File: ReactionUtils.cpp

package info (click to toggle)
rdkit 202503.6-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 222,024 kB
  • sloc: cpp: 411,111; python: 78,482; ansic: 26,181; java: 8,285; javascript: 4,404; sql: 2,393; yacc: 1,626; lex: 1,267; cs: 1,090; makefile: 580; xml: 229; fortran: 183; sh: 121
file content (360 lines) | stat: -rw-r--r-- 13,537 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
//
//  Copyright (c) 2014, Novartis Institutes for BioMedical Research Inc.
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Novartis Institutes for BioMedical Research Inc.
//       nor the names of its contributors may be used to endorse or promote
//       products derived from this software without specific prior written
//       permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//

#include <GraphMol/ChemReactions/Reaction.h>
#include <GraphMol/ChemReactions/ReactionUtils.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/ROMol.h>
#include <cmath>

namespace RDKit {

MOL_SPTR_VECT::const_iterator getStartIterator(const ChemicalReaction &rxn,
                                               ReactionMoleculeType t) {
  MOL_SPTR_VECT::const_iterator begin;
  if (t == Reactant) {
    begin = rxn.beginReactantTemplates();
  }
  if (t == Product) {
    begin = rxn.beginProductTemplates();
    ;
  }
  if (t == Agent) {
    begin = rxn.beginAgentTemplates();
  }
  return begin;
}

MOL_SPTR_VECT::const_iterator getEndIterator(const ChemicalReaction &rxn,
                                             ReactionMoleculeType t) {
  MOL_SPTR_VECT::const_iterator end;
  if (t == Reactant) {
    end = rxn.endReactantTemplates();
  }
  if (t == Product) {
    end = rxn.endProductTemplates();
    ;
  }
  if (t == Agent) {
    end = rxn.endAgentTemplates();
  }
  return end;
}

namespace {

bool hasReactionMoleculeTemplateSubstructMatch(
    const RDKit::ChemicalReaction &rxn,
    const RDKit::ChemicalReaction &query_rxn, RDKit::ReactionMoleculeType t) {
  for (auto begin = getStartIterator(rxn, t); begin != getEndIterator(rxn, t);
       ++begin) {
    for (auto begin_query = getStartIterator(query_rxn, t);
         begin_query != getEndIterator(query_rxn, t); ++begin_query) {
      auto tvect = SubstructMatch(*begin->get(), *begin_query->get(),
                                  rxn.getSubstructParams());
      if (!tvect.empty()) {
        return true;
      }
    }
  }
  return false;
}
}  // namespace

bool hasReactantTemplateSubstructMatch(const ChemicalReaction &rxn,
                                       const ChemicalReaction &query_rxn) {
  if (rxn.getNumReactantTemplates() < query_rxn.getNumReactantTemplates()) {
    return false;
  }
  if (query_rxn.getNumReactantTemplates() == 0) {
    return true;
  }
  return hasReactionMoleculeTemplateSubstructMatch(rxn, query_rxn, Reactant);
}

bool hasProductTemplateSubstructMatch(const ChemicalReaction &rxn,
                                      const ChemicalReaction &query_rxn) {
  if (rxn.getNumProductTemplates() < query_rxn.getNumProductTemplates()) {
    return false;
  }
  if (query_rxn.getNumProductTemplates() == 0) {
    return true;
  }
  return hasReactionMoleculeTemplateSubstructMatch(rxn, query_rxn, Product);
}

bool hasAgentTemplateSubstructMatch(const ChemicalReaction &rxn,
                                    const ChemicalReaction &query_rxn) {
  if (rxn.getNumAgentTemplates() < query_rxn.getNumAgentTemplates()) {
    return false;
  }
  if (query_rxn.getNumAgentTemplates() == 0) {
    return true;
  }
  return hasReactionMoleculeTemplateSubstructMatch(rxn, query_rxn, Agent);
}

bool hasReactionSubstructMatch(const ChemicalReaction &rxn,
                               const ChemicalReaction &query_rxn,
                               bool includeAgents) {
  if (includeAgents) {
    return (hasReactantTemplateSubstructMatch(rxn, query_rxn) &&
            hasProductTemplateSubstructMatch(rxn, query_rxn) &&
            hasAgentTemplateSubstructMatch(rxn, query_rxn));
  }
  return (hasReactantTemplateSubstructMatch(rxn, query_rxn) &&
          hasProductTemplateSubstructMatch(rxn, query_rxn));
}

bool hasReactionAtomMapping(const ChemicalReaction &rxn) {
  auto begin = getStartIterator(rxn, Reactant);
  auto end = getEndIterator(rxn, Reactant);
  for (; begin != end; ++begin) {
    const ROMol &reactant = *begin->get();
    if (MolOps::getNumAtomsWithDistinctProperty(
            reactant, common_properties::molAtomMapNumber)) {
      return true;
    }
  }
  begin = getStartIterator(rxn, Product);
  end = getEndIterator(rxn, Product);
  for (; begin != end; ++begin) {
    const ROMol &reactant = *begin->get();
    if (MolOps::getNumAtomsWithDistinctProperty(
            reactant, common_properties::molAtomMapNumber)) {
      return true;
    }
  }
  return false;
}

bool isReactionTemplateMoleculeAgent(const ROMol &mol, double agentThreshold) {
  unsigned numMappedAtoms = MolOps::getNumAtomsWithDistinctProperty(
      mol, common_properties::molAtomMapNumber);
  unsigned numAtoms = mol.getNumHeavyAtoms();
  return !(numAtoms > 0u && static_cast<double>(numMappedAtoms) /
                                    static_cast<double>(numAtoms) >=
                                agentThreshold);
}

namespace {

void getMappingNumAtomIdxMapReactants(
    const ChemicalReaction &rxn, std::map<int, Atom *> &reactantAtomMapping) {
  for (auto reactIt = rxn.beginReactantTemplates();
       reactIt != rxn.endReactantTemplates(); ++reactIt) {
    for (const auto atom : (*reactIt)->atoms()) {
      int reactMapNum;
      if (atom->getPropIfPresent(common_properties::molAtomMapNumber,
                                 reactMapNum)) {
        reactantAtomMapping[reactMapNum] = atom;
      }
    }
  }
}

// returns the atom map numbers of the neighbors of atom1 in the order in which
// the neighbors are attached. -1 in the vector for unmapped atoms,
// -1 at the end of the vector if the degree of atom1 < the degree of atom 2
std::pair<unsigned int, std::vector<int>> getNbrOrder(const Atom *atom1,
                                                      const Atom *atom2) {
  std::vector<int> order;
  order.reserve(atom1->getDegree());
  unsigned nUnmapped = 0;
  for (const auto nbrAtom : atom1->getOwningMol().atomNeighbors(atom1)) {
    if (nbrAtom->getAtomMapNum() > 0) {
      order.push_back(nbrAtom->getAtomMapNum());
    } else {
      order.push_back(-1);
      ++nUnmapped;
    }
  }
  if (atom1->getDegree() < atom2->getDegree()) {
    order.push_back(-1);
    ++nUnmapped;
  }
  return {nUnmapped, order};
}

bool checkOrderOverlap(std::vector<int> &order, unsigned int nUnmapped,
                       const std::vector<int> &refOrder) {
  bool allFound = true;
  for (auto elem : refOrder) {
    if (elem >= 0) {
      if (std::find(order.begin(), order.end(), elem) == order.end()) {
        // this one was not there, is there an unmapped slot for
        // it (i.e. a -1 value in the order)?
        if (nUnmapped) {
          auto negOne = std::find(order.begin(), order.end(), -1);
          if (negOne != order.end()) {
            *negOne = elem;
          } else {
            allFound = false;
            break;
          }
        } else {
          allFound = false;
          break;
        }
      }
    }
  }
  return allFound;
}

}  // namespace

// returns -1 if we don't find a good match
int countSwapsBetweenReactantAndProduct(const Atom *reactAtom,
                                        const Atom *prodAtom) {
  PRECONDITION(reactAtom, "bad atom");
  PRECONDITION(prodAtom, "bad atom");
  if (reactAtom->getDegree() >= 3 && prodAtom->getDegree() >= 3 &&
      std::abs(static_cast<int>(prodAtom->getDegree()) -
               static_cast<int>(reactAtom->getDegree())) <= 1) {
    std::vector<int> reactOrder;
    unsigned int nReactUnmapped;
    std::tie(nReactUnmapped, reactOrder) = getNbrOrder(reactAtom, prodAtom);
    if (nReactUnmapped <= 1) {
      std::vector<int> prodOrder;
      unsigned int nProdUnmapped;
      std::tie(nProdUnmapped, prodOrder) = getNbrOrder(prodAtom, reactAtom);
      if (nProdUnmapped <= 1) {
        // check that each element of the product mappings is
        // in the reactant mappings
        if (checkOrderOverlap(reactOrder, nReactUnmapped, prodOrder)) {
          // found a match for all the product atoms, what about all
          // the reactant atoms?
          if (checkOrderOverlap(prodOrder, nProdUnmapped, reactOrder)) {
            return countSwapsToInterconvert(reactOrder, prodOrder);
          }
        }
      }
    }
  }
  return -1;
}

void updateProductsStereochem(ChemicalReaction *rxn) {
  std::map<int, Atom *> reactantMapping;
  getMappingNumAtomIdxMapReactants(*rxn, reactantMapping);
  for (MOL_SPTR_VECT::const_iterator prodIt = rxn->beginProductTemplates();
       prodIt != rxn->endProductTemplates(); ++prodIt) {
    for (auto prodAtom : (*prodIt)->atoms()) {
      if (prodAtom->hasProp(common_properties::molInversionFlag)) {
        continue;
      }
      if (!prodAtom->hasProp(common_properties::molAtomMapNumber)) {
        // if we have stereochemistry specified, it's automatically
        // creating stereochem:
        prodAtom->setProp(common_properties::molInversionFlag, 4);
        continue;
      }
      int mapNum;
      prodAtom->getProp(common_properties::molAtomMapNumber, mapNum);
      if (reactantMapping.find(mapNum) != reactantMapping.end()) {
        const auto reactAtom = reactantMapping[mapNum];
        if (prodAtom->getChiralTag() != Atom::CHI_UNSPECIFIED &&
            prodAtom->getChiralTag() != Atom::CHI_OTHER) {
          if (reactAtom->getChiralTag() != Atom::CHI_UNSPECIFIED &&
              reactAtom->getChiralTag() != Atom::CHI_OTHER) {
            // both have stereochem specified, we're either preserving
            // or inverting
            if (reactAtom->getChiralTag() == prodAtom->getChiralTag()) {
              prodAtom->setProp(common_properties::molInversionFlag, 2);
            } else {
              // FIX: this is technically fragile: it should be checking
              // if the atoms both have tetrahedral chirality. However,
              // at the moment that's the only chirality available, so
              // there's no need to go monkeying around.
              prodAtom->setProp(common_properties::molInversionFlag, 1);
            }

            // FIX this should move out into a separate function
            // last thing to check here: if the ordering of the bonds
            // around the atom changed from reactants->products then we
            // may need to adjust the inversion flag
            int nSwaps =
                countSwapsBetweenReactantAndProduct(reactAtom, prodAtom);
            if (nSwaps >= 0 && nSwaps % 2) {
              auto mival =
                  prodAtom->getProp<int>(common_properties::molInversionFlag);
              if (mival == 1) {
                prodAtom->setProp(common_properties::molInversionFlag, 2);
              } else if (mival == 2) {
                prodAtom->setProp(common_properties::molInversionFlag, 1);
              } else {
                CHECK_INVARIANT(false, "inconsistent molInversionFlag");
              }
            }
          } else {
            // stereochem in the product, but not in the reactant
            prodAtom->setProp(common_properties::molInversionFlag, 4);
          }
        } else if (reactantMapping[mapNum]->getChiralTag() !=
                       Atom::CHI_UNSPECIFIED &&
                   reactantMapping[mapNum]->getChiralTag() != Atom::CHI_OTHER) {
          // stereochem in the reactant, but not the product:
          prodAtom->setProp(common_properties::molInversionFlag, 3);
        }
      } else {
        // introduction of new stereocenter by the reaction
        prodAtom->setProp(common_properties::molInversionFlag, 4);
      }
    }
  }
}

namespace {

void removeMappingNumbersFromReactionMoleculeTemplate(
    const MOL_SPTR_VECT &molVec) {
  for (const auto &begin : molVec) {
    ROMol &mol = *begin.get();
    for (ROMol::AtomIterator atomIt = mol.beginAtoms();
         atomIt != mol.endAtoms(); ++atomIt) {
      if ((*atomIt)->hasProp(common_properties::molAtomMapNumber)) {
        (*atomIt)->clearProp(common_properties::molAtomMapNumber);
      }
    }
  }
}

}  // namespace

void removeMappingNumbersFromReactions(const ChemicalReaction &rxn) {
  removeMappingNumbersFromReactionMoleculeTemplate(rxn.getAgents());
  removeMappingNumbersFromReactionMoleculeTemplate(rxn.getProducts());
  removeMappingNumbersFromReactionMoleculeTemplate(rxn.getReactants());
}

}  // namespace RDKit