1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
# -*- coding: utf-8 -*-
"""
Implementation of Ertl's Functional Group Algorithm in RDKit
Ertl, Peter.
An algorithm to identify functional groups in organic molecules
J Cheminform (2017) 9:36; DOI: 10.1186/s13321-017-0225-z
@author: gonzalo.colmenarejo
"""
from rdkit import Chem
import re
from rdkit.Chem.Draw import rdMolDraw2D
def psmi_can(s):
# Generation of canonical pseudosmiles from pseudosmiles
s = s.replace("[R]","[Ge]").replace("[Car]", "[Pb]").replace("[Cal]", "[Sn]").replace("[Oar]", "[Po]").replace("[Nar]", "[Sb]").replace("[Sar]","[Re]")
s = s.replace("[Nar+]", "[Sb+]").replace("[Sar+]","[Re+]").replace("[Sear]","[Bi]").replace("[Tear]","[Tl]").replace("[Oar+]", "[Po+]").replace("[Nar+]", "[Sb+]")
s = s.replace("[Nar-]", "[Sb-]").replace("[Sar+]","[Re+]").replace("[Sar-]","[Re-]").replace("[Sear+]","[Bi+]").replace("[Sear-]","[Bi-]")
mol = Chem.MolFromSmiles(s)
s = Chem.MolToSmiles(mol, canonical = True, isomericSmiles = False)
s = s.replace("[Ge]","[R]").replace("[Pb]", "[Car]").replace("[Sn]", "[Cal]").replace("[Po]", "[Oar]").replace("[Sb]", "[Nar]").replace("[Re]","[Sar]")
s = s.replace("[Sb+]", "[Nar+]").replace("[Re+]","[Sar+]").replace("[Bi]","[Sear]").replace("[Tl]","[Tear]").replace("[Po+]", "[Oar+]").replace("[Sb+]", "[Nar+]")
s = s.replace("[Nar-]", "[Sb-]").replace("[Re+]","[Sar+]").replace("[Re-]","[Sar-]").replace("[Bi+]","[Sear+]").replace("[Bi-]","[Sear-]")
return s
def cval_fix(fragment):
# Fix valences of carbons
for atom in fragment.GetAtoms():
if atom.GetSymbol() == 'C':
charge = atom.GetFormalCharge()
num_bonds = sum([bond.GetBondTypeAsDouble() for bond in atom.GetBonds()])
implicit_h = atom.GetNumImplicitHs()
explicit_h = atom.GetNumExplicitHs()
total_valence = num_bonds + implicit_h + explicit_h
if charge == 0:
if total_valence != 4:
explicit_h = 4 - num_bonds - implicit_h
atom.SetNumExplicitHs(int(explicit_h))
else:
explicit_h = 4 - num_bonds - implicit_h + charge
atom.SetNumExplicitHs(int(explicit_h))
atom.UpdatePropertyCache()
return fragment
def merge(mol, marked, aset):
# Merge initially marged atoms into FGs
bset = set()
for idx in aset:
atom = mol.GetAtomWithIdx(idx)
for nbr in atom.GetNeighbors():
jdx = nbr.GetIdx()
if jdx in marked:
marked.remove(jdx)
bset.add(jdx)
if not bset:
return
merge(mol, marked, bset)
aset.update(bset)
def get_fgs(mol):
# generation of nondecorated FGs
het23c_pattern = Chem.MolFromSmarts('A=,#[!#6]')
#het23c_pattern = Chem.MolFromSmarts('[C,c]=,#[!#6]')
c23c_pattern = Chem.MolFromSmarts('C=,#[C,c]')
acetal_pattern = Chem.MolFromSmarts('[CX4](-[O,N,S])-[O,N,S]')
oxirane_pattern = Chem.MolFromSmarts('[O,N,S]1CC1')
marked = set()
for atom in mol.GetAtoms():
if ((atom.GetAtomicNum() not in (6,1)) and (atom.GetIsAromatic() is False)):
marked.add(atom.GetIdx())
for pattern in [het23c_pattern, c23c_pattern, acetal_pattern, oxirane_pattern]:
for path in mol.GetSubstructMatches(pattern):
for atomindex in path:
marked.add(atomindex)
groups = []
while marked:
grp = set([marked.pop()])
merge(mol, marked, grp)
groups.append(grp)
for atom in mol.GetAtoms():
if ((atom.GetAtomicNum() not in (6,1)) and (atom.GetIsAromatic() is True)):
lone_atom = True
for nbr in atom.GetNeighbors():
if (nbr.GetIsAromatic() == False): # Don't merge adjacent aromatic atoms into the same FG!!
for group in groups:
if nbr.GetIdx() in group:
group.add(atom.GetIdx())
lone_atom = False
if (lone_atom):
groups.append({atom.GetIdx()})
return groups
def get_carbonyl_envs(mol, functional_groups):
# Find carbonyl environments
carbonyl_pattern = Chem.MolFromSmarts('C=O')
pats_idx = mol.GetSubstructMatches(carbonyl_pattern) # tupla of sets of matched atoms
carbonyl_envs = []
for group in functional_groups:
carbonyl_env = set()
for pat_idx in pats_idx:
neigh_list = []
if (len(set(pat_idx) & group) > 0): # identify the carbonyl corresponding in the group to that SMARTS match
c_atom = mol.GetAtomWithIdx(pat_idx[0]) # Get the C of the carbonyl
neigh_list = [((pat_idx[0], x.GetIdx()), mol.GetBondBetweenAtoms(pat_idx[0], x.GetIdx()))
for x in c_atom.GetNeighbors() if ((x.GetIdx() not in group) and (x.GetAtomicNum() == 6))]
if (len(neigh_list) > 0):
carbonyl_env.update(neigh_list) #
carbonyl_envs.append(carbonyl_env)
return carbonyl_envs
def single_ns_group(mol, group):
# Find single N, S atom groups
ns_count = 0
het_count = 0
for idx in group:
atom = mol.GetAtomWithIdx(idx)
if ((atom.GetSymbol() == 'N') or (atom.GetSymbol() == 'S')):
ns_count += 1
if atom.GetSymbol() not in ('C', 'H'):
het_count += 1
return ns_count == 1 and het_count == 1
def get_freeval_envs(mol, functional_groups):
# Find environments for heteroatoms with free valences
oh_pattern = Chem.MolFromSmarts('[OX2H]')
n_pattern = Chem.MolFromSmarts('[N;X3;H1,H2]')
sh_pattern = Chem.MolFromSmarts('[SX2H]')
# Identify atoms to preserve (those Hs in OH, NH2, and SH groups)
preserve_hs = set()
for pattern in [oh_pattern, n_pattern, sh_pattern]:
matches = mol.GetSubstructMatches(pattern)
if (len(matches) > 0): # found matches
for m in matches:
group = [g for g in functional_groups if m[0] in g][0]
if ((pattern == oh_pattern) or (single_ns_group(mol, group))): # we apply the oh pattern always but the n or s patterns only with single sn groups
atom = mol.GetAtomWithIdx(m[0]) # Retrieve O, N, or S of the hydroxyl, amine, thiol
for n_atom in atom.GetNeighbors():
if (n_atom.GetAtomicNum() == 1): # Will only preserve if explicit H, if not it remains "silent"
preserve_hs.add(n_atom.GetIdx())
freeval_envs = []
for group in functional_groups:
freeval_env = set()
for idx in group:
atom = mol.GetAtomWithIdx(idx)
if ((atom.GetAtomicNum() not in [6,1]) and (atom.GetIsAromatic() == False)): # heteroatom of the group
neigh_list = [((idx, x.GetIdx()), mol.GetBondBetweenAtoms(idx, x.GetIdx()), x.GetAtomicNum())
for x in atom.GetNeighbors() if ((x.GetIdx() not in group) and (x.GetIdx() not in preserve_hs)
and (x.GetAtomicNum() in (6,1))
and (mol.GetBondBetweenAtoms(idx, x.GetIdx()).GetIsAromatic() == False))]
if (len(neigh_list) > 0):
freeval_env.update(neigh_list)
freeval_envs.append(freeval_env)
return freeval_envs, preserve_hs
def get_singleno_envs(mol, functional_groups):
# Find single N, O functional groups environments (amines vs anilines, alcohols vs phenols)
singleno_envs = []
for group in functional_groups:
singleno_env = set()
if (len(group) == 1) and (mol.GetAtomWithIdx(list(group)[0]).GetAtomicNum() in [7,8]) and not (mol.GetAtomWithIdx(list(group)[0]).GetIsAromatic()):
atom = mol.GetAtomWithIdx(list(group)[0])
if sum([1 for neigh_atom in atom.GetNeighbors() if neigh_atom.GetAtomicNum() == 6]) == 1:
for neigh_atom in atom.GetNeighbors():
if (neigh_atom.GetAtomicNum() == 6) and (mol.GetBondBetweenAtoms(atom.GetIdx(), neigh_atom.GetIdx()).GetBondType() == Chem.rdchem.BondType.SINGLE):
type_carbon = "Car" if neigh_atom.GetIsAromatic() == True else "Cal"
singleno_env.add(((list(group)[0], neigh_atom.GetIdx()),
mol.GetBondBetweenAtoms(list(group)[0], neigh_atom.GetIdx()), type_carbon))
singleno_envs.append(singleno_env)
return singleno_envs
def get_dbond2car(mol, functional_groups):
# Find atoms in functional groups double bonded to aromatic carbons
db2car_pattern = Chem.MolFromSmarts("c=*")
db2car_envs = []
matches = mol.GetSubstructMatches(db2car_pattern)
matches = tuple([x for x in matches if mol.GetBondBetweenAtoms(x[0], x[1]).GetIsAromatic() == False])
for group in functional_groups:
db2car_env = set()
for matchx in matches:
if matchx[0] in group or matchx[1] in group:
db2car_env.add(matchx[0])
db2car_envs.append(db2car_env)
return db2car_envs
def col_mol(mol, functional_groups, rad = 0.5, lw = 2, width = 300, height = 250):
# Color functional groups in molecules like Ertl's paper
cols = {"NO": (1, 0.3, 1, 0.8), # violet
"O": (1, 0.6, 0.6, 0.9), # pink
"N": (0.4, 0.7, 0.9), # blue
"X": (0, 1, 0, 0.9), # green
"har": (1, 0.65, 0, 0.9), # orange
"S(O)": (1, 1, 0.2, 0.9), # yellow
"NOS": (0.7, 0.7, 0, 0.9), # pistacchio
"CC": (0.627, 0.627, 0.627, 0.9), # grey
"P,etc": (0.5, 1, 0.8, 0.9) # cyan
}
ats_hl = {}
bds_hl = {}
rdi_hl = {}
lws_hl = {}
for fg in functional_groups:
ar = any([mol.GetAtomWithIdx(idx).GetIsAromatic() for idx in fg])
els = "".join(sorted(list(set([mol.GetAtomWithIdx(idx).GetSymbol() for idx in fg]))))
if ar == True:
col = [cols["har"]]
elif any(x in els for x in ["F", "Cl", "Br", "I"]):
col = [cols["X"]]
elif any(x in els for x in ["P", "Se", "B", "Si", "As", "Te"]):
col = [cols["P,etc"]]
elif els in ["NO", "CNO"]:
col = [cols["NO"]]
elif els in ["O", "CO"]:
col = [cols["O"]]
elif els in ["N", "CN"]:
col = [cols["N"]]
elif els in ["S","OS","COS", "CS"]:
col = [cols["S(O)"]]
elif els in ["NOS", "CNOS", "NS", "CNS"]:
col = [cols["NOS"]]
elif els == "C":
col = [cols["CC"]]
for idx in fg:
ats_hl[idx] = col
rdi_hl[idx] = rad
if len(fg) > 1:
for bond in mol.GetBonds():
at1_idx = bond.GetBeginAtomIdx()
at2_idx = bond.GetEndAtomIdx()
if at1_idx in fg and at2_idx in fg:
bds_hl[bond.GetIdx()] = col
lws_hl[bond.GetIdx()] = lw
Chem.rdDepictor.Compute2DCoords(mol)
Chem.rdDepictor.StraightenDepiction(mol)
d2d = rdMolDraw2D.MolDraw2DCairo(width,height)
dopts = d2d.drawOptions()
dopts.atomHighlightsAreCircles = False
d2d.DrawMoleculeWithHighlights(mol, "", ats_hl, bds_hl, rdi_hl, lws_hl)
d2d.FinishDrawing()
return d2d.GetDrawingText()
def get_dec_fgs(mol, verbose = False):
# Generate functional groups decorated with carbon environments
for atom in mol.GetAtoms():
atom.SetChiralTag(Chem.rdchem.ChiralType.CHI_UNSPECIFIED)
for bond in mol.GetBonds():
bond.SetStereo(Chem.rdchem.BondStereo.STEREONONE)
mol_aux = Chem.Mol(mol)
mol = Chem.RemoveHs(mol)
mol = Chem.AddHs(mol)
fgs = get_fgs(mol)
cnes = get_carbonyl_envs(mol, fgs)
fves, pr_hs = get_freeval_envs(mol, fgs)
noes = get_singleno_envs(mol, fgs)
db2cars = get_dbond2car(mol, fgs)
## Dummyze permitted free valence neighboring Hs
for fve in fves:
if (len(fve) > 0):
for fv in fve:
if (fv[2] == 1):
#print("dummy H: " + str(fv[0][1]))
mol.GetAtomWithIdx(fv[0][1]).SetAtomicNum(0)
## Remove explicit atoms
mol = Chem.RemoveHs(mol)
## Update fves accordingly to account for changes in numbers of dummy atoms
for i in range(len(fves)):
fve = list(fves[i])
if (len(fve) > 0):
dummy_paired = []
for j in range(len(fve)):
fv = fve[j]
if (fv[2] == 1): # this entry had a H fv
for neighbor in mol.GetAtomWithIdx(fv[0][0]).GetNeighbors():
if (neighbor.GetAtomicNum() == 0):
dummy_paired.append((fv[0][0], neighbor.GetIdx()))
# dummy_idx = neighbor.GetIdx() ## Assign the updated idx
# dummy_bond = mol.GetBondBetweenAtoms(fv[0][0], dummy_idx) # Update the bond too
# new_fv = ((fv[0][0], dummy_idx), dummy_bond, 0)
# fve[j] = new_fv
dummy_paired = list(set(dummy_paired))
dummy_count = 0
for j in range(len(fve)):
fv = fve[j]
if (fv[2] == 1):
d_pair = dummy_paired[dummy_count]
fve[j] = ((d_pair), mol.GetBondBetweenAtoms(d_pair[0], d_pair[1]), 0)
dummy_count = dummy_count + 1
fves[i] = set(fve) # reassign the possibly updated fve
psmis = []
fg_mols = []
psmi_labs = []
pseudo_smiles = ""
# Loop over functional groups to generate pseudo smiles and pseudo molecules for each of them
for i, group in enumerate(fgs):
neigh_atoms = sorted(list(set([x[0][1] for x in cnes[i]] + [x[0][1] for x in fves[i]] + [x[0][1] for x in noes[i]])))
cne = cnes[i]
fve = fves[i]
noe = noes[i]
db2car = db2cars[i]
R_idxs = sorted(list(set(neigh_atoms + [x for x in db2car])))
psmi_labs = [(list(x)[0][1], list(x)[2]) for x in noe if len(noe) > 0] + [(x, "Car") for x in db2car if len(db2car) > 0]
if (len(neigh_atoms) > 0): # There is decoration applicable
## Get the bonds of the group
bonds_idx = set()
for j in range(mol.GetNumBonds()):
bond = mol.GetBondWithIdx(j)
begin_aid = bond.GetBeginAtomIdx()
end_aid = bond.GetEndAtomIdx()
if ((begin_aid in group) and (end_aid in group)):
bonds_idx.add(bond.GetIdx())
## Add bonds to carbonyl carbons
if(len(cne) > 0):
for env in cne:
bond = env[1]
bonds_idx.add(bond.GetIdx())
## Add bonds to free valence atoms
if(len(fve) > 0):
for env in fve:
bond = env[1]
bonds_idx.add(bond.GetIdx())
## Add bonds to single n, o atoms
if(len(noe) > 0):
for env in noe:
bond = env[1]
bonds_idx.add(bond.GetIdx())
# Get the fragment as a new molecule from bonds in the FG + environment atoms
amap = {}
fragment = Chem.PathToSubmol(mol, list(bonds_idx), atomMap = amap)
# Create a copy of the fragment to modify
fragment_with_r_groups = Chem.RWMol(fragment)
# Replace atoms at the specified positions with R group labels
j = 0
for idx in R_idxs:
label = "[*:" + str(j+1) + "]"
# Create a dummy atom with the R group label
r_group_atom = Chem.MolFromSmiles(label).GetAtomWithIdx(0)
r_group_atom.SetAtomMapNum(int(label[-2])) # Set the map number to match the R group number
# Replace the atom at the specified position with the R group atom
fragment_with_r_groups.ReplaceAtom(amap[R_idxs[j]], r_group_atom)
j = j + 1
# Convert the modified fragment back to a Mol object
fragment_with_r_groups = fragment_with_r_groups.GetMol()
## Fix C valences
fragment_with_r_groups = cval_fix(fragment_with_r_groups)
# Generate the canonical pseudo-SMILES
pseudo_smiles = Chem.MolToSmiles(fragment_with_r_groups, canonical=True, isomericSmiles = False)
# Generate the labeled molecule
fragment_with_r_groups = Chem.RWMol(fragment_with_r_groups)
for atom in fragment_with_r_groups.GetAtoms():
idx = atom.GetIdx() # idx of atom in fragment
map_idx = list(amap.keys())[list(amap.values()).index(idx)] # idx of atom in original molecule
if map_idx in neigh_atoms: # Check if that position is an environment atom in original molecule
if (map_idx in [x[0][1] for x in list(noe)]):
type_carbon = [x[2] for x in list(noe) if x[0][1] == map_idx][0]
fragment_with_r_groups.GetAtomWithIdx(idx).SetProp('atomLabel', type_carbon)
else:
fragment_with_r_groups.GetAtomWithIdx(idx).SetProp('atomLabel','R')
else:
if atom.GetIsAromatic():
if atom.GetAtomicNum() == 6:
fragment_with_r_groups.GetAtomWithIdx(idx).SetProp('atomLabel', "Car")
if atom.GetAtomicNum() == 7:
fragment_with_r_groups.GetAtomWithIdx(idx).SetProp('atomLabel', "Nar")
if atom.GetAtomicNum() == 8:
fragment_with_r_groups.GetAtomWithIdx(idx).SetProp('atomLabel', "Oar")
if atom.GetAtomicNum() == 16:
fragment_with_r_groups.GetAtomWithIdx(idx).SetProp('atomLabel', "Sar")
if map_idx in db2car: # check db2caromatics
fragment_with_r_groups.GetAtomWithIdx(idx).SetProp('atomLabel', "Car")
fragment_with_r_groups = fragment_with_r_groups.GetMol()
else: # No neighbors
if(len(group) == 1): # Single-atommed FG
atom = mol.GetAtomWithIdx(list(group)[0])
charge = atom.GetFormalCharge()
charge_str = "+" if charge == 1 else "-" if charge == -1 else ""
fragment = Chem.RWMol() ## Create emtpy edtiable molecule
fragment.AddAtom(Chem.Atom('*')) ## Add dummy atom to molecule
if atom.GetIsAromatic():
if atom.GetAtomicNum() == 7:
pseudo_smiles = "n" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Nar" + charge_str)
if atom.GetAtomicNum() == 8:
pseudo_smiles = "o" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Oar" + charge_str)
if atom.GetAtomicNum() == 16:
pseudo_smiles = "s" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Sar" + charge_str)
if atom.GetAtomicNum() == 15:
pseudo_smiles = "p" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Par" + charge_str)
if atom.GetAtomicNum() == 34:
pseudo_smiles = "se" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Sear" + charge_str)
if atom.GetAtomicNum() == 52:
pseudo_smiles = "te" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Tear" + charge_str)
else:
if atom.GetAtomicNum() == 7:
pseudo_smiles = "N" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "N" + charge_str)
if atom.GetAtomicNum() == 8:
pseudo_smiles = "O" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "O" + charge_str)
if atom.GetAtomicNum() == 16:
pseudo_smiles = "S" + charge_str
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "S" + charge_str)
if atom.GetAtomicNum() == 15:
pseudo_smiles = "P" + charge_str + "]"
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "P" + charge_str)
if atom.GetAtomicNum() == 34:
pseudo_smiles = "Se" + charge_str + "]"
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Se" + charge_str)
if atom.GetAtomicNum() == 52:
pseudo_smiles = "Te" + charge_str + "]"
fragment.GetAtomWithIdx(0).SetProp('atomLabel', "Te" + charge_str)
fragment = fragment.GetMol()
else: # Multi-atommed FG
bonds_idx = []
for j in range(mol.GetNumBonds()):
bond = mol.GetBondWithIdx(j)
begin_aid = bond.GetBeginAtomIdx()
end_aid = bond.GetEndAtomIdx()
if begin_aid in group and end_aid in group:
bonds_idx.append(j)
# Get the fragment as a new molecule
amap = {}
fragment = Chem.PathToSubmol(mol, bonds_idx, atomMap = amap)
fragment = cval_fix(fragment)
pseudo_smiles = Chem.MolToSmiles(fragment, canonical=True, isomericSmiles = False)
for atom in fragment.GetAtoms():
idx = atom.GetIdx()
charge = atom.GetFormalCharge()
charge_str = "\u207A" if charge == 1 else "\u207B" if charge == -1 else ""
if atom.GetIsAromatic():
if atom.GetAtomicNum() == 6:
fragment.GetAtomWithIdx(idx).SetProp('atomLabel', "Car" + charge_str)
if atom.GetAtomicNum() == 7:
fragment.GetAtomWithIdx(idx).SetProp('atomLabel', "Nar" + charge_str)
if atom.GetAtomicNum() == 8:
fragment.GetAtomWithIdx(idx).SetProp('atomLabel', "Oar" + charge_str)
if atom.GetAtomicNum() == 16:
fragment.GetAtomWithIdx(idx).SetProp('atomLabel', "Sar" + charge_str)
# Parse the pseudo-smiles; first the Cars and Cals
if (len(psmi_labs) > 0):
for psmi_lab in list(psmi_labs):
pseudo_smiles = pseudo_smiles.replace("[*:" + str(R_idxs.index(psmi_lab[0]) + 1) + "]", "[" + psmi_lab[1] + "]")
# Define the pattern to match
pattern = r'\[\*:\d+\]'
# Define the replacement string
replacement = "[R]"
# Replace [R] groups
pseudo_smiles = re.sub(pattern, replacement, pseudo_smiles)
# Replace ns
pseudo_smiles = pseudo_smiles.replace("[n+]", "[Nar+]")
pseudo_smiles = pseudo_smiles.replace("[n-]", "[Nar-]")
pseudo_smiles = pseudo_smiles.replace("[n+]", "[Nar+]")
pseudo_smiles = pseudo_smiles.replace("[n-]", "[Nar-]")
pseudo_smiles = re.sub(r'(?<![MNI])n\+', '[Nar+]', pseudo_smiles)
pseudo_smiles = re.sub(r'(?<![MNI])n\-', '[Nar-]', pseudo_smiles)
pseudo_smiles = re.sub(r'(?<![MZI])n', '[Nar]', pseudo_smiles)
# Replace cs, ss, os, ps, ses, tes
pseudo_smiles = pseudo_smiles.replace("[se+]", "[Sear+]")
pseudo_smiles = pseudo_smiles.replace("[se-]", "[Sear-]")
pseudo_smiles = pseudo_smiles.replace("se+", "[Sear+]")
pseudo_smiles = pseudo_smiles.replace("se-", "[Sear-]")
pseudo_smiles = pseudo_smiles.replace("se", "[Sear]")
pseudo_smiles = pseudo_smiles.replace("[te+]", "[Tear+]")
pseudo_smiles = pseudo_smiles.replace("[te-]", "[Tear-]")
pseudo_smiles = pseudo_smiles.replace("te", "[Tear]")
pseudo_smiles = pseudo_smiles.replace("[c+]", "[Car+]")
pseudo_smiles = pseudo_smiles.replace("[c-]", "[Car-]")
pseudo_smiles = pseudo_smiles.replace("c", "[Car]")
pseudo_smiles = pseudo_smiles.replace("[s+]", "[Sar+]")
pseudo_smiles = pseudo_smiles.replace("[s-]", "[Sar-]")
pseudo_smiles = re.sub(r"(?<!A)(s\+)", "[Sar+]", pseudo_smiles) # To avoid issues with As
pseudo_smiles = re.sub(r"(?<!A)(s-)", "[Sar-]", pseudo_smiles) # To avoid issues with As
pseudo_smiles = re.sub(r"(?<!A)s", "[Sar]", pseudo_smiles) # To avoid issues with As
pseudo_smiles = pseudo_smiles.replace("o+", "[Oar+]")
pseudo_smiles = pseudo_smiles.replace("o-", "[Oar-]")
pseudo_smiles = pseudo_smiles.replace("o", "[Oar]")
pseudo_smiles = pseudo_smiles.replace("[o]", "[Oar]")
pseudo_smiles = pseudo_smiles.replace("[o+]", "[Oar+]")
pseudo_smiles = pseudo_smiles.replace("[o-]", "[Oar-]")
pseudo_smiles = pseudo_smiles.replace("[p+]", "[Par+]")
pseudo_smiles = pseudo_smiles.replace("[p-]", "[Par-]")
pseudo_smiles = pseudo_smiles.replace("p", "[Par]")
# Final canonicalization
pseudo_smiles = psmi_can(pseudo_smiles)
psmis.append(pseudo_smiles)
if (len(neigh_atoms) == 0):
fg_mols.append(fragment)
else:
fg_mols.append(fragment_with_r_groups)
if not ("H" in pseudo_smiles):
if (verbose):
print("Canonical Pseudo-SMILES:", pseudo_smiles)
img_text = col_mol(mol_aux, fgs)
return img_text, fgs, psmis, fg_mols
|