File: ReactionRunner.cpp

package info (click to toggle)
rdkit 202503.6-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 222,024 kB
  • sloc: cpp: 411,111; python: 78,482; ansic: 26,181; java: 8,285; javascript: 4,404; sql: 2,393; yacc: 1,626; lex: 1,267; cs: 1,090; makefile: 580; xml: 229; fortran: 183; sh: 121
file content (2090 lines) | stat: -rw-r--r-- 83,649 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
//
//  Copyright (c) 2014-2023, Novartis Institutes for BioMedical Research Inc.
//  and other RDKit contributors
//
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Novartis Institutes for BioMedical Research Inc.
//       nor the names of its contributors may be used to endorse or promote
//       products derived from this software without specific prior written
//       permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//

#include <GraphMol/ChemReactions/Reaction.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/QueryOps.h>
#include <boost/dynamic_bitset.hpp>
#include <map>
#include <algorithm>
#include <GraphMol/ChemTransforms/ChemTransforms.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include "GraphMol/ChemReactions/ReactionRunner.h"
#include <RDGeneral/Invariant.h>
#include <GraphMol/MonomerInfo.h>
#include <GraphMol/Chirality.h>
#include <GraphMol/QueryAtom.h>
#include <GraphMol/QueryBond.h>

namespace RDKit {
typedef std::vector<MatchVectType> VectMatchVectType;
typedef std::vector<VectMatchVectType> VectVectMatchVectType;

namespace {
const std::string WAS_DUMMY =
    "was_dummy";  // was the atom originally a dummy in product

// Intended as a temporary mark, will be removed from final reaction products.
const std::string _UnknownStereoRxnBond = "_UnknownStereoRxnBond";
}  // namespace

namespace ReactionRunnerUtils {

struct ReactantProductAtomMapping {
  ReactantProductAtomMapping(unsigned lenghtBitSet) {
    mappedAtoms.resize(lenghtBitSet);
    skippedAtoms.resize(lenghtBitSet);
  }

  boost::dynamic_bitset<> mappedAtoms;
  boost::dynamic_bitset<> skippedAtoms;
  std::map<unsigned int, std::vector<unsigned int>> reactProdAtomMap;
  std::map<unsigned int, unsigned int> prodReactAtomMap;
  std::map<unsigned int, unsigned int> prodAtomBondMap;

  // maps (atom map number,atom map number) pairs in the reactant template
  // to whether or not they are bonded in the template.
  std::map<std::pair<unsigned int, unsigned int>, unsigned int>
      reactantTemplateAtomBonds;
};

namespace {

//! returns whether or not all reactants matched
const unsigned int MatchAll = UINT_MAX;

/**
 * A storage class to find and store a StereoBond End Atom's
 * corresponding anchor and non-anchor neighbors.
 *
 * The class is agnostic about the stereo type of the bond (E/Z or CIS/TRANS)
 */
class StereoBondEndCap {
 private:
  unsigned m_anchor;
  const Atom *mp_nonAnchor = nullptr;

  StereoBondEndCap() = delete;
  StereoBondEndCap(const StereoBondEndCap &) = delete;
  StereoBondEndCap &operator=(const StereoBondEndCap &) = delete;

 public:
  StereoBondEndCap(const ROMol &mol, const Atom *atom,
                   const Atom *otherDblBndAtom, const unsigned stereoAtomIdx)
      : m_anchor(stereoAtomIdx) {
    PRECONDITION(atom, "no atom");
    PRECONDITION(otherDblBndAtom, "no atom");
    PRECONDITION(atom->getTotalDegree() <= 3,
                 "Stereo Bond extremes must have less than four neighbors");

    const auto nbrIdxItr = mol.getAtomNeighbors(atom);
    const unsigned otherIdx = otherDblBndAtom->getIdx();

    auto isNonAnchor = [otherIdx, stereoAtomIdx](const unsigned &nbrIdx) {
      return nbrIdx != otherIdx && nbrIdx != stereoAtomIdx;
    };

    auto nonAnchorItr =
        std::find_if(nbrIdxItr.first, nbrIdxItr.second, isNonAnchor);
    if (nonAnchorItr != nbrIdxItr.second) {
      mp_nonAnchor = mol.getAtomWithIdx(*nonAnchorItr);
    }
  }

  StereoBondEndCap(StereoBondEndCap &&) = default;
  StereoBondEndCap &operator=(StereoBondEndCap &&) = default;

  bool hasNonAnchor() const { return mp_nonAnchor != nullptr; }
  unsigned getAnchorIdx() const { return m_anchor; }
  unsigned getNonAnchorIdx() const { return mp_nonAnchor->getIdx(); }

  std::pair<UINT_VECT, bool> getProductAnchorCandidates(
      ReactantProductAtomMapping *mapping) {
    auto &react2Prod = mapping->reactProdAtomMap;

    bool swapStereo = false;
    auto newAnchorMatches = react2Prod.find(getAnchorIdx());
    if (newAnchorMatches != react2Prod.end()) {
      // The corresponding StereoAtom exists in the product
      return {newAnchorMatches->second, swapStereo};

    } else if (hasNonAnchor()) {
      // The non-StereoAtom neighbor exists in the product
      newAnchorMatches = react2Prod.find(getNonAnchorIdx());
      if (newAnchorMatches != react2Prod.end()) {
        swapStereo = true;
        return {newAnchorMatches->second, swapStereo};
      }
    }
    // None of the neighbors survived the reaction
    return {{}, swapStereo};
  }
};
}  // namespace

VectMatchVectType getReactantMatchesToTemplate(
    const ROMol &reactant, const ROMol &templ, unsigned int maxMatches,
    const SubstructMatchParameters &ssparams) {
  // NOTE that we are *not* uniquifying the results.
  //   This is because we need multiple matches in reactions. For example,
  //   The ring-closure coded as:
  //     [C:1]=[C:2] + [C:3]=[C:4][C:5]=[C:6] ->
  //     [C:1]1[C:2][C:3][C:4]=[C:5][C:6]1
  //   should give 4 products here:
  //     [Cl]C=C + [Br]C=CC=C ->
  //       [Cl]C1C([Br])C=CCC1
  //       [Cl]C1CC(Br)C=CC1
  //       C1C([Br])C=CCC1[Cl]
  //       C1CC([Br])C=CC1[Cl]
  //   Yes, in this case there are only 2 unique products, but that's
  //   a factor of the reactants' symmetry.
  //
  //   There's no particularly straightforward way of solving this problem
  //   of recognizing cases where we should give all matches and cases where we
  //   shouldn't; it's safer to just produce everything and let the caller deal
  //   with uniquifying their results.
  VectMatchVectType res;

  SubstructMatchParameters ssps = ssparams;
  ssps.uniquify = false;
  ssps.maxMatches = maxMatches;
  auto matchesHere = SubstructMatch(reactant, templ, ssps);
  res.reserve(matchesHere.size());
  for (const auto &match : matchesHere) {
    bool keep = true;
    for (const auto &pr : match) {
      if (reactant.getAtomWithIdx(pr.second)->hasProp(
              common_properties::_protected)) {
        keep = false;
        break;
      }
    }
    if (keep) {
      res.push_back(std::move(match));
    }
  }
  return res;
}

bool getReactantMatches(const MOL_SPTR_VECT &reactants,
                        const ChemicalReaction &rxn,
                        VectVectMatchVectType &matchesByReactant,
                        unsigned int maxMatches,
                        unsigned int matchSingleReactant = MatchAll) {
  PRECONDITION(reactants.size() == rxn.getNumReactantTemplates(),
               "reactant size mismatch");

  matchesByReactant.clear();
  matchesByReactant.resize(reactants.size());

  bool res = true;
  unsigned int i = 0;
  for (auto iter = rxn.beginReactantTemplates();
       iter != rxn.endReactantTemplates(); ++iter, i++) {
    if (matchSingleReactant == MatchAll || matchSingleReactant == i) {
      auto matches =
          getReactantMatchesToTemplate(*reactants[i].get(), *iter->get(),
                                       maxMatches, rxn.getSubstructParams());
      if (matches.empty()) {
        // no point continuing if we don't match one of the reactants:
        res = false;
        break;
      }
      matchesByReactant[i] = std::move(matches);
    }
  }
  return res;
}  // end of getReactantMatches()

// Return false if maxProducts has been hit...
//  Otherwise we can't tell if we were stopped exactly
//  or were terminated.
bool recurseOverReactantCombinations(
    const VectVectMatchVectType &matchesByReactant,
    VectVectMatchVectType &matchesPerProduct, unsigned int level,
    VectMatchVectType combination, unsigned int maxProducts) {
  unsigned int nReactants = matchesByReactant.size();
  URANGE_CHECK(level, nReactants);
  PRECONDITION(combination.size() == nReactants, "bad combination size");

  if (maxProducts && matchesPerProduct.size() >= maxProducts) {
    return false;
  }

  bool keepGoing = true;
  for (auto reactIt = matchesByReactant[level].begin();
       reactIt != matchesByReactant[level].end(); ++reactIt) {
    VectMatchVectType prod = combination;
    prod[level] = *reactIt;
    if (level == nReactants - 1) {
      // this is the bottom of the recursion:
      if (maxProducts && matchesPerProduct.size() >= maxProducts) {
        keepGoing = false;
        break;
      }
      matchesPerProduct.push_back(prod);

    } else {
      keepGoing = recurseOverReactantCombinations(
          matchesByReactant, matchesPerProduct, level + 1, prod, maxProducts);
    }
  }
  return keepGoing;
}  // end of recurseOverReactantCombinations

void updateImplicitAtomProperties(Atom *prodAtom, const Atom *reactAtom) {
  PRECONDITION(prodAtom, "no product atom");
  PRECONDITION(reactAtom, "no reactant atom");
  if (prodAtom->getAtomicNum() != reactAtom->getAtomicNum()) {
    // if we changed atom identity all bets are off, just
    // return
    return;
  }
  if (!prodAtom->hasProp(common_properties::_QueryFormalCharge)) {
    prodAtom->setFormalCharge(reactAtom->getFormalCharge());
  }
  if (!prodAtom->hasProp(common_properties::_QueryIsotope)) {
    prodAtom->setIsotope(reactAtom->getIsotope());
  }
  if (!prodAtom->hasProp(common_properties::_ReactionDegreeChanged)) {
    if (!prodAtom->hasProp(common_properties::_QueryHCount)) {
      prodAtom->setNumExplicitHs(reactAtom->getNumExplicitHs());
      prodAtom->setNoImplicit(reactAtom->getNoImplicit());
    }
  }
}

void generateReactantCombinations(
    const VectVectMatchVectType &matchesByReactant,
    VectVectMatchVectType &matchesPerProduct, unsigned int maxProducts) {
  matchesPerProduct.clear();
  VectMatchVectType tmp;
  tmp.clear();
  tmp.resize(matchesByReactant.size());
  if (!recurseOverReactantCombinations(matchesByReactant, matchesPerProduct, 0,
                                       tmp, maxProducts)) {
    BOOST_LOG(rdWarningLog) << "Maximum product count hit " << maxProducts
                            << ", stopping reaction early...\n";
  }
}  // end of generateReactantCombinations()

bool updatePropsFromImplicitProps(Atom *templateAtom, Atom *atom) {
  PRECONDITION(templateAtom, "no atom");
  PRECONDITION(atom, "no atom");
  bool res = false;
  int val;
  if (templateAtom->getPropIfPresent(common_properties::_QueryFormalCharge,
                                     val) &&
      val != atom->getFormalCharge()) {
    atom->setFormalCharge(val);
    res = true;
  }
  unsigned int uval;
  if (templateAtom->getPropIfPresent(common_properties::_QueryHCount, uval)) {
    if (!atom->getNoImplicit() || atom->getNumExplicitHs() != uval) {
      atom->setNumExplicitHs(uval);
      atom->setNoImplicit(true);  // this was github #1544
      res = true;
    }
  }
  if (templateAtom->getPropIfPresent(common_properties::_QueryMass, uval)) {
    // FIX: technically should do something with this
    // atom->setMass(val);
  }
  if (templateAtom->getPropIfPresent(common_properties::_QueryIsotope, uval) &&
      uval != atom->getIsotope()) {
    atom->setIsotope(uval);
    res = true;
  }
  return res;
}

RWMOL_SPTR convertTemplateToMol(const ROMOL_SPTR prodTemplateSptr) {
  const ROMol *prodTemplate = prodTemplateSptr.get();
  auto *res = new RWMol();

  // --------- --------- --------- --------- --------- ---------
  // Initialize by making a copy of the product template as a normal molecule.
  // NOTE that we can't just use a normal copy because we do not want to end up
  // with query atoms or bonds in the product.

  // copy in the atoms:
  ROMol::ATOM_ITER_PAIR atItP = prodTemplate->getVertices();
  while (atItP.first != atItP.second) {
    const Atom *oAtom = (*prodTemplate)[*(atItP.first++)];
    auto *newAtom = new Atom(*oAtom);
    res->addAtom(newAtom, false, true);
    int mapNum;
    if (newAtom->getPropIfPresent(common_properties::molAtomMapNumber,
                                  mapNum)) {
      // set bookmarks for the mapped atoms:
      res->setAtomBookmark(newAtom, mapNum);
      // now clear the molAtomMapNumber property so that it doesn't
      // end up in the products (this was bug 3140490):
      newAtom->clearProp(common_properties::molAtomMapNumber);
      newAtom->setProp<int>(common_properties::reactionMapNum, mapNum);
    }

    newAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
    // if the product-template atom has the inversion flag set
    // to 4 (=SET), then bring its stereochem over, otherwise we'll
    // ignore it:
    int iFlag;
    if (oAtom->getPropIfPresent(common_properties::molInversionFlag, iFlag)) {
      if (iFlag == 4) {
        newAtom->setChiralTag(oAtom->getChiralTag());
      }
    }

    // check for properties we need to set:
    updatePropsFromImplicitProps(newAtom, newAtom);
  }
  // and the bonds:
  ROMol::BOND_ITER_PAIR bondItP = prodTemplate->getEdges();
  while (bondItP.first != bondItP.second) {
    const Bond *oldB = (*prodTemplate)[*(bondItP.first++)];
    unsigned int bondIdx;
    bondIdx = res->addBond(oldB->getBeginAtomIdx(), oldB->getEndAtomIdx(),
                           oldB->getBondType()) -
              1;
    // make sure we don't lose the bond dir information:
    Bond *newB = res->getBondWithIdx(bondIdx);
    newB->setBondDir(oldB->getBondDir());
    // Special case/hack:
    //  The product has been processed by the SMARTS parser.
    //  The SMARTS parser tags unspecified bonds as single, but then adds
    //  a query so that they match single or double
    //  This caused Issue 1748846
    //   http://sourceforge.net/tracker/index.php?func=detail&aid=1748846&group_id=160139&atid=814650
    //  We need to fix that little problem now:
    if (oldB->hasQuery()) {
      //  remember that the product has been processed by the SMARTS parser.
      std::string queryDescription = oldB->getQuery()->getDescription();
      if (queryDescription == "BondOr" && oldB->getBondType() == Bond::SINGLE) {
        //  We need to fix that little problem now:
        if (newB->getBeginAtom()->getIsAromatic() &&
            newB->getEndAtom()->getIsAromatic()) {
          newB->setBondType(Bond::AROMATIC);
          newB->setIsAromatic(true);
        } else {
          newB->setBondType(Bond::SINGLE);
          newB->setIsAromatic(false);
        }
      } else if (queryDescription == "BondNull") {
        newB->setProp(common_properties::NullBond, 1);
      }
    }

    // Double bond stereo: if a double bond has at least one bond on each side,
    // and none of those has a direction, then mark it as unknown stereo to have
    // it reset later on. This has to be done before the reactant atoms are
    // added,
    if (oldB->getBondType() == Bond::BondType::DOUBLE) {
      const Atom *startAtom = oldB->getBeginAtom();
      const Atom *endAtom = oldB->getEndAtom();

      if (startAtom->getDegree() > 1 && endAtom->getDegree() > 1 &&
          (Chirality::getNeighboringDirectedBond(*prodTemplate, startAtom) ==
               nullptr ||
           Chirality::getNeighboringDirectedBond(*prodTemplate, endAtom) ==
               nullptr)) {
        newB->setProp(_UnknownStereoRxnBond, 1);
      }
    }

    // copy properties over:
    bool preserveExisting = true;
    newB->updateProps(*static_cast<const RDProps *>(oldB), preserveExisting);
  }
  return RWMOL_SPTR(res);
}  // end of convertTemplateToMol()

ReactantProductAtomMapping *getAtomMappingsReactantProduct(
    const MatchVectType &match, const ROMol &reactantTemplate,
    RWMOL_SPTR product, unsigned numReactAtoms) {
  auto *mapping = new ReactantProductAtomMapping(numReactAtoms);

  // keep track of which mapped atoms in the reactant template are bonded to
  // each other.
  // This is part of the fix for #1387
  {
    ROMol::EDGE_ITER firstB, lastB;
    boost::tie(firstB, lastB) = reactantTemplate.getEdges();
    while (firstB != lastB) {
      const Bond *bond = reactantTemplate[*firstB];
      // this will put in pairs with 0s for things that aren't mapped, but we
      // don't care about that
      int a1mapidx = bond->getBeginAtom()->getAtomMapNum();
      int a2mapidx = bond->getEndAtom()->getAtomMapNum();
      if (a1mapidx > a2mapidx) {
        std::swap(a1mapidx, a2mapidx);
      }
      mapping->reactantTemplateAtomBonds[std::make_pair(a1mapidx, a2mapidx)] =
          1;
      ++firstB;
    }
  }

  for (const auto &i : match) {
    const Atom *templateAtom = reactantTemplate.getAtomWithIdx(i.first);
    int molAtomMapNumber;
    if (templateAtom->getPropIfPresent(common_properties::molAtomMapNumber,
                                       molAtomMapNumber)) {
      if (product->hasAtomBookmark(molAtomMapNumber)) {
        RWMol::ATOM_PTR_LIST atomIdxs =
            product->getAllAtomsWithBookmark(molAtomMapNumber);
        for (auto a : atomIdxs) {
          unsigned int pIdx = a->getIdx();
          mapping->reactProdAtomMap[i.second].push_back(pIdx);
          mapping->mappedAtoms[i.second] = 1;
          CHECK_INVARIANT(pIdx < product->getNumAtoms(), "yikes!");
          mapping->prodReactAtomMap[pIdx] = i.second;
        }
      } else {
        // this skippedAtom has an atomMapNumber, but it's not in this product
        // (it's either in another product or it's not mapped at all).
        mapping->skippedAtoms[i.second] = 1;
      }
    } else {
      // This skippedAtom appears in the match, but not in a product:
      mapping->skippedAtoms[i.second] = 1;
    }
  }
  return mapping;
}

namespace {
unsigned reactProdMapAnchorIdx(Atom *atom, const RDKit::UINT_VECT &pMatches) {
  PRECONDITION(atom, "no atom");
  if (pMatches.size() == 1) {
    return pMatches[0];
  }

  const auto &pMol = atom->getOwningMol();
  const unsigned atomIdx = atom->getIdx();

  auto areAtomsBonded = [&pMol, atomIdx](const unsigned &pAnchor) {
    return pMol.getBondBetweenAtoms(atomIdx, pAnchor) != nullptr;
  };

  auto match = std::find_if(pMatches.begin(), pMatches.end(), areAtomsBonded);

  CHECK_INVARIANT(match != pMatches.end(), "match not found");
  return *match;
}

void forwardReactantBondStereo(ReactantProductAtomMapping *mapping, Bond *pBond,
                               const ROMol &reactant, const Bond *rBond) {
  PRECONDITION(mapping, "no mapping");
  PRECONDITION(pBond, "no bond");
  PRECONDITION(rBond, "no bond");
  PRECONDITION(rBond->getStereo() > Bond::BondStereo::STEREOANY,
               "bond in reactant must have defined stereo");

  auto &prod2React = mapping->prodReactAtomMap;

  const Atom *rStart = rBond->getBeginAtom();
  const Atom *rEnd = rBond->getEndAtom();
  const auto rStereoAtoms = Chirality::findStereoAtoms(rBond);
  if (rStereoAtoms.size() != 2) {
    BOOST_LOG(rdWarningLog)
        << "WARNING: neither stereo atoms nor CIP codes found for double bond. "
           "Stereochemistry info will not be propagated to product."
        << std::endl;
    pBond->setStereo(Bond::BondStereo::STEREONONE);
    return;
  }

  StereoBondEndCap start(reactant, rStart, rEnd, rStereoAtoms[0]);
  StereoBondEndCap end(reactant, rEnd, rStart, rStereoAtoms[1]);

  // The bond might be matched backwards in the reaction
  if (prod2React[pBond->getBeginAtomIdx()] == rEnd->getIdx()) {
    std::swap(start, end);
  } else if (prod2React[pBond->getBeginAtomIdx()] != rStart->getIdx()) {
    throw std::logic_error("Reactant and Product bond ends do not match");
  }

  /**
   *  The reactants stereo can be transmitted in three similar ways:
   *
   * 1. Survival of both stereoatoms: direct forwarding happens, i.e.,
   *
   *    C/C=C/[Br] in reaction [C:1]=[C:2]>>[Si:1]=[C:2]:
   *
   *    C/C=C/[Br] >> C/Si=C/[Br], C/C=Si/[Br] (2 product sets)
   *
   *    Both stereoatoms exist unaltered in both product sets, so we can forward
   *    the same bond stereochemistry (trans) and set the stereoatoms in the
   *    product to the mapped indexes of the stereoatoms in the reactant.
   *
   * 2. Survival of both anti-stereoatoms: as this pair is symmetric to the
   *    stereoatoms, direct forwarding also happens in this case, i.e.,
   *
   *    Cl/C(C)=C(/Br)F in reaction
   *        [Cl:4][C:1]=[C:2][Br:3]>>[C:1]=[C:2].[Br:3].[Cl:4]:
   *      Cl/C(C)=C(/Br)F >> C/C=C/F + Br + Cl
   *
   *    Both stereoatoms in the reactant are split from the molecule,
   *    but the anti-stereoatoms remain in it. Since these have symmetrical
   *    orientation to the stereoatoms, we can use these (their mapped
   *    equivalents) as stereoatoms in the product and use the same
   *    stereochemistry label (trans).
   *
   * 3. Survival of a mixed pair stereoatom-anti-stereoatom: such a pair
   *    defines the opposite stereochemistry to the one labeled on the
   *    reactant, but it is also valid, as long ase we use the properly mapped
   *    indexes:
   *
   *    Cl/C(C)=C(/Br)F in reaction [Cl:4][C:1]=[C:2][Br:3]>>[C:1]=[C:2].[Br:3]:
   *
   *        Cl/C(C)=C(/Br)F >> C/C=C/F + Br
   *
   *    In this case, one of the stereoatoms is conserved, and the other one is
   *    switched to the other neighbor at the same end of the bond as the
   *    non-conserved stereoatom. Since the reference changed, the
   *    stereochemistry label needs to be flipped too: in this case, the
   *    reactant was trans, and the product will be cis.
   *
   *    Reaction [Cl:4][C:1]=[C:2][Br:3]>>[C:1]=[C:2].[Cl:4] would have the same
   *    effect, with the only difference that the non-conserved stereoatom would
   *    be the one at the opposite end of the reactant.
   */
  auto pStartAnchorCandidates = start.getProductAnchorCandidates(mapping);
  auto pEndAnchorCandidates = end.getProductAnchorCandidates(mapping);

  // The reaction has invalidated the reactant's stereochemistry
  if (pStartAnchorCandidates.first.empty() ||
      pEndAnchorCandidates.first.empty()) {
    return;
  }

  unsigned pStartAnchorIdx = reactProdMapAnchorIdx(
      pBond->getBeginAtom(), pStartAnchorCandidates.first);
  unsigned pEndAnchorIdx =
      reactProdMapAnchorIdx(pBond->getEndAtom(), pEndAnchorCandidates.first);

  const ROMol &m = pBond->getOwningMol();
  if (m.getBondBetweenAtoms(pBond->getBeginAtomIdx(), pStartAnchorIdx) ==
          nullptr ||
      m.getBondBetweenAtoms(pBond->getEndAtomIdx(), pEndAnchorIdx) == nullptr) {
    BOOST_LOG(rdWarningLog) << "stereo atoms in input cannot be mapped to "
                               "output (atoms are no longer bonded)\n";
  } else {
    pBond->setStereoAtoms(pStartAnchorIdx, pEndAnchorIdx);
    bool flipStereo =
        (pStartAnchorCandidates.second + pEndAnchorCandidates.second) % 2;

    if (rBond->getStereo() == Bond::BondStereo::STEREOCIS ||
        rBond->getStereo() == Bond::BondStereo::STEREOZ) {
      if (flipStereo) {
        pBond->setStereo(Bond::BondStereo::STEREOTRANS);
      } else {
        pBond->setStereo(Bond::BondStereo::STEREOCIS);
      }
    } else {
      if (flipStereo) {
        pBond->setStereo(Bond::BondStereo::STEREOCIS);
      } else {
        pBond->setStereo(Bond::BondStereo::STEREOTRANS);
      }
    }
  }
}

void translateProductStereoBondDirections(Bond *pBond, const Bond *start,
                                          const Bond *end) {
  PRECONDITION(pBond, "no bond");
  PRECONDITION(start && end && Chirality::hasStereoBondDir(start) &&
                   Chirality::hasStereoBondDir(end),
               "Both neighboring bonds must have bond directions");

  unsigned pStartAnchorIdx = start->getOtherAtomIdx(pBond->getBeginAtomIdx());
  unsigned pEndAnchorIdx = end->getOtherAtomIdx(pBond->getEndAtomIdx());

  pBond->setStereoAtoms(pStartAnchorIdx, pEndAnchorIdx);

  bool sameDir = start->getBondDir() == end->getBondDir();

  if (start->getBeginAtom() == pBond->getBeginAtom()) {
    sameDir = !sameDir;
  }
  if (end->getBeginAtom() != pBond->getEndAtom()) {
    sameDir = !sameDir;
  }

  if (sameDir) {
    pBond->setStereo(Bond::BondStereo::STEREOTRANS);
  } else {
    pBond->setStereo(Bond::BondStereo::STEREOCIS);
  }
}

/**
 * Core of the double bond stereochemistry handling (the first stereo check on
 * the product template does actually happen in convertTemplateToMol()).
 *
 * Stereo in the product templates (defined by bond directions) will override
 * the one in the reactants.
 *
 * Each double bond will be checked against the following rules:
 * 1- if product bond is marked as unknown, set it to STEREONONE (it is either
 * not a stereo bond, or we don't have information to determine whether it
 * should be STEREOANY) and skip to the next one.
 * 2- if the product has bond directions set, deduce the final stereochemistry
 * from them.
 * 3- if there are no bond directions, check the atom mapping in the reaction to
 * see if the reactant's stereochemistry is preserved.
 * 4- in any other case, keep the STEREONONE label.
 */
void updateStereoBonds(RWMOL_SPTR product, const ROMol &reactant,
                       ReactantProductAtomMapping *mapping) {
  for (Bond *pBond : product->bonds()) {
    // We are only interested in double bonds
    if (pBond->getBondType() != Bond::BondType::DOUBLE) {
      continue;
    } else if (pBond->hasProp(_UnknownStereoRxnBond)) {
      pBond->setStereo(Bond::BondStereo::STEREONONE);
      pBond->clearProp(_UnknownStereoRxnBond);
      continue;
    }

    // Check if the reaction defined the stereo for the bond: SMARTS can only
    // use bond directions for this, and both sides of the double bond must have
    // them, else they will be ignored, as there is no reference to decide the
    // stereo.
    const auto *pBondStartDirBond =
        Chirality::getNeighboringDirectedBond(*product, pBond->getBeginAtom());
    const auto *pBondEndDirBond =
        Chirality::getNeighboringDirectedBond(*product, pBond->getEndAtom());
    if (pBondStartDirBond != nullptr && pBondEndDirBond != nullptr) {
      translateProductStereoBondDirections(pBond, pBondStartDirBond,
                                           pBondEndDirBond);
    } else {
      // If the reaction did not specify the stereo, then we need to rely on the
      // atom mapping and use the reactant's stereo.

      // The atoms and the bond might have been added in the reaction
      const auto begIdxItr =
          mapping->prodReactAtomMap.find(pBond->getBeginAtomIdx());
      if (begIdxItr == mapping->prodReactAtomMap.end()) {
        continue;
      }
      const auto endIdxItr =
          mapping->prodReactAtomMap.find(pBond->getEndAtomIdx());
      if (endIdxItr == mapping->prodReactAtomMap.end()) {
        continue;
      }

      const Bond *rBond =
          reactant.getBondBetweenAtoms(begIdxItr->second, endIdxItr->second);

      if (rBond && rBond->getBondType() == Bond::BondType::DOUBLE) {
        // The bond might not have been present in the reactant, or its order
        // might have changed
        if (rBond->getStereo() > Bond::BondStereo::STEREOANY) {
          // If the bond had stereo, forward it
          forwardReactantBondStereo(mapping, pBond, reactant, rBond);
        } else if (rBond->getStereo() == Bond::BondStereo::STEREOANY) {
          pBond->setStereo(Bond::BondStereo::STEREOANY);
        }
      }
      // No stereo: Bond::BondStereo::STEREONONE
    }
  }
}
}  // namespace

void setReactantBondPropertiesToProduct(RWMOL_SPTR product,
                                        const ROMol &reactant,
                                        ReactantProductAtomMapping *mapping) {
  for (unsigned int bidx = 0; bidx < product->getNumBonds(); ++bidx) {
    auto pBond = product->getBondWithIdx(bidx);
    auto rBondBegin = mapping->prodReactAtomMap.find(pBond->getBeginAtomIdx());
    auto rBondEnd = mapping->prodReactAtomMap.find(pBond->getEndAtomIdx());

    if (rBondBegin == mapping->prodReactAtomMap.end() ||
        rBondEnd == mapping->prodReactAtomMap.end()) {
      continue;
    }

    // the bond is between two mapped atoms from this reactant:
    const Bond *rBond =
        reactant.getBondBetweenAtoms(rBondBegin->second, rBondEnd->second);
    if (!rBond) {
      continue;
    }
    if (!pBond->hasProp(common_properties::NullBond) &&
        !pBond->hasProp(common_properties::_MolFileBondQuery) &&
        !rBond->hasQuery()) {
      continue;
    }

    if (!rBond->hasQuery()) {
      pBond->setBondType(rBond->getBondType());
    } else {
      QueryBond qBond(rBond->getBondType());
      qBond.setQuery(rBond->getQuery()->copy());
      // replaceBond copies, so we are safe passing a pointer
      // to a local:
      product->replaceBond(bidx, &qBond);
      pBond = product->getBondWithIdx(bidx);
    }
    if (rBond->getBondType() == Bond::DOUBLE &&
        rBond->getBondDir() == Bond::EITHERDOUBLE) {
      pBond->setBondDir(Bond::EITHERDOUBLE);
    }

    pBond->setIsAromatic(rBond->getIsAromatic());

    pBond->updateProps(*rBond);
    if (pBond->hasProp(common_properties::NullBond)) {
      pBond->clearProp(common_properties::NullBond);
    }
  }
}

void checkProductChirality(Atom::ChiralType reactantChirality,
                           Atom *productAtom) {
  int flagVal;
  productAtom->getProp(common_properties::molInversionFlag, flagVal);
  switch (flagVal) {
    case 0:
      // reaction doesn't have anything to say about the chirality
      // FIX: should we clear the chirality or leave it alone? for now we leave
      // it alone
      productAtom->setChiralTag(reactantChirality);
      break;
    case 1:
      // reaction inverts chirality
      if (reactantChirality != Atom::CHI_TETRAHEDRAL_CW &&
          reactantChirality != Atom::CHI_TETRAHEDRAL_CCW) {
        BOOST_LOG(rdWarningLog)
            << "unsupported chiral type on reactant atom ignored\n";
      } else {
        productAtom->setChiralTag(reactantChirality);
        productAtom->invertChirality();
      }
      break;
    case 2:
      // reaction retains chirality:
      // retention: just set to the reactant
      productAtom->setChiralTag(reactantChirality);
      break;
    case 3:
      // reaction destroys chirality:
      // remove stereo
      productAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
      break;
    case 4:
      // reaction creates chirality.
      // set stereo, so leave it the way it was in the product template
      break;
    default:
      BOOST_LOG(rdWarningLog) << "unrecognized chiral inversion/retention flag "
                                 "on product atom ignored\n";
  }
}

void setReactantAtomPropertiesToProduct(Atom *productAtom,
                                        const Atom &reactantAtom,
                                        bool setImplicitProperties,
					unsigned int reactantId) {
  // which properties need to be set from the reactant?
  if (productAtom->getAtomicNum() <= 0 ||
      productAtom->hasProp(common_properties::_MolFileAtomQuery)) {
    productAtom->setAtomicNum(reactantAtom.getAtomicNum());
    productAtom->setIsAromatic(reactantAtom.getIsAromatic());
    // don't copy isotope information over from dummy atoms
    // (part of github #243) unless we're setting implicit properties,
    // in which case we do need to copy them in (github #1269)
    if (!setImplicitProperties) {
      productAtom->setIsotope(reactantAtom.getIsotope());
    }
    // remove dummy labels (if present)
    if (productAtom->hasProp(common_properties::dummyLabel)) {
      productAtom->clearProp(common_properties::dummyLabel);
    }
    if (productAtom->hasProp(common_properties::_MolFileRLabel)) {
      productAtom->clearProp(common_properties::_MolFileRLabel);
    }
    productAtom->setProp(WAS_DUMMY, true);
  } else {
    // remove bookkeeping labels (if present)
    if (productAtom->hasProp(WAS_DUMMY)) {
      productAtom->clearProp(WAS_DUMMY);
    }
  }
  productAtom->setProp<unsigned int>(common_properties::reactantAtomIdx,
                                     reactantAtom.getIdx());
  productAtom->setProp<unsigned int>(common_properties::reactantIdx,
				     reactantId);
  if (setImplicitProperties) {
    updateImplicitAtomProperties(productAtom, &reactantAtom);
  }
  // One might be tempted to copy over the reactant atom's chirality into the
  // product atom if chirality is not specified on the product. This would be a
  // very bad idea because the order of bonds will almost certainly change on
  // the atom and the chirality is referenced to bond order.

  // --------- --------- --------- --------- --------- ---------
  // While we're here, set the stereochemistry
  // FIX: this should be free-standing, not in this function.
  if (reactantAtom.getChiralTag() != Atom::CHI_UNSPECIFIED &&
      reactantAtom.getChiralTag() != Atom::CHI_OTHER &&
      productAtom->hasProp(common_properties::molInversionFlag)) {
    checkProductChirality(reactantAtom.getChiralTag(), productAtom);
  }

  // copy over residue information if it's there. This was github #1632
  if (reactantAtom.getMonomerInfo()) {
    productAtom->setMonomerInfo(reactantAtom.getMonomerInfo()->copy());
  }
}

Bond *addBondToProduct(const Bond &origB, RWMol &product,
                       unsigned int begAtomIdx, unsigned int endAtomIdx) {
  if (!origB.hasQuery()) {
    auto idx = product.addBond(begAtomIdx, endAtomIdx, origB.getBondType());
    return product.getBondWithIdx(idx - 1);
  } else {
    QueryBond *qbond = new QueryBond(origB.getBondType());
    qbond->setBeginAtomIdx(begAtomIdx);
    qbond->setEndAtomIdx(endAtomIdx);
    qbond->setQuery(origB.getQuery()->copy());
    bool takeOwnership = true;
    product.addBond(qbond, takeOwnership);
    return qbond;
  }
}

void addMissingProductBonds(const Bond &origB, RWMOL_SPTR product,
                            ReactantProductAtomMapping *mapping) {
  unsigned int begIdx = origB.getBeginAtomIdx();
  unsigned int endIdx = origB.getEndAtomIdx();

  std::vector<unsigned> prodBeginIdxs = mapping->reactProdAtomMap[begIdx];
  std::vector<unsigned> prodEndIdxs = mapping->reactProdAtomMap[endIdx];
  CHECK_INVARIANT(prodBeginIdxs.size() == prodEndIdxs.size(),
                  "Different number of start-end points for product bonds.");
  for (unsigned i = 0; i < prodBeginIdxs.size(); i++) {
    addBondToProduct(origB, *product, prodBeginIdxs.at(i), prodEndIdxs.at(i));
  }
}

void addMissingProductAtom(const Atom &reactAtom, unsigned reactNeighborIdx,
                           unsigned prodNeighborIdx, RWMOL_SPTR product,
                           const ROMol &reactant,
                           ReactantProductAtomMapping *mapping, unsigned int reactantId) {
  Atom *newAtom = nullptr;
  if (!reactAtom.hasQuery()) {
    newAtom = new Atom(reactAtom);
  } else {
    newAtom = new QueryAtom(dynamic_cast<const QueryAtom &>(reactAtom));
  }
  unsigned reactAtomIdx = reactAtom.getIdx();
  newAtom->setProp<unsigned int>(common_properties::reactantAtomIdx,
                                 reactAtomIdx);
  newAtom->setProp<unsigned int>(common_properties::reactantIdx,
                                 reactantId);
  unsigned productIdx = product->addAtom(newAtom, false, true);
  mapping->reactProdAtomMap[reactAtomIdx].push_back(productIdx);
  mapping->prodReactAtomMap[productIdx] = reactAtomIdx;
  // add the bonds
  const Bond *origB =
      reactant.getBondBetweenAtoms(reactNeighborIdx, reactAtomIdx);
  unsigned int begIdx = productIdx;
  unsigned int endIdx = prodNeighborIdx;
  if (origB->getBeginAtomIdx() == reactNeighborIdx) {
    std::swap(begIdx, endIdx);
  }
  Bond *prodB = addBondToProduct(*origB, *product, begIdx, endIdx);
  if (origB->getBondType() == Bond::DOUBLE &&
      origB->getBondDir() == Bond::EITHERDOUBLE) {
    prodB->setBondDir(Bond::EITHERDOUBLE);
  }
  bool preserveExisting = true;
  prodB->updateProps(*origB, preserveExisting);
}

void addReactantNeighborsToProduct(
    const ROMol &reactant, const Atom &reactantAtom, RWMOL_SPTR product,
    boost::dynamic_bitset<> &visitedAtoms,
    std::vector<const Atom *> &chiralAtomsToCheck,
    ReactantProductAtomMapping *mapping, unsigned int reactantId) {
  std::list<const Atom *> atomStack;
  atomStack.push_back(&reactantAtom);

  // std::cerr << "-------------------" << std::endl;
  // std::cerr << "  add reactant neighbors from: " << reactantAtom.getIdx()
  //           << std::endl;
  // #if 1
  //   product->updatePropertyCache(false);
  //   product->debugMol(std::cerr);
  //   std::cerr << "-------------------" << std::endl;
  // #endif

  while (!atomStack.empty()) {
    const Atom *lReactantAtom = atomStack.front();
    // std::cerr << "    front: " << lReactantAtom->getIdx() << std::endl;
    atomStack.pop_front();

    // each atom in the stack is guaranteed to already be in the product:
    CHECK_INVARIANT(mapping->reactProdAtomMap.find(lReactantAtom->getIdx()) !=
                        mapping->reactProdAtomMap.end(),
                    "reactant atom on traversal stack not present in product.");

    std::vector<unsigned> lReactantAtomProductIndex =
        mapping->reactProdAtomMap[lReactantAtom->getIdx()];
    unsigned lreactIdx = lReactantAtom->getIdx();
    visitedAtoms[lreactIdx] = 1;
    // Check our neighbors:
    ROMol::ADJ_ITER nbrIdx, endNbrs;
    boost::tie(nbrIdx, endNbrs) = reactant.getAtomNeighbors(lReactantAtom);
    while (nbrIdx != endNbrs) {
      // Four possibilities here. The neighbor:
      //  0) has been visited already: do nothing
      //  1) is part of the match (thus already in the product): set a bond to
      //  it
      //  2) has been added: set a bond to it
      //  3) has not yet been added: add it, set a bond to it, and push it
      //     onto the stack
      // std::cerr << "       nbr: " << *nbrIdx << std::endl;
      // std::cerr << "              visited: " << visitedAtoms[*nbrIdx]
      //           << "  skipped: " << mapping->skippedAtoms[*nbrIdx]
      //           << " mapped: " << mapping->mappedAtoms[*nbrIdx]
      //           << " mappedO: " << mapping->mappedAtoms[lreactIdx] <<
      //           std::endl;
      if (!visitedAtoms[*nbrIdx] && !mapping->skippedAtoms[*nbrIdx]) {
        if (mapping->mappedAtoms[*nbrIdx]) {
          // this is case 1 (neighbor in match); set a bond to the neighbor if
          // this atom
          // is not also in the match (match-match bonds were set when the
          // product template was
          // copied in to start things off).;
          if (!mapping->mappedAtoms[lreactIdx]) {
            CHECK_INVARIANT(mapping->reactProdAtomMap.find(*nbrIdx) !=
                                mapping->reactProdAtomMap.end(),
                            "reactant atom not present in product.");
            const Bond *origB =
                reactant.getBondBetweenAtoms(lreactIdx, *nbrIdx);
            addMissingProductBonds(*origB, product, mapping);
          } else {
            // both mapped atoms are in the match.
            // they are bonded in the reactant (otherwise we wouldn't be here),
            //
            // If they do not have already have a bond in the product and did
            // not have one in the reactant template then set one here
            // If they do have a bond in the reactant template, then we
            // assume that this is an intentional bond break, so we don't do
            // anything
            //
            // this was github #1387
            unsigned prodBeginIdx = mapping->reactProdAtomMap[lreactIdx][0];
            unsigned prodEndIdx = mapping->reactProdAtomMap[*nbrIdx][0];
            if (!product->getBondBetweenAtoms(prodBeginIdx, prodEndIdx)) {
              // They must be mapped
              CHECK_INVARIANT(
                  product->getAtomWithIdx(prodBeginIdx)
                          ->hasProp(common_properties::reactionMapNum) &&
                      product->getAtomWithIdx(prodEndIdx)
                          ->hasProp(common_properties::reactionMapNum),
                  "atoms should be mapped in product");
              int a1mapidx =
                  product->getAtomWithIdx(prodBeginIdx)
                      ->getProp<int>(common_properties::reactionMapNum);
              int a2mapidx =
                  product->getAtomWithIdx(prodEndIdx)
                      ->getProp<int>(common_properties::reactionMapNum);
              if (a1mapidx > a2mapidx) {
                std::swap(a1mapidx, a2mapidx);
              }
              if (mapping->reactantTemplateAtomBonds.find(
                      std::make_pair(a1mapidx, a2mapidx)) ==
                  mapping->reactantTemplateAtomBonds.end()) {
                const Bond *origB =
                    reactant.getBondBetweenAtoms(lreactIdx, *nbrIdx);
                addMissingProductBonds(*origB, product, mapping);
              }
            }
          }
        } else if (mapping->reactProdAtomMap.find(*nbrIdx) !=
                   mapping->reactProdAtomMap.end()) {
          // case 2, the neighbor has been added and we just need to set a bond
          // to it:
          const Bond *origB = reactant.getBondBetweenAtoms(lreactIdx, *nbrIdx);
          addMissingProductBonds(*origB, product, mapping);
        } else {
          // case 3, add the atom, a bond to it, and push the atom onto the
          // stack
          const Atom *neighbor = reactant.getAtomWithIdx(*nbrIdx);
          for (unsigned int i : lReactantAtomProductIndex) {
            addMissingProductAtom(*neighbor, lreactIdx, i, product, reactant,
                                  mapping, reactantId);
          }
          // update the stack:
          atomStack.push_back(neighbor);
          // if the atom is chiral, we need to check its bond ordering later:
          if (neighbor->getChiralTag() != Atom::CHI_UNSPECIFIED) {
            chiralAtomsToCheck.push_back(neighbor);
          }
        }
      }
      nbrIdx++;
    }
  }  // end of atomStack traversal
}

void checkAndCorrectChiralityOfMatchingAtomsInProduct(
    const ROMol &reactant, unsigned reactantAtomIdx, const Atom &reactantAtom,
    RWMOL_SPTR product, ReactantProductAtomMapping *mapping) {
  for (unsigned i = 0; i < mapping->reactProdAtomMap[reactantAtomIdx].size();
       i++) {
    unsigned productAtomIdx = mapping->reactProdAtomMap[reactantAtomIdx][i];
    Atom *productAtom = product->getAtomWithIdx(productAtomIdx);

    int inversionFlag = 0;
    productAtom->getPropIfPresent(common_properties::molInversionFlag,
                                  inversionFlag);
    // if stereochemistry wasn't present in the reactant or if we're
    // either creating or destroying stereo we don't mess with this
    if (reactantAtom.getChiralTag() == Atom::CHI_UNSPECIFIED ||
        reactantAtom.getChiralTag() == Atom::CHI_OTHER || inversionFlag > 2) {
      continue;
    }

    // we can only do something sensible here if the degree in the reactants
    // and products differs by at most one
    if (reactantAtom.getDegree() < 3 || productAtom->getDegree() < 3 ||
        std::abs(static_cast<int>(reactantAtom.getDegree()) -
                 static_cast<int>(productAtom->getDegree())) > 1) {
      continue;
    }
    unsigned int nUnknown = 0;
    // get the order of the bonds around the atom in the reactant:
    INT_LIST rOrder;
    for (const auto &nbri :
         boost::make_iterator_range(reactant.getAtomBonds(&reactantAtom))) {
      rOrder.push_back(reactant[nbri]->getIdx());
    }
    INT_LIST pOrder;
    for (const auto &nbri :
         boost::make_iterator_range(product->getAtomNeighbors(productAtom))) {
      if (mapping->prodReactAtomMap.find(nbri) ==
              mapping->prodReactAtomMap.end() ||
          !reactant.getBondBetweenAtoms(reactantAtom.getIdx(),
                                        mapping->prodReactAtomMap[nbri])) {
        ++nUnknown;
        // if there's more than one bond in the product that doesn't
        // correspond to anything in the reactant, we're also doomed
        if (nUnknown > 1) {
          break;
        }
        // otherwise, add a -1 to the bond order that we'll fill in later
        pOrder.push_back(-1);
      } else {
        const Bond *rBond = reactant.getBondBetweenAtoms(
            reactantAtom.getIdx(), mapping->prodReactAtomMap[nbri]);
        CHECK_INVARIANT(rBond, "expected reactant bond not found");
        pOrder.push_back(rBond->getIdx());
      }
    }
    if (nUnknown == 1) {
      if (reactantAtom.getDegree() == productAtom->getDegree()) {
        // there's a reactant bond that hasn't yet been accounted for:
        int unmatchedBond = -1;

        for (const auto rBond : reactant.atomBonds(&reactantAtom)) {
          if (std::find(pOrder.begin(), pOrder.end(), rBond->getIdx()) ==
              pOrder.end()) {
            unmatchedBond = rBond->getIdx();
            break;
          }
        }
        // what must be true at this point:
        //  1) there's a -1 in pOrder that we'll substitute for
        //  2) unmatchedBond contains the index of the substitution
        auto bPos = std::find(pOrder.begin(), pOrder.end(), -1);
        if (unmatchedBond >= 0 && bPos != pOrder.end()) {
          *bPos = unmatchedBond;
        }
        nUnknown = 0;
        CHECK_INVARIANT(
            std::find(pOrder.begin(), pOrder.end(), -1) == pOrder.end(),
            "extra unmapped atom");
      } else if (productAtom->getDegree() > reactantAtom.getDegree()) {
        // the product has an extra bond. we can just remove the -1 from the
        // list:
        auto bPos = std::find(pOrder.begin(), pOrder.end(), -1);
        pOrder.erase(bPos);
        nUnknown = 0;
        CHECK_INVARIANT(
            std::find(pOrder.begin(), pOrder.end(), -1) == pOrder.end(),
            "extra unmapped atom");
      }
    }
    if (!nUnknown) {
      if (reactantAtom.getDegree() > productAtom->getDegree()) {
        // we lost a bond from the reactant.
        // we can just remove the unmatched reactant bond from the list
        INT_LIST::iterator rOrderIter = rOrder.begin();
        while (rOrderIter != rOrder.end() && rOrder.size() > pOrder.size()) {
          // we may invalidate the iterator so keep track of what comes next:
          auto thisOne = rOrderIter++;
          if (std::find(pOrder.begin(), pOrder.end(), *thisOne) ==
              pOrder.end()) {
            // not in the products:
            rOrder.erase(thisOne);
          }
        }
      }
      productAtom->setChiralTag(reactantAtom.getChiralTag());
      int nSwaps = countSwapsToInterconvert(rOrder, pOrder);
      bool invert = false;
      if (nSwaps % 2) {
        invert = true;
      }
      int inversionFlag;
      if (productAtom->getPropIfPresent(common_properties::molInversionFlag,
                                        inversionFlag) &&
          inversionFlag == 1) {
        invert = !invert;
      }
      if (invert) {
        productAtom->invertChirality();
      }
    }
  }
}

// Check the chirality of atoms not directly involved in the reaction
void checkAndCorrectChiralityOfProduct(
    const std::vector<const Atom *> &chiralAtomsToCheck, RWMOL_SPTR product,
    ReactantProductAtomMapping *mapping) {
  for (auto reactantAtom : chiralAtomsToCheck) {
    CHECK_INVARIANT(reactantAtom->getChiralTag() != Atom::CHI_UNSPECIFIED,
                    "missing atom chirality.");
    const auto reactAtomDegree =
        reactantAtom->getOwningMol().getAtomDegree(reactantAtom);
    for (unsigned i = 0;
         i < mapping->reactProdAtomMap[reactantAtom->getIdx()].size(); i++) {
      unsigned productAtomIdx =
          mapping->reactProdAtomMap[reactantAtom->getIdx()][i];
      Atom *productAtom = product->getAtomWithIdx(productAtomIdx);
      CHECK_INVARIANT(
          reactantAtom->getChiralTag() == productAtom->getChiralTag(),
          "invalid product chirality.");

      if (reactAtomDegree != product->getAtomDegree(productAtom)) {
        // If the number of bonds to the atom has changed in the course of the
        // reaction we're lost, so remove chirality.
        //  A word of explanation here: the atoms in the chiralAtomsToCheck
        //  set are not explicitly mapped atoms of the reaction, so we really
        //  have no idea what to do with this case. At the moment I'm not even
        //  really sure how this could happen, but better safe than sorry.
        productAtom->setChiralTag(Atom::CHI_UNSPECIFIED);
      } else if (reactantAtom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
                 reactantAtom->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) {
        // this will contain the indices of product bonds in the
        // reactant order:
        INT_LIST newOrder;
        ROMol::OEDGE_ITER beg, end;
        boost::tie(beg, end) =
            reactantAtom->getOwningMol().getAtomBonds(reactantAtom);
        while (beg != end) {
          const Bond *reactantBond = reactantAtom->getOwningMol()[*beg];
          unsigned int oAtomIdx =
              reactantBond->getOtherAtomIdx(reactantAtom->getIdx());
          CHECK_INVARIANT(mapping->reactProdAtomMap.find(oAtomIdx) !=
                              mapping->reactProdAtomMap.end(),
                          "other atom from bond not mapped.");
          const Bond *productBond;
          unsigned neighborBondIdx = mapping->reactProdAtomMap[oAtomIdx][i];
          productBond = product->getBondBetweenAtoms(productAtom->getIdx(),
                                                     neighborBondIdx);
          CHECK_INVARIANT(productBond, "no matching bond found in product");
          newOrder.push_back(productBond->getIdx());
          ++beg;
        }
        int nSwaps = productAtom->getPerturbationOrder(newOrder);
        if (nSwaps % 2) {
          productAtom->invertChirality();
        }
      } else {
        // not tetrahedral chirality, don't do anything.
      }
    }
  }  // end of loop over chiralAtomsToCheck
}

///
// Copy enhanced stereo groups from one reactant to the product
// stereo groups are copied if any atoms are in the product with
// the stereochemical information from the reactant preserved.
void copyEnhancedStereoGroups(const ROMol &reactant, RWMOL_SPTR product,
                              const ReactantProductAtomMapping &mapping) {
  std::vector<StereoGroup> new_stereo_groups;
  for (const auto &sg : reactant.getStereoGroups()) {
    std::vector<Atom *> atoms;
    std::vector<Bond *> bonds;
    for (const auto &reactantAtom : sg.getAtoms()) {
      auto productAtoms = mapping.reactProdAtomMap.find(reactantAtom->getIdx());
      if (productAtoms == mapping.reactProdAtomMap.end()) {
        continue;
      }

      for (auto &productAtomIdx : productAtoms->second) {
        auto productAtom = product->getAtomWithIdx(productAtomIdx);
        // If chirality destroyed by the reaction, skip the atom
        if (productAtom->getChiralTag() == Atom::CHI_UNSPECIFIED) {
          continue;
        }
        // If chirality defined explicitly by the reaction, skip the atom
        int flagVal = 0;
        productAtom->getPropIfPresent(common_properties::molInversionFlag,
                                      flagVal);
        if (flagVal == 4) {
          continue;
        }
        atoms.push_back(productAtom);
      }
    }
    if (!atoms.empty()) {
      new_stereo_groups.emplace_back(sg.getGroupType(), std::move(atoms),
                                     std::move(bonds), sg.getReadId());
    }
  }

  // Although we have added storage, and canonicalization of Atropisomers,
  // searching is not yet supported.  When it is, we will need to copy
  // bond-part of the SG groups to the products as appropriate.

  if (!new_stereo_groups.empty()) {
    auto &existing_sg = product->getStereoGroups();
    new_stereo_groups.insert(new_stereo_groups.end(), existing_sg.begin(),
                             existing_sg.end());
    product->setStereoGroups(std::move(new_stereo_groups));
  }
}

void generateProductConformers(Conformer *productConf, const ROMol &reactant,
                               ReactantProductAtomMapping *mapping) {
  if (!reactant.getNumConformers()) {
    return;
  }
  const Conformer &reactConf = reactant.getConformer();
  if (reactConf.is3D()) {
    productConf->set3D(true);
  }
  for (std::map<unsigned int, std::vector<unsigned int>>::const_iterator pr =
           mapping->reactProdAtomMap.begin();
       pr != mapping->reactProdAtomMap.end(); ++pr) {
    std::vector<unsigned> prodIdxs = pr->second;
    if (prodIdxs.size() > 1) {
      BOOST_LOG(rdWarningLog) << "reactant atom match more than one product "
                                 "atom, coordinates need to be revised\n";
    }
    // is this reliable when multiple product atom mapping occurs????
    for (unsigned int prodIdx : prodIdxs) {
      productConf->setAtomPos(prodIdx, reactConf.getAtomPos(pr->first));
    }
  }
}

void addReactantAtomsAndBonds(const ChemicalReaction &rxn, RWMOL_SPTR product,
                              const ROMOL_SPTR reactantSptr,
                              const MatchVectType &match,
                              const ROMOL_SPTR reactantTemplate,
                              Conformer *productConf,
			      unsigned int reactantId) {
  // start by looping over all matches and marking the reactant atoms that
  // have already been "added" by virtue of being in the product. We'll also
  // mark "skipped" atoms: those that are in the match, but not in this
  // particular product (or, perhaps, not in any product)
  // At the same time we'll set up a map between the indices of those
  // atoms and their index in the product.
  ReactantProductAtomMapping *mapping = getAtomMappingsReactantProduct(
      match, *reactantTemplate, product, reactantSptr->getNumAtoms());

  boost::dynamic_bitset<> visitedAtoms(reactantSptr->getNumAtoms());

  const ROMol *reactant = reactantSptr.get();

  // ---------- ---------- ---------- ---------- ---------- ----------
  // Loop over the bonds in the product and look for those that have
  // the NullBond property set. These are bonds for which no information
  // (other than their existence) was provided in the template
  setReactantBondPropertiesToProduct(product, *reactant, mapping);

  // ---------- ---------- ---------- ---------- ---------- ----------
  // Loop over the atoms in the match that were added to the product
  // From the corresponding atom in the reactant, do a graph traversal
  // to find other connected atoms that should be added:

  std::vector<const Atom *> chiralAtomsToCheck;
  for (const auto &matchIdx : match) {
    int reactantAtomIdx = matchIdx.second;
    if (mapping->mappedAtoms[reactantAtomIdx]) {
      CHECK_INVARIANT(mapping->reactProdAtomMap.find(reactantAtomIdx) !=
                          mapping->reactProdAtomMap.end(),
                      "mapped reactant atom not present in product.");

      const Atom *reactantAtom = reactant->getAtomWithIdx(reactantAtomIdx);
      for (unsigned i = 0;
           i < mapping->reactProdAtomMap[reactantAtomIdx].size(); i++) {
        // here's a pointer to the atom in the product:
        unsigned productAtomIdx = mapping->reactProdAtomMap[reactantAtomIdx][i];
        Atom *productAtom = product->getAtomWithIdx(productAtomIdx);
        setReactantAtomPropertiesToProduct(productAtom, *reactantAtom,
                                           rxn.getImplicitPropertiesFlag(), reactantId);
        if (reactantAtom->hasQuery()) {
          // finally: if the reactant atom is a query we should copy over the
          // query information. We need to replace the atom to do this
          QueryAtom newAtom(*productAtom);
          newAtom.setQuery(reactantAtom->getQuery()->copy());
          // replaceAtom copies
          product->replaceAtom(productAtomIdx, &newAtom);
        }
      }
      // now traverse:
      addReactantNeighborsToProduct(*reactant, *reactantAtom, product,
                                    visitedAtoms, chiralAtomsToCheck, mapping, reactantId);

      // now that we've added all the reactant's neighbors, check to see if
      // it is chiral in the reactant but is not in the reaction. If so
      // we need to worry about its chirality
      checkAndCorrectChiralityOfMatchingAtomsInProduct(
          *reactant, reactantAtomIdx, *reactantAtom, product, mapping);
    }
  }  // end of loop over matched atoms

  // ---------- ---------- ---------- ---------- ---------- ----------
  // now we need to loop over atoms from the reactants that were chiral but
  // not directly involved in the reaction in order to make sure their
  // chirality hasn't been disturbed
  checkAndCorrectChiralityOfProduct(chiralAtomsToCheck, product, mapping);

  updateStereoBonds(product, *reactant, mapping);

  // ---------- ---------- ---------- ---------- ---------- ----------
  // Copy enhanced StereoGroup data from reactant to product if it is
  // still valid. Uses ChiralTag checks above.
  copyEnhancedStereoGroups(*reactant, product, *mapping);

  // ---------- ---------- ---------- ---------- ---------- ----------
  // finally we may need to set the coordinates in the product conformer:
  if (productConf) {
    productConf->resize(product->getNumAtoms());
    generateProductConformers(productConf, *reactant, mapping);
  }

  delete (mapping);
}  // end of addReactantAtomsAndBonds

namespace {
void copyTemplateStereoGroupsToMol(const ROMol &templateMol,
                                   RWMOL_SPTR product) {
  const auto &stereoGroups = templateMol.getStereoGroups();
  if (stereoGroups.empty()) {
    return;
  }

  boost::dynamic_bitset<> atomsInTemplateStereoGroups(product->getNumAtoms());
  std::vector<StereoGroup> newStereoGroups;
  for (const auto &sg : stereoGroups) {
    bool keepIt = true;
    std::vector<Atom *> atoms;
    for (const auto &atom : sg.getAtoms()) {
      if (auto mapNum = atom->getAtomMapNum()) {
        for (auto productAtom : product->atoms()) {
          int oldMapNum = 0;
          if (productAtom->getPropIfPresent(common_properties::reactionMapNum,
                                            oldMapNum) &&
              oldMapNum == mapNum) {
            atoms.push_back(productAtom);
            atomsInTemplateStereoGroups.set(productAtom->getIdx());
          }
        }
      } else {
        keepIt = false;
        break;
      }
    }
    if (keepIt && !atoms.empty()) {
      std::vector<Bond *> bonds;
      newStereoGroups.emplace_back(sg.getGroupType(), std::move(atoms),
                                   std::move(bonds), sg.getReadId());
    }
  }
  if (!newStereoGroups.empty()) {
    // remove any stereo groups that are already present in the product (these
    // were copied over from the reactant in copyEnhancedStereoGroups()) and
    // that overlap with the added ones
    for (const auto &productSG : product->getStereoGroups()) {
      unsigned int nOverlappingAtoms = 0;
      for (const auto atom : productSG.getAtoms()) {
        if (atomsInTemplateStereoGroups[atom->getIdx()]) {
          ++nOverlappingAtoms;
        }
      }
      if (!nOverlappingAtoms) {
        // no overlapping atoms, we can just keep the stereogroup.
        newStereoGroups.push_back(productSG);
      } else if (nOverlappingAtoms < productSG.getAtoms().size()) {
        // some of the atoms in the stereo group are not already there
        // in the product, we need to split the stereo group
        std::vector<Atom *> newAtoms;
        for (const auto atom : productSG.getAtoms()) {
          if (!atomsInTemplateStereoGroups[atom->getIdx()]) {
            newAtoms.push_back(atom);
          }
        }
        std::vector<Bond *> newBonds;
        newStereoGroups.emplace_back(productSG.getGroupType(),
                                     std::move(newAtoms), std::move(newBonds),
                                     productSG.getReadId());
      }
      // else: all atoms in the stereo group are already there, we can skip it
    }
    product->setStereoGroups(std::move(newStereoGroups));
  }
}
}  // namespace

MOL_SPTR_VECT
generateOneProductSet(const ChemicalReaction &rxn,
                      const MOL_SPTR_VECT &reactants,
                      const std::vector<MatchVectType> &reactantsMatch) {
  PRECONDITION(reactants.size() == reactantsMatch.size(),
               "vector size mismatch");

  // if any of the reactants have a conformer, we'll go ahead and
  // generate conformers for the products:
  bool doConfs = false;
  // if any of the reactants have a single bond with directionality specified,
  // we will make sure that the output molecules have directionality
  // specified.
  bool doBondDirs = false;
  for (const auto &reactant : reactants) {
    if (reactant->getNumConformers()) {
      doConfs = true;
    }
    for (const auto bnd : reactant->bonds()) {
      if (bnd->getBondType() == Bond::SINGLE &&
          bnd->getBondDir() > Bond::NONE) {
        doBondDirs = true;
        break;
      }
    }
    if (doConfs && doBondDirs) {
      break;
    }
  }

  MOL_SPTR_VECT res;
  res.resize(rxn.getNumProductTemplates());
  unsigned int prodId = 0;
  for (auto pTemplIt = rxn.beginProductTemplates();
       pTemplIt != rxn.endProductTemplates(); ++pTemplIt) {
    // copy product template and its properties to a new product RWMol
    RWMOL_SPTR product = convertTemplateToMol(*pTemplIt);
    Conformer *conf = nullptr;
    if (doConfs) {
      conf = new Conformer();
      conf->set3D(false);
    }

    unsigned int reactantId = 0;
    for (auto iter = rxn.beginReactantTemplates();
         iter != rxn.endReactantTemplates(); ++iter, reactantId++) {
      addReactantAtomsAndBonds(rxn, product, reactants.at(reactantId),
                               reactantsMatch.at(reactantId), *iter, conf, reactantId);
    }

    if (doConfs) {
      product->addConformer(conf, true);
    }

    // if there was bond direction information in any reactant, it has been
    // lost, add it back.
    if (doBondDirs) {
      MolOps::setDoubleBondNeighborDirections(*product);
    }

    // if the product template has stereo groups, copy them over now
    if (!(*pTemplIt)->getStereoGroups().empty()) {
      copyTemplateStereoGroupsToMol(**pTemplIt, product);
    }

    res[prodId] = product;
    ++prodId;
  }
  return res;
}
void identifyAtomsInReactantTemplateNotProductTemplate(
    const ROMol &reactant, boost::dynamic_bitset<> &atoms,
    std::map<unsigned int, unsigned int> &reactantProductMap,
    const MatchVectType &reactantMatch) {
  for (const auto atom : reactant.atoms()) {
    if (atom->getAtomMapNum()) {
      if (reactantProductMap.find(atom->getAtomMapNum()) ==
          reactantProductMap.end()) {
        // atom map not present in product
        atoms.set(reactantMatch[atom->getIdx()].second);
      }
    } else {
      // unmapped atoms in the reactants are lost in the products:
      atoms.set(reactantMatch[atom->getIdx()].second);
    }
  }
}
void traverseToFindAtomsToRemove(const ROMol &reactant, const ROMol &templ,
                                 boost::dynamic_bitset<> &atoms,
                                 const MatchVectType &reactantMatch) {
  // toRemove marks both atoms that need to be removed and those we can traverse
  // to
  boost::dynamic_bitset<> toRemove = ~atoms;
  for (const auto &tpl : reactantMatch) {
    toRemove.reset(tpl.second);
  }
  for (const auto &tpl : reactantMatch) {
    std::deque<const Atom *> toConsider;
    if (templ.getAtomWithIdx(tpl.first)->getAtomMapNum() &&
        !atoms[tpl.second]) {
      toConsider.push_back(reactant.getAtomWithIdx(tpl.second));
    }

    while (!toConsider.empty()) {
      auto atom = toConsider.back();
      toConsider.pop_back();
      toRemove.reset(atom->getIdx());
      for (const auto nbr : reactant.atomNeighbors(atom)) {
        if (toRemove[nbr->getIdx()]) {
          toConsider.push_front(nbr);
        }
      }
    }
  }
  atoms |= toRemove;
}

}  // namespace ReactionRunnerUtils

std::vector<MOL_SPTR_VECT> run_Reactants(const ChemicalReaction &rxn,
                                         const MOL_SPTR_VECT &reactants,
                                         unsigned int maxProducts) {
  if (!rxn.isInitialized()) {
    throw ChemicalReactionException(
        "initMatchers() must be called before runReactants()");
  }
  if (reactants.size() != rxn.getNumReactantTemplates()) {
    throw ChemicalReactionException(
        "Number of reactants provided does not match number of reactant "
        "templates.");
  }
  for (auto msptr : reactants) {
    CHECK_INVARIANT(msptr, "bad molecule in reactants");
    msptr->clearAllAtomBookmarks();  // we use this as scratch space
  }

  std::vector<MOL_SPTR_VECT> productMols;
  productMols.clear();

  // if we have no products, return now:
  if (!rxn.getNumProductTemplates()) {
    return productMols;
  }

  // find the matches for each reactant:
  VectVectMatchVectType matchesByReactant;
  if (!ReactionRunnerUtils::getReactantMatches(
          reactants, rxn, matchesByReactant, maxProducts)) {
    // some reactants didn't find a match, return an empty product list:
    return productMols;
  }
  // -------------------------------------------------------
  // we now have matches for each reactant, so we can start creating products:
  // start by doing the combinatorics on the matches:
  VectVectMatchVectType reactantMatchesPerProduct;
  ReactionRunnerUtils::generateReactantCombinations(
      matchesByReactant, reactantMatchesPerProduct, maxProducts);
  productMols.resize(reactantMatchesPerProduct.size());

  for (unsigned int productId = 0; productId != productMols.size();
       ++productId) {
    MOL_SPTR_VECT lProds = ReactionRunnerUtils::generateOneProductSet(
        rxn, reactants, reactantMatchesPerProduct[productId]);
    productMols[productId] = lProds;
  }

  return productMols;
}  // end of ChemicalReaction::runReactants()

namespace {
bool updateAtomsModifiedByReaction(
    RWMol &reactant, const ROMOL_SPTR reactantTemplate,
    const ROMOL_SPTR productTemplate,
    const std::map<unsigned int, unsigned int> &productAtomMap,
    const std::map<unsigned int, unsigned int> &reactantProductMap,
    const MatchVectType &match) {
  bool molModified = false;
  for (const auto &pr : reactantProductMap) {
    const auto rAtom = reactantTemplate->getAtomWithIdx(pr.second);
    const auto pAtom =
        productTemplate->getAtomWithIdx(productAtomMap.at(pr.first));
    const auto atom = reactant.getAtomWithIdx(match[pr.second].second);
    if (rAtom->getAtomicNum() != pAtom->getAtomicNum() &&
        (pAtom->getAtomicNum() || !pAtom->hasQuery())) {
      atom->setAtomicNum(pAtom->getAtomicNum());
      molModified = true;
    }
    if (ReactionRunnerUtils::updatePropsFromImplicitProps(pAtom, atom)) {
      molModified = true;
    }
    // check if we need to modify stereo
    int molInversionFlag;
    if (pAtom->getPropIfPresent(common_properties::molInversionFlag,
                                molInversionFlag)) {
      auto atomTag = atom->getChiralTag();
      switch (molInversionFlag) {
        case 0:  // no chiral impact, do nothing
        case 2:  // retention, do nothing
          break;
        case 1:
          // inversion
          if (atomTag != Atom::ChiralType::CHI_OTHER &&
              atomTag != Atom::ChiralType::CHI_UNSPECIFIED) {
            atom->invertChirality();
            molModified = true;
          }
          break;
        case 3:
          // destroy
          atom->setChiralTag(Atom::ChiralType::CHI_UNSPECIFIED);
          molModified = true;
          break;
        case 4:
          // create
          atom->setChiralTag(pAtom->getChiralTag());
          molModified = true;
          // check swaps
          {
            std::vector<int> porder;
            for (const auto nbrAtom : productTemplate->atomNeighbors(pAtom)) {
              if (nbrAtom->getAtomMapNum()) {
                porder.push_back(nbrAtom->getAtomMapNum());
              }
            }
            // get the ordered vect of atom map numbers for the neighbors
            // of atom
            std::vector<int> aorder;
            for (auto aidx :
                 boost::make_iterator_range(reactant.getAtomNeighbors(atom))) {
              auto miter = std::find_if(
                  match.begin(), match.end(), [aidx](const auto &pr) {
                    return static_cast<unsigned int>(pr.second) == aidx;
                  });
              if (miter != match.end()) {
                auto rNbr = reactantTemplate->getAtomWithIdx(miter->first);
                if (rNbr->getAtomMapNum()) {
                  aorder.push_back(rNbr->getAtomMapNum());
                }
              }
            }
            if (porder.size() == aorder.size()) {
              auto nswaps = countSwapsToInterconvert(aorder, porder);
              if (nswaps % 2) {
                atom->invertChirality();
              }
            }
          }
          break;
        default:
          BOOST_LOG(rdWarningLog)
              << "unrecognized chiral inversion/retention flag "
                 "on product atom ignored\n";
      }
    }
  }
  return molModified;
}

bool updateBondsModifiedByReaction(
    RWMol &reactant, const ROMOL_SPTR reactantTemplate,
    const ROMOL_SPTR productTemplate,
    const std::map<unsigned int, unsigned int> &productAtomMap,
    const std::map<unsigned int, unsigned int> &reactantProductMap,
    const MatchVectType &match) {
  bool molModified = false;
  for (const auto &pr : reactantProductMap) {
    const auto rAtom = reactantTemplate->getAtomWithIdx(pr.second);
    const auto pAtom =
        productTemplate->getAtomWithIdx(productAtomMap.at(pr.first));
    const auto atom = reactant.getAtomWithIdx(match[pr.second].second);
    for (const auto nbr : productTemplate->atomNeighbors(pAtom)) {
      if (nbr->getAtomMapNum() &&
          reactantProductMap.find(nbr->getAtomMapNum()) !=
              reactantProductMap.end()) {
        const auto pBond = productTemplate->getBondBetweenAtoms(pAtom->getIdx(),
                                                                nbr->getIdx());
        ASSERT_INVARIANT(pBond,
                         "missing bond between known neighbors in product");
        const auto rBond = reactantTemplate->getBondBetweenAtoms(
            rAtom->getIdx(), reactantProductMap.at(nbr->getAtomMapNum()));
        if (rBond) {
          if (pBond->getBondType() != Bond::BondType::UNSPECIFIED &&
              pBond->getBondType() != rBond->getBondType()) {
            const auto bond = reactant.getBondBetweenAtoms(
                match[rBond->getBeginAtomIdx()].second,
                match[rBond->getEndAtomIdx()].second);
            ASSERT_INVARIANT(
                bond, "missing bond between known neighbors in reactant");
            bond->setBondType(pBond->getBondType());
            molModified = true;
          }
        } else {
          // there was no corresponding bond in the reactant template, was there
          // one in the reactant?
          const auto bond = reactant.getBondBetweenAtoms(
              match[rAtom->getIdx()].second,
              match[reactantProductMap.at(nbr->getAtomMapNum())].second);
          if (!bond) {
            auto begIdx = match[reactantProductMap.at(
                                    pBond->getBeginAtom()->getAtomMapNum())]
                              .second;
            auto endIdx = match[reactantProductMap.at(
                                    pBond->getEndAtom()->getAtomMapNum())]
                              .second;

            ReactionRunnerUtils::addBondToProduct(*pBond, reactant, begIdx,
                                                  endIdx);
            molModified = true;
          } else if (bond->getBondType() != pBond->getBondType()) {
            bond->setBondType(pBond->getBondType());
            molModified = true;
          }
        }
      }
    }
    // now look for bonds which were in the reactant template but are not in the
    // product template
    for (const auto nbr : reactantTemplate->atomNeighbors(rAtom)) {
      if (nbr->getAtomMapNum() &&
          productAtomMap.find(nbr->getAtomMapNum()) != productAtomMap.end() &&
          !productTemplate->getBondBetweenAtoms(
              pAtom->getIdx(), productAtomMap.at(nbr->getAtomMapNum()))) {
        // remove the bond in the reactant
        reactant.removeBond(atom->getIdx(), match[nbr->getIdx()].second);
        molModified = true;
      }
    }
  }
  return molModified;
}

}  // namespace

// Modifies a single reactant IN PLACE
bool run_Reactant(const ChemicalReaction &rxn, RWMol &reactant,
                  bool removeUnmatchedAtoms) {
  PRECONDITION(rxn.getNumReactantTemplates() == 1,
               "only one reactant supported");
  PRECONDITION(rxn.getNumProductTemplates() == 1, "only one product supported");
  if (!rxn.isInitialized()) {
    throw ChemicalReactionException(
        "initMatchers() must be called before runReactants()");
  }
  const unsigned int reactantIdx = 0;
  const auto reactantTemplate = rxn.getReactants()[reactantIdx];
  const auto productTemplate = rxn.getProducts()[0];

  std::map<unsigned int, unsigned int>
      productAtomMap;  // atom mapnum -> product atom index
  for (const auto atom : productTemplate->atoms()) {
    if (atom->getAtomMapNum()) {
      productAtomMap[atom->getAtomMapNum()] = atom->getIdx();
    }
  }
  std::map<unsigned int, unsigned int>
      reactantProductMap;  // atom mapnum -> reactant atom index, for atoms
                           // which are also mapped in the product
  for (const auto atom : reactantTemplate->atoms()) {
    if (atom->getAtomMapNum()) {
      if (productAtomMap.find(atom->getAtomMapNum()) != productAtomMap.end()) {
        reactantProductMap[atom->getAtomMapNum()] = atom->getIdx();
      }
    }
  }

  // we don't support reactions with unmapped or new atoms in the products
  for (const auto atom : productTemplate->atoms()) {
    if (!atom->getAtomMapNum() ||
        reactantProductMap.find(atom->getAtomMapNum()) ==
            reactantProductMap.end()) {
      throw ChemicalReactionException(
          "single component reactions which add atoms in the product "
          "are not supported");
    }
  }

  auto reactantMatch = ReactionRunnerUtils::getReactantMatchesToTemplate(
      reactant, *reactantTemplate, 1, rxn.getSubstructParams());
  if (reactantMatch.empty()) {
    return false;
  }
  const auto &match = reactantMatch[0];

  // we now have a match for the reactant, so we can work on it
  // start by marking atoms which are in the reactant template, but not in the
  // product template for removal
  boost::dynamic_bitset<> atomsToRemove(reactant.getNumAtoms());
  // finds atoms in the reactantTemplate which aren't in the productTemplate
  ReactionRunnerUtils::identifyAtomsInReactantTemplateNotProductTemplate(
      *reactantTemplate, atomsToRemove, reactantProductMap, match);
  if (removeUnmatchedAtoms) {
    // identify atoms which did not match something in the reactant template but
    // which should be removed from the molecule
    ReactionRunnerUtils::traverseToFindAtomsToRemove(
        reactant, *reactantTemplate, atomsToRemove, match);
  }
  bool molModified = false;
  reactant.beginBatchEdit();

  if (updateAtomsModifiedByReaction(reactant, reactantTemplate, productTemplate,
                                    productAtomMap, reactantProductMap,
                                    match)) {
    molModified = true;
  }

  if (updateBondsModifiedByReaction(reactant, reactantTemplate, productTemplate,
                                    productAtomMap, reactantProductMap,
                                    match)) {
    molModified = true;
  }

  // remove atoms which aren't transferred to the products (marked above)
  if (atomsToRemove.count()) {
    molModified = true;
    for (unsigned int i = 0; i < atomsToRemove.size(); ++i) {
      if (atomsToRemove[i]) {
        reactant.removeAtom(i);
      }
    }
  }
  reactant.commitBatchEdit();
  return molModified;
}

// Generate the product set based on a SINGLE reactant
std::vector<MOL_SPTR_VECT> run_Reactant(const ChemicalReaction &rxn,
                                        const ROMOL_SPTR &reactant,
                                        unsigned int reactantIdx) {
  if (!rxn.isInitialized()) {
    throw ChemicalReactionException(
        "initMatchers() must be called before runReactants()");
  }

  PRECONDITION(reactant, "bad molecule in reactants");
  reactant->clearAllAtomBookmarks();  // we use this as scratch space
  std::vector<MOL_SPTR_VECT> productMols;

  // if we have no products, return now:
  if (!rxn.getNumProductTemplates()) {
    return productMols;
  }

  PRECONDITION(static_cast<size_t>(reactantIdx) < rxn.getReactants().size(),
               "reactantIdx out of bounds");
  // find the matches for each reactant:
  VectVectMatchVectType matchesByReactant;

  // assemble the reactants (use an empty mol for missing reactants)
  MOL_SPTR_VECT reactants(rxn.getNumReactantTemplates());
  for (size_t i = 0; i < rxn.getNumReactantTemplates(); ++i) {
    if (i == reactantIdx) {
      reactants[i] = reactant;
    } else {
      reactants[i] = ROMOL_SPTR(new ROMol);
    }
  }

  if (!ReactionRunnerUtils::getReactantMatches(
          reactants, rxn, matchesByReactant, 1000, reactantIdx)) {
    return productMols;
  }

  VectMatchVectType &matches = matchesByReactant[reactantIdx];
  // each match on a reactant is a separate product
  VectVectMatchVectType matchesAtReactants(matches.size());
  for (size_t i = 0; i < matches.size(); ++i) {
    matchesAtReactants[i].resize(rxn.getReactants().size());
    matchesAtReactants[i][reactantIdx] = matches[i];
  }
  productMols.resize(matches.size());

  for (unsigned int productId = 0; productId != productMols.size();
       ++productId) {
    MOL_SPTR_VECT lProds = ReactionRunnerUtils::generateOneProductSet(
        rxn, reactants, matchesAtReactants[productId]);
    productMols[productId] = lProds;
  }

  return productMols;
}  // end of ChemicalReaction::runReactants()

namespace {
int getAtomMapNo(ROMol::ATOM_BOOKMARK_MAP *map, Atom *atom) {
  if (map) {
    for (ROMol::ATOM_BOOKMARK_MAP::const_iterator it = map->begin();
         it != map->end(); ++it) {
      for (auto ait = it->second.begin(); ait != it->second.end(); ++ait) {
        if (*ait == atom) {
          return it->first;
        }
      }
    }
  }
  return -1;
}
}  // namespace

namespace {
struct RGroup {
  Atom *rAtom;
  Bond::BondType bond_type;
  int mapno;
  RGroup(Atom *atom, Bond::BondType type, int curmapno = -1)
      : rAtom(atom), bond_type(type), mapno(curmapno) {}
  RGroup(const RGroup &rhs)
      : rAtom(rhs.rAtom), bond_type(rhs.bond_type), mapno(rhs.mapno) {}
};
}  // namespace
ROMol *reduceProductToSideChains(const ROMOL_SPTR &product,
                                 bool addDummyAtoms) {
  CHECK_INVARIANT(product, "bad molecule");
  auto *mol = new RWMol(*product.get());

  // CHECK_INVARIANT(productID < rxn.getProducts().size());

  // Remove all atoms belonging to the product UNLESS
  //  they are attached to the reactant (inverse r-group)
  const unsigned int numAtoms = mol->getNumAtoms();

  // Go backwards through the atoms so that removing atoms doesn't
  //  muck up the next atom in the loops index.
  std::vector<unsigned int> atomsToRemove;
  for (int scaffold_atom_idx = numAtoms - 1; scaffold_atom_idx >= 0;
       --scaffold_atom_idx) {
    Atom *scaffold_atom =
        mol->getAtomWithIdx(rdcast<unsigned int>(scaffold_atom_idx));
    // add map no's here from dummy atoms
    // was this atom in one of the reactant templates?
    if (scaffold_atom->hasProp(common_properties::reactionMapNum) ||
        !scaffold_atom->hasProp(common_properties::reactantAtomIdx)) {
      // are we attached to a reactant atom?
      std::vector<RGroup> bonds_to_product;
      for (const auto nbr : mol->atomNeighbors(scaffold_atom)) {
        if (!nbr->hasProp(common_properties::reactionMapNum) &&
            nbr->hasProp(common_properties::reactantAtomIdx)) {
          if (nbr->hasProp(WAS_DUMMY)) {
            bonds_to_product.emplace_back(
                nbr,
                mol->getBondBetweenAtoms(scaffold_atom->getIdx(), nbr->getIdx())
                    ->getBondType(),
                nbr->getProp<int>(common_properties::reactionMapNum));
          } else {
            bonds_to_product.emplace_back(
                nbr,
                mol->getBondBetweenAtoms(scaffold_atom->getIdx(), nbr->getIdx())
                    ->getBondType());
          }
        }
      }

      // Search the atom bookmark to see if we can find the original
      //  reaction mapping number to the scaffold_atom
      //  sometimes this is a proper rgroup, so use that mapno
      // C-C:12 >> C:12 # will probably work
      //  C-C:12-C >>  C:12  # probably won't
      int mapno = -1;
      if (bonds_to_product.size()) {
        mapno = getAtomMapNo(mol->getAtomBookmarks(), scaffold_atom);
      }

      atomsToRemove.push_back(rdcast<unsigned int>(scaffold_atom_idx));

      if (bonds_to_product.size()) {
        if (addDummyAtoms) {
          // add dummy atom where the reaction scaffold would have been
          unsigned int idx = mol->addAtom();
          for (const auto &bi : bonds_to_product) {
            mol->addBond(idx, bi.rAtom->getIdx(), bi.bond_type);
            int atommapno = bi.mapno == -1 ? mapno : bi.mapno;

            if (atommapno) {
              Atom *at = mol->getAtomWithIdx(idx);
              at->setProp(common_properties::molAtomMapNumber, atommapno);
            }
          }
        } else {
          for (const auto &bi : bonds_to_product) {
            int atommapno = bi.mapno == -1 ? mapno : bi.mapno;
            if (mapno != -1) {
              std::vector<int> rgroups;
              std::vector<int> bonds;
              bi.rAtom->getPropIfPresent(common_properties::_rgroupAtomMaps,
                                         rgroups);
              bi.rAtom->getPropIfPresent(common_properties::_rgroupBonds,
                                         bonds);

              rgroups.push_back(atommapno);
              // XXX THIS MAY NOT BE SAFE
              bonds.push_back(static_cast<int>(bi.bond_type));
              bi.rAtom->setProp(common_properties::_rgroupAtomMaps, rgroups);
              bi.rAtom->setProp(common_properties::_rgroupBonds, bonds);
            }
          }
        }
      }
    }
  }
  mol->beginBatchEdit();
  for (unsigned int ai : atomsToRemove) {
    mol->removeAtom(ai);
  }
  mol->commitBatchEdit();
  return mol;
}

}  // namespace RDKit