= res.first;
} else {
childStack.insert(childStack.end(), qry->beginChildren(),
qry->endChildren());
}
}
}
} // end of recursion loop
return std::make_pair(queryHs, false);
}
} // namespace MolOps
} // namespace RDKit
|