1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//
//
// Copyright (C) 2020 Schrödinger, LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <algorithm>
#include <memory>
#include <boost/algorithm/string.hpp>
#include "GraphMol/Chirality.h"
#include "GraphMol/RDKitBase.h"
#include <RDGeneral/ControlCHandler.h>
#include "CIPLabeler.h"
#include "CIPMol.h"
#include "configs/Sp2Bond.h"
#include "configs/Tetrahedral.h"
#include "configs/AtropisomerBond.h"
#include "rules/Rules.h"
#include "rules/Rule1a.h"
#include "rules/Rule1b.h"
#include "rules/Rule2.h"
#include "rules/Rule3.h"
#include "rules/Rule4a.h"
#include "rules/Rule4b.h"
#include "rules/Rule4c.h"
#include "rules/Rule5New.h"
#include "rules/Rule6.h"
namespace RDKit {
namespace CIPLabeler {
namespace {
// constitutional rules
const Rules constitutional_rules({new Rule1a, new Rule1b, new Rule2});
// all rules (require aux calc)
const Rules all_rules({new Rule1a, new Rule1b, new Rule2, new Rule3, new Rule4a,
new Rule4b, new Rule4c, new Rule5New, new Rule6});
std::vector<std::unique_ptr<Configuration>> findConfigs(
CIPMol &mol, const boost::dynamic_bitset<> &atoms,
const boost::dynamic_bitset<> &bonds) {
std::vector<std::unique_ptr<Configuration>> configs;
for (auto index = atoms.find_first(); index != boost::dynamic_bitset<>::npos;
index = atoms.find_next(index)) {
auto atom = mol.getAtom(index);
auto chiraltag = atom->getChiralTag();
if (chiraltag == Atom::CHI_TETRAHEDRAL_CW ||
chiraltag == Atom::CHI_TETRAHEDRAL_CCW) {
std::unique_ptr<Tetrahedral> cfg{new Tetrahedral(mol, atom)};
configs.push_back(std::move(cfg));
}
}
for (auto index = bonds.find_first(); index != boost::dynamic_bitset<>::npos;
index = bonds.find_next(index)) {
auto bond = mol.getBond(index);
auto bond_cfg = bond->getStereo();
switch (bond_cfg) {
case Bond::STEREOE:
bond_cfg = Bond::STEREOTRANS;
break;
case Bond::STEREOZ:
bond_cfg = Bond::STEREOCIS;
break;
default:
break;
}
switch (bond_cfg) {
case Bond::STEREOTRANS:
case Bond::STEREOCIS: {
std::unique_ptr<Sp2Bond> cfg(new Sp2Bond(
mol, bond, bond->getBeginAtom(), bond->getEndAtom(), bond_cfg));
configs.push_back(std::move(cfg));
} break;
case Bond::STEREOATROPCCW:
case Bond::STEREOATROPCW: {
std::unique_ptr<AtropisomerBond> cfgAtrop(new AtropisomerBond(
mol, bond, bond->getBeginAtom(), bond->getEndAtom(), bond_cfg));
configs.push_back(std::move(cfgAtrop));
} break;
default:
break;
}
}
return configs;
}
bool labelAux(std::vector<std::unique_ptr<Configuration>> &configs,
const Rules &rules,
const std::unique_ptr<Configuration> ¢er) {
using Node_Cfg_Pair = std::pair<Node *, Configuration *>;
std::vector<Node_Cfg_Pair> aux;
auto &digraph = center->getDigraph();
for (const auto &config : configs) {
if (config == center) {
continue;
}
// FIXME: specific to each descriptor
const auto &foci = config->getFoci();
for (const auto &node : digraph.getNodes(foci[0])) {
if (node->isDuplicate()) {
continue;
}
auto low = node;
if (foci.size() == 2) {
for (const auto &edge : node->getEdges(foci[1])) {
const auto &other_node = edge->getOther(node);
if (other_node->getDistance() < node->getDistance()) {
low = other_node;
}
}
}
if (!low->isDuplicate()) {
aux.emplace_back(low, config.get());
}
}
}
auto farthest = [](const Node_Cfg_Pair &a, const Node_Cfg_Pair &b) {
return a.first->getDistance() > b.first->getDistance();
};
std::sort(aux.begin(), aux.end(), farthest);
// Using a boost::unordered_map because it is more performant
// than the STL version.
boost::unordered_map<Node *, Descriptor> queue;
int prev = std::numeric_limits<int>::max();
for (const auto &e : aux) {
const auto &node = e.first;
if (node->getDistance() < prev) {
for (const auto &e2 : queue) {
e2.first->setAux(e2.second);
}
queue.clear();
prev = node->getDistance();
}
const auto &config = e.second;
auto label = config->label(node, digraph, rules);
queue.emplace(node, label);
}
for (const auto &e : queue) {
e.first->setAux(e.second);
}
return true;
}
thread_local unsigned int remainingCallCount = 0;
// The chiral centers in current rdkit examples that can be resolved using only
// the constitutional rules average about 8 iterations (the highest count is
// 1039, in one of the examples in the CIP validation suite). We use 2000 as
// threshold to allow some margin.
constexpr unsigned int constitutionalRuleTimeout = 2000;
void label(std::vector<std::unique_ptr<Configuration>> &configs,
unsigned int maxRecursiveIterations) {
// First, if the specified number of iterations allows it, run all centers
// through a fast pass with the constitutional rules allow easy stuff to be
// resolved.
for (auto &conf : configs) {
// Make sure this stereo center has no label
conf->getFocus()->clearProp(common_properties::_CIPCode);
remainingCallCount = constitutionalRuleTimeout;
try {
auto desc = conf->label(constitutional_rules);
if (desc != Descriptor::UNKNOWN) {
conf->setPrimaryLabel(desc);
}
} catch (const MaxIterationsExceeded &) {
}
}
// Now, retry everything that hasn't been solved with a more generous
// threshold
if (maxRecursiveIterations != 0) {
remainingCallCount = maxRecursiveIterations;
} else {
remainingCallCount = UINT_MAX; // really big - will never be hit
}
// try again on everything that hasn't been resolved yet
for (const auto &conf : configs) {
if (conf->getFocus()->hasProp(common_properties::_CIPCode)) {
// already resolved!
continue;
}
auto desc = conf->label(constitutional_rules);
if (desc != Descriptor::UNKNOWN) {
conf->setPrimaryLabel(desc);
} else {
if (labelAux(configs, all_rules, conf)) {
desc = conf->label(all_rules);
if (desc != Descriptor::UNKNOWN) {
conf->setPrimaryLabel(desc);
}
}
}
}
}
} // namespace
void assignCIPLabels(ROMol &mol, const boost::dynamic_bitset<> &atoms,
const boost::dynamic_bitset<> &bonds,
unsigned int maxRecursiveIterations) {
ControlCHandler::reset();
// reset the mark, for the case that this fails
mol.clearProp(common_properties::_CIPComputed);
CIPMol cipmol{mol};
auto configs = findConfigs(cipmol, atoms, bonds);
try {
label(configs, maxRecursiveIterations);
} catch (const ControlCCaught &) {
}
if (ControlCHandler::getGotSignal()) {
BOOST_LOG(rdWarningLog)
<< "Interrupted, cancelling CIP label calculation" << std::endl;
return;
}
const bool computed = true;
mol.setProp(common_properties::_CIPComputed, true, computed);
}
void assignCIPLabels(ROMol &mol, unsigned int maxRecursiveIterations) {
boost::dynamic_bitset<> atoms(mol.getNumAtoms());
boost::dynamic_bitset<> bonds(mol.getNumBonds());
atoms.set();
bonds.set();
assignCIPLabels(mol, atoms, bonds, maxRecursiveIterations);
}
} // namespace CIPLabeler
namespace CIPLabeler_detail {
bool decrementRemainingCallCountAndCheck() {
return (--CIPLabeler::remainingCallCount) > 0;
}
} // namespace CIPLabeler_detail
} // namespace RDKit
|