1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
# -*- coding: utf-8 -*-
"""
Implementation of Ertl's Functional Group Algorithm in RDKit
Ertl, Peter.
An algorithm to identify functional groups in organic molecules
J Cheminform (2017) 9:36; DOI: 10.1186/s13321-017-0225-z
@author: gonzalo.colmenarejo
"""
from rdkit import Chem
from rdkit.Chem.Draw import IPythonConsole
from chembl_structure_pipeline import standardizer as sdz
from datetime import datetime
from IPython.display import Image
from PIL import Image as pilImage
from PIL import ImageDraw, ImageFont
from rdkit.Chem.Draw import rdMolDraw2D
import efgs
import pandas as pd
import io
ertl_smis = [
'Cc1nc(NS(=O)(=O)c2ccc(N)cc2)nc(C)c1',
'NC(=N)c1ccc(C=Cc2ccc(cc2O)C(=N)N)cc1',
'CC(=O)Nc1nnc(s1)S(=O)(=O)N',
'NS(=O)(=O)c1cc2c(NCNS2(=O)=O)cc1Cl',
'CNC1=Nc2ccc(Cl)cc2C(=N(=O)C1)c3ccccc3',
'Cc1onc(c1C(=O)NC2C3SC(C)(C)C(N3C2=O)C(=O)O)c4ccccc4',
'Clc1ccccc1C2=NCC(=O)Nc3ccc(cc23)N(=O)=O',
'COc1cc(cc(C(=O)NCC2CCCN2CC=C)c1OC)S(=O)(=O)N',
'Cc1ccc(Cl)c(Nc2ccccc2C(=O)O)c1Cl',
'Clc1ccc2Oc3ccccc3N=C(N4CCNCC4)c2c1',
'FC(F)(F)CN1C(=O)CN=C(c2ccccc2)c3cc(Cl)ccc13',
'OCC1OC(CC1O)n2cnc3C(O)CNC=Nc32',
'CCNC1CC(C)S(=O)(=O)c2sc(cc12)S(=O)(=O)N',
'CC(O)C1C2C(C)C(=C(N2C1=O)C(=O)O)SC3CNC(C3)C(=O)N(C)C',
'CC1CN(CC(C)N1)c2c(F)c(N)c3c(=O)c(cn(C4CC4)c3c2F)C(=O)O',
'CC(=CCC1C(=O)N(N(C1=O)c2ccccc2)c3ccccc3)C',
'Clc1ccc2N=C3NC(=O)CN3Cc2c1Cl',
'CC(=O)NC1C(NC(=N)N)C=C(OC1C(O)C(O)CO)C(=O)O',
'CC(O)C(O)C1CNc2nc(N)nc(O)c2N1',
'NC1CCCCN(C1)c2c(Cl)cc3c(=O)c(cn(C4CC4)c3c2Cl)C(=O)O',
]
def mindex(mol):
# Utility function to draw molecule with idx
for atom in mol.GetAtoms():
try:
atom.SetAtomMapNum(atom.GetIdx())
except:
None
return mol
def demindex(mol):
# Utility function to return mindex-ed molecule to normal
for atom in mol.GetAtoms():
atom.ClearProp('molAtomMapNumber')
return mol
def molimg(x):
# Utility function to draw image of labeled mol from PNG binary string
try:
return pilImage.open(io.BytesIO(x))
except:
return None
def img_grid(images, titles = None, num_columns = 5,font = "arial.ttf", font_size = 18, title_height = 30, cell_width = 300, cell_height = 300, bg_color = (255, 255, 255)):
"""
Creates a grid of images with optional titles under each image.
Parameters:
- images (list): List of PIL Image objects.
- titles (list, optional): List of titles as strings for each image. If None, no titles will be added.
- num_columns (int): Number of columns in the grid.
- font_sizes: Font size of titles (if provided).
- title_height: Height of titles (if provieded).
- cell_width (int): Width of each image cell.
- cell_height (int): Height of each image cell (not including title space).
- bg_color (tuple): Background color as an RGB tuple.
Returns:
- PIL Image object containing the image grid.
"""
# Set title height if titles are provided; otherwise, set to zero
title_height = title_height if titles else 0
cell_height_with_title = cell_height + title_height + 2
# Calculate grid dimensions
num_images = len(images)
num_rows = (num_images + num_columns - 1) // num_columns # Round up for last row
# Create a blank background image for the grid
grid_width = num_columns * cell_width
grid_height = num_rows * cell_height_with_title
grid_image = pilImage.new("RGB", (grid_width, grid_height), bg_color)
# Set up font for titles if needed
if titles:
try:
font = ImageFont.truetype(font, font_size) # Change font and size as desired
except IOError:
font = ImageFont.load_default()
# Iterate through each cell in the grid
for i in range(num_rows * num_columns):
row = i // num_columns
col = i % num_columns
x = col * cell_width
y = row * cell_height_with_title
if i < num_images:
# Resize the image to fit in the cell
img_resized = images[i].resize((cell_width, cell_height))
grid_image.paste(img_resized, (x, y))
# Draw title if provided
if titles and i < len(titles):
draw = ImageDraw.Draw(grid_image)
title = titles[i]
# Calculate title position and center it
text_bbox = draw.textbbox((0, 0), title, font=font)
text_width = text_bbox[2] - text_bbox[0]
title_x = x + (cell_width - text_width) // 2 # Center title horizontally
title_y = y + cell_height # Position directly beneath the image
# Draw title text
draw.text((title_x, title_y), title, fill="black", font=font)
else:
# Leave blank space if no image for this cell
blank_cell = pilImage.new("RGB", (cell_width, cell_height), bg_color)
grid_image.paste(blank_cell, (x, y))
return grid_image
# ## Mols from file
start_time = datetime.now()
d = pd.read_csv("../data/ch33_inchis.csv", sep = ";", low_memory = False)
d = d[pd.notna(d.inchi)].reset_index(drop = True) # make sure there are no missing inchis
d = d[d.inchi.apply(lambda x: "." not in x.split("/")[1])].reset_index(drop = True) # make sure we have no complex molecules
d.shape # (839063, 1)
d = d.sample(frac=1, random_state=4210).reset_index(drop = True) # scramble the df
n = d.shape[0] # Here one can put an alternative much smaller n
d = d[d.index.isin(range(n))].reset_index(drop = True) # keep only n
d["mol"] = d.inchi.apply(lambda x: sdz.standardize_mol(Chem.MolFromInchi(x)))
d = d[pd.notna(d.mol)].reset_index(drop = True) # remove entries without molecule object
d.shape[0] # n
end_time = datetime.now()
print('Duration to analyze {} molecules: {}'.format(n, end_time - start_time))
start_time = datetime.now()
d[["img_text","fgs","fgsmi","fgmol"]] = d.apply(lambda x: pd.Series(efgs.get_dec_fgs(x["mol"])), axis = 1)
end_time = datetime.now()
print('Duration to analyze {} molecules: {}'.format(n, end_time - start_time))
# Generate distribution of FGs
fg_dist = d.explode(["fgsmi","fgmol"]).groupby("fgsmi", as_index = False).apply(lambda x:
pd.DataFrame({"fgsmi": [x["fgsmi"].iloc[0]],
"n": [x.shape[0]],
"mol": [x["fgmol"].iloc[0]]})).sort_values("n", ascending = False)
fg_dist.shape # 5829, 3 (for all ChEMBL comps)
fg_dist.to_csv("../results/fg_dist.csv", sep = ";", index = False)
# fg_dist = pd.read_csv("../results/fg_dist.csv", sep = ";", index = False) # To recover data
mols = fg_dist.mol.iloc[:64].tolist()
legs = fg_dist.fgsmi.iloc[:64].tolist()
## High-resolution grid with top-48 FGs
images = []
img_width = 250
img_height = 250
for m in mols[:48]:
Chem.rdDepictor.Compute2DCoords(m)
Chem.rdDepictor.StraightenDepiction(m)
d2d = rdMolDraw2D.MolDraw2DCairo(img_width,img_height)
dopts = d2d.drawOptions()
dopts.bondLineWidth = 5
dopts.padding = 0.2
d2d.DrawMolecule(m)
d2d.FinishDrawing()
images.append(molimg(d2d.GetDrawingText()))
fgs_grid = img_grid(images[:48], titles = legs[:48], num_columns = 8, font_size = 28, cell_width = 300, cell_height = 300, bg_color=(255, 255, 255))
fgs_grid = fgs_grid.resize((6000, int(6000*fgs_grid.height/fgs_grid.width)))
fgs_grid.save("../results/fg_grid.png", dpi = (300,300))
# High-resolution grid with 20 first molecules with colored functional groups
images = [molimg(x) for x in d.img_text.iloc[0:20].tolist()]
cell_width = images[0].width
cell_height = images[0].height
molfg_grid = img_grid(images, num_columns = 5, cell_width = cell_width, cell_height = cell_height, bg_color=(255, 255, 255))
molfg_grid
molfg_grid = molfg_grid.resize((6000, int(6000*molfg_grid.height/molfg_grid.width)))
molfg_grid.save("../RESULTS/molfg_grid.png", dpi = (300,300))
# High-resolution grid with 20 Ertl molecules in Figure 1
ertmols = [Chem.MolFromSmiles(s) for s in ertl_smis[:20]]
images = [molimg(efgs.get_dec_fgs(ertmol)[0]) for ertmol in ertmols]
cell_width = images[0].width
cell_height = images[0].height
molfg_grid = img_grid(images, num_columns = 5, cell_width = cell_width, cell_height = cell_height, bg_color=(255, 255, 255))
molfg_grid
molfg_grid = molfg_grid.resize((6000, int(6000*molfg_grid.height/molfg_grid.width)))
molfg_grid.save("../RESULTS/ertl_molfg_grid.png", dpi = (300,300))
|