File: PubChemShape.cpp

package info (click to toggle)
rdkit 202503.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 222,000 kB
  • sloc: cpp: 411,111; python: 78,482; ansic: 26,181; java: 8,285; javascript: 4,404; sql: 2,393; yacc: 1,626; lex: 1,267; cs: 1,090; makefile: 581; xml: 229; fortran: 183; sh: 121
file content (555 lines) | stat: -rw-r--r-- 20,387 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
#include <iostream>
#include <ranges>
#include <sstream>
#include <stdexcept>

#include <GraphMol/RWMol.h>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/Substruct/SubstructMatch.h>

#include <RDGeneral/BoostStartInclude.h>
#include <boost/flyweight.hpp>
#include <boost/flyweight/key_value.hpp>
#include <boost/flyweight/no_tracking.hpp>
#include <RDGeneral/BoostEndInclude.h>

#include "pubchem-align3d/shape_functions.hpp"
#include "PubChemShape.hpp"

constexpr auto pubchemFeatureName = "PUBCHEM_PHARMACOPHORE_FEATURES";

// #define DEBUG_MSG(msg_stream) cout << msg_stream << '\n'
#define DEBUG_MSG(msg_stream)

using namespace RDKit;

// Bondi radii
//  can find more of these in Table 12 of this publication:
//   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658832/
// The dummy atom radius (atomic number 0) is set to
// 2.16 in ShapeInputOptions and may be varied there, as
// may all the other radii if required, including the
// addition of atoms not covered here.
const std::map<unsigned int, double> vdw_radii = {
    {1, 1.10},   // H
    {2, 1.40},   // He
    {3, 1.81},   // Li
    {4, 1.53},   // Be
    {5, 1.92},   // B
    {6, 1.70},   // C
    {7, 1.55},   // N
    {8, 1.52},   // O
    {9, 1.47},   // F
    {10, 1.54},  // Ne
    {11, 2.27},  // Na
    {12, 1.73},  // Mg
    {13, 1.84},  // Al
    {14, 2.10},  // Si
    {15, 1.80},  // P
    {16, 1.80},  // S
    {17, 1.75},  // Cl
    {18, 1.88},  // Ar
    {19, 2.75},  // K
    {20, 2.31},  // Ca
    {31, 1.87},  // Ga
    {32, 2.11},  // Ge
    {33, 1.85},  // As
    {34, 1.90},  // Se
    {35, 1.83},  // Br
    {36, 2.02},  // Kr
    {37, 3.03},  // Rb
    {38, 2.49},  // Sr
    {49, 1.93},  // In
    {50, 2.17},  // Sn
    {51, 2.06},  // Sb
    {52, 2.06},  // Te
    {53, 1.98},  // I
    {54, 2.16},  // Xe
    {55, 3.43},  // Cs
    {56, 2.68},  // Ba
    {81, 1.96},  // Tl
    {82, 2.02},  // Pb
    {83, 2.07},  // Bi
    {84, 1.97},  // Po
    {85, 2.02},  // At
    {86, 2.20},  // Rn
    {87, 3.48},  // Fr
    {88, 2.83},  // Ra
};
constexpr double radius_color =
    1.08265;  // same radius for all feature/color "atoms"

namespace {
class ss_matcher {
 public:
  ss_matcher(const std::string &pattern) : m_pattern(pattern) {
    m_needCopies = (pattern.find_first_of("$") != std::string::npos);
    RDKit::RWMol *p = RDKit::SmartsToMol(pattern);
    m_matcher = p;
    POSTCONDITION(m_matcher, "no matcher");
  };
  const RDKit::ROMol *getMatcher() const { return m_matcher; };
  unsigned int countMatches(const RDKit::ROMol &mol) const {
    PRECONDITION(m_matcher, "no matcher");
    std::vector<RDKit::MatchVectType> matches;
    // This is an ugly one. Recursive queries aren't thread safe.
    // Unfortunately we have to take a performance hit here in order
    // to guarantee thread safety
    if (m_needCopies) {
      const RDKit::ROMol nm(*(m_matcher), true);
      RDKit::SubstructMatch(mol, nm, matches);
    } else {
      const RDKit::ROMol &nm = *m_matcher;
      RDKit::SubstructMatch(mol, nm, matches);
    }
    return matches.size();
  }
  ~ss_matcher() { delete m_matcher; };

 private:
  ss_matcher() : m_pattern("") {};
  std::string m_pattern;
  bool m_needCopies{false};
  const RDKit::ROMol *m_matcher{nullptr};
};
}  // namespace

typedef boost::flyweight<boost::flyweights::key_value<std::string, ss_matcher>,
                         boost::flyweights::no_tracking>
    pattern_flyweight;
// Definitions for feature points adapted from:
// Gobbi and Poppinger, Biotech. Bioeng. _61_ 47-54 (1998)
const std::vector<std::vector<std::string>> smartsPatterns = {
    {"[$([N;!H0;v3,v4&+1]),\
$([O,S;H1;+0]),\
n&H1&+0]"},                                // Donor
    {"[$([O,S;H1;v2;!$(*-*=[O,N,P,S])]),\
$([O,S;H0;v2]),\
$([O,S;-]),\
$([N;v3;!$(N-*=[O,N,P,S])]),\
n&H0&+0,\
$([o,s;+0;!$([o,s]:n);!$([o,s]:c:n)])]"},  // Acceptor
    {
        "[r]1[r][r]1",
        "[r]1[r][r][r]1",
        "[r]1[r][r][r][r]1",
        "[r]1[r][r][r][r][r]1",
        "[r]1[r][r][r][r][r][r]1",
    },  // rings
        //    "[a]",                                                  //
        //    Aromatic
        //    "[F,Cl,Br,I]",                                          // Halogen
    {"[#7;+,\
$([N;H2&+0][$([C,a]);!$([C,a](=O))]),\
$([N;H1&+0]([$([C,a]);!$([C,a](=O))])[$([C,a]);!$([C,a](=O))]),\
$([N;H0&+0]([C;!$(C(=O))])([C;!$(C(=O))])[C;!$(C(=O))])]"},  // Basic
    {"[$([C,S](=[O,S,P])-[O;H1,-1])]"}                       // Acidic
};
std::vector<std::vector<const ROMol *>> *getPh4Patterns() {
  static std::unique_ptr<std::vector<std::vector<const ROMol *>>> patterns;
  if (!patterns) {
    patterns.reset(new std::vector<std::vector<const ROMol *>>());
    for (const auto &smartsV : smartsPatterns) {
      std::vector<const ROMol *> v;
      for (const auto &smarts : smartsV) {
        const ROMol *matcher = pattern_flyweight(smarts).get().getMatcher();
        CHECK_INVARIANT(matcher, "bad smarts");
        v.push_back(matcher);
      }
      patterns->push_back(std::move(v));
    }
  }

  return patterns.get();
}

namespace {
std::vector<std::pair<std::vector<unsigned int>, unsigned int>> extractFeatures(
    const ROMol &mol, const ShapeInputOptions &shapeOpts) {
  // unpack features (PubChem-specific property from SDF)
  // NOTE: this unpacking assumes that RWMol-atom-index = SDF-atom-number - 1
  //   e.g. RWMol uses [0..N-1] and SDF uses [1..N], with atoms in the same
  //   order
  // If there are no PubChem features, falls back on RDKit pphore types.

  std::vector<std::pair<std::vector<unsigned int>, unsigned int>>
      feature_idx_type;
  if (shapeOpts.useColors) {
    std::string features;
    if (mol.getPropIfPresent(pubchemFeatureName, features)) {
      // regular atoms have type 0; feature "atoms" (features represented by a
      // single point+radius) must have type > 0
      static const std::map<std::string, unsigned int> atomTypes = {
          {"acceptor", 1}, {"anion", 2},      {"cation", 3},
          {"donor", 4},    {"hydrophobe", 5}, {"rings", 6},
      };

      std::istringstream iss(features);
      std::string line;
      unsigned int n = 0;
      while (std::getline(iss, line)) {
        if (n == 0) {
          feature_idx_type.resize(stoul(line));
        }

        else {
          unsigned int f = n - 1;
          if (f >= feature_idx_type.size()) {
            throw ValueErrorException("Too many features");
          }

          std::istringstream iss2(line);
          std::string token;
          unsigned int t = 0;
          while (std::getline(iss2, token, ' ')) {
            if (t == 0) {
              feature_idx_type[f].first.resize(stoul(token));
            } else if (t <= feature_idx_type[f].first.size()) {
              feature_idx_type[f].first[t - 1] = stoul(token) - 1;
            } else {
              auto type = atomTypes.find(token);
              if (type == atomTypes.end()) {
                throw ValueErrorException("Invalid feature type: " + token);
              }
              feature_idx_type[f].second = type->second;
            }
            ++t;
          }
          if (t != (feature_idx_type[f].first.size() + 2)) {
            throw ValueErrorException("Wrong number of tokens in feature");
          }
        }

        ++n;
      }
      if (n != (feature_idx_type.size() + 1)) {
        throw ValueErrorException("Wrong number of features");
      }

      DEBUG_MSG("# features: " << feature_idx_type.size());
    } else {
      const auto pattVects = getPh4Patterns();
      feature_idx_type.clear();

      unsigned pattIdx = 1;
      for (const auto &patts : *pattVects) {
        for (const auto patt : patts) {
          auto matches = SubstructMatch(mol, *patt);
          for (auto match : matches) {
            std::vector<unsigned int> ats;
            for (const auto &pr : match) {
              ats.push_back(pr.second);
            }
            feature_idx_type.emplace_back(ats, pattIdx);
          }
        }
        ++pattIdx;
      }
    }
  }
  return feature_idx_type;
}

bool atomInSubset(unsigned int atomIdx, const ShapeInputOptions &shapeOpts) {
  if (shapeOpts.atomSubset.empty()) {
    return true;
  }
  return std::ranges::find(shapeOpts.atomSubset, atomIdx) !=
         shapeOpts.atomSubset.end();
}
bool atomAllowedInColor(unsigned int atomIdx,
                        const ShapeInputOptions &shapeOpts) {
  return std::ranges::find(shapeOpts.notColorAtoms, atomIdx) ==
         shapeOpts.notColorAtoms.end();
}

double getAtomRadius(unsigned int atomIdx, const ShapeInputOptions &shapeOpts) {
  auto it = std::ranges::find_if(
      shapeOpts.atomRadii,
      [atomIdx](const auto &p) -> bool { return p.first == atomIdx; });
  return it == shapeOpts.atomRadii.end() ? -1.0 : it->second;
}

// Get the atom radii.  rad_vector is expected to be big enough to hold them
// all.  Also computes the average coordinates of the selected atoms.
void extractAtomRadii(const Conformer &conformer, unsigned int nAtoms,
                      const ShapeInputOptions &shapeOpts, RDGeom::Point3D &ave,
                      unsigned int &nSelectedAtoms,
                      std::vector<double> &rad_vector) {
  nSelectedAtoms = 0;
  for (unsigned int i = 0u; i < nAtoms; ++i) {
    if (!atomInSubset(i, shapeOpts)) {
      continue;
    }
    double rad = getAtomRadius(i, shapeOpts);
    if (rad > 0.0) {
      rad_vector[nSelectedAtoms++] = rad;
      ave += conformer.getAtomPos(i);
    } else {
      unsigned int Z =
          conformer.getOwningMol().getAtomWithIdx(i)->getAtomicNum();
      if (Z > 1) {
        ave += conformer.getAtomPos(i);
        if (auto rad = vdw_radii.find(Z); rad != vdw_radii.end()) {
          rad_vector[nSelectedAtoms++] = rad->second;
        } else {
          throw ValueErrorException("No VdW radius for atom with Z=" +
                                    std::to_string(Z));
        }
      } else if (shapeOpts.includeDummies && Z == 0) {
        ave += conformer.getAtomPos(i);
        rad_vector[nSelectedAtoms++] = shapeOpts.dummyRadius;
      }
    }
  }
  ave /= nSelectedAtoms;
}

void extractAtomCoords(const Conformer &conformer, const unsigned int nAtoms,
                       const ShapeInputOptions &shapeOpts,
                       const RDGeom::Point3D &ave, std::vector<float> &coords) {
  for (unsigned i = 0, j = 0; i < nAtoms; ++i) {
    if (!atomInSubset(i, shapeOpts)) {
      continue;
    }
    // use only non-H for alignment, optionally with dummy atoms.
    unsigned int Z = conformer.getOwningMol().getAtomWithIdx(i)->getAtomicNum();
    if (Z > 1 || (shapeOpts.includeDummies && Z == 0)) {
      RDGeom::Point3D pos = conformer.getAtomPos(i);
      pos -= ave;
      coords[j * 3] = pos.x;
      coords[(j * 3) + 1] = pos.y;
      coords[(j * 3) + 2] = pos.z;
      ++j;
    }
  }
}

void extractFeatureCoords(
    const Conformer &conformer, const unsigned int nAtoms,
    const unsigned int nSelectedAtoms,
    const std::vector<std::pair<std::vector<unsigned int>, unsigned int>>
        &feature_idx_type,
    const ShapeInputOptions &shapeOpts, const RDGeom::Point3D &ave,
    unsigned int &numFeatures, ShapeInput &res,
    std::vector<double> &rad_vector) {
  // get feature coordinates - simply the average of coords of all atoms in the
  // feature
  for (unsigned i = 0; i < feature_idx_type.size(); ++i) {
    RDGeom::Point3D floc;
    unsigned int nSel = 0;
    for (unsigned int j = 0; j < feature_idx_type[i].first.size(); ++j) {
      unsigned int idx = feature_idx_type[i].first[j];
      if (!atomInSubset(idx, shapeOpts) ||
          !atomAllowedInColor(idx, shapeOpts)) {
        continue;
      }
      if (idx >= nAtoms ||
          conformer.getOwningMol().getAtomWithIdx(idx)->getAtomicNum() <= 1) {
        throw ValueErrorException("Invalid feature atom index");
      }
      floc += conformer.getAtomPos(idx);
      ++nSel;
    }
    if (nSel == feature_idx_type[i].first.size()) {
      floc /= nSel;
      floc -= ave;
      DEBUG_MSG("feature type " << feature_idx_type[i].second << " (" << floc
                                << ")");

      auto array_idx = nSelectedAtoms + numFeatures;
      res.coord[array_idx * 3] = floc.x;
      res.coord[(array_idx * 3) + 1] = floc.y;
      res.coord[(array_idx * 3) + 2] = floc.z;
      rad_vector[array_idx] = radius_color;
      res.atom_type_vector[array_idx] = feature_idx_type[i].second;
      ++numFeatures;
    }
  }
}

}  // namespace
// The conformer is left where it is, the shape is translated to the origin.
ShapeInput PrepareConformer(const ROMol &mol, int confId,
                            const ShapeInputOptions &shapeOpts) {
  Align3D::setUseCutOff(true);
  ShapeInput res;

  auto feature_idx_type = extractFeatures(mol, shapeOpts);

  auto &conformer = mol.getConformer(confId);
  if (!conformer.is3D()) {
    throw ValueErrorException("Conformer must be 3D");
  }
  unsigned int nAtoms = mol.getNumAtoms();
  // DEBUG_MSG("num atoms: " << nAtoms);

  // Start with the arrays as large as they will possibly have to be.
  // They will be re-sized later.
  unsigned int nAlignmentAtoms = nAtoms + feature_idx_type.size();
  std::vector<double> rad_vector(nAlignmentAtoms);
  res.atom_type_vector.resize(nAlignmentAtoms, 0);

  RDGeom::Point3D ave;
  unsigned int nSelectedAtoms = 0;
  extractAtomRadii(conformer, nAtoms, shapeOpts, ave, nSelectedAtoms,
                   rad_vector);

  // translate steric center to origin
  DEBUG_MSG("steric center: (" << ave << ")");
  res.shift = {-ave.x, -ave.y, -ave.z};
  res.coord.resize(nAlignmentAtoms * 3);

  extractAtomCoords(conformer, nAtoms, shapeOpts, ave, res.coord);
  unsigned int numFeatures = 0;
  extractFeatureCoords(conformer, nAtoms, nSelectedAtoms, feature_idx_type,
                       shapeOpts, ave, numFeatures, res, rad_vector);

  // Now cut the final vectors down to the actual number of atoms and
  // features used.
  nAlignmentAtoms = nSelectedAtoms + numFeatures;
  res.coord.resize(nAlignmentAtoms * 3);
  rad_vector.resize(nAlignmentAtoms);
  res.atom_type_vector.resize(nAlignmentAtoms);
  Align3D::setAlpha(rad_vector.data(), rad_vector.size(), res.alpha_vector);

  // regular atom self overlap
  Align3D::getVolumeAtomIndexVector(res.atom_type_vector.data(),
                                    res.atom_type_vector.size(),
                                    res.volumeAtomIndexVector);
  res.sov = Align3D::ComputeShapeOverlap(
      res.coord.data(), res.alpha_vector, res.volumeAtomIndexVector,
      res.coord.data(), res.alpha_vector, res.volumeAtomIndexVector);
  DEBUG_MSG("sov: " << res.sov);

  // feature self overlap
  if (feature_idx_type.size() > 0) {
    Align3D::getColorAtomType2IndexVectorMap(res.atom_type_vector.data(),
                                             res.atom_type_vector.size(),
                                             res.colorAtomType2IndexVectorMap);
    res.sof = Align3D::ComputeFeatureOverlap(
        res.coord.data(), res.alpha_vector, res.colorAtomType2IndexVectorMap,
        res.coord.data(), res.alpha_vector, res.colorAtomType2IndexVectorMap);
    DEBUG_MSG("sof: " << res.sof);
  }
  return res;
}

std::pair<double, double> AlignShape(const ShapeInput &refShape,
                                     ShapeInput &fitShape,
                                     std::vector<float> &matrix,
                                     double opt_param,
                                     unsigned int max_preiters,
                                     unsigned int max_postiters) {
  std::set<unsigned int> jointColorAtomTypeSet;
  Align3D::getJointColorTypeSet(
      refShape.atom_type_vector.data(), refShape.atom_type_vector.size(),
      fitShape.atom_type_vector.data(), fitShape.atom_type_vector.size(),
      jointColorAtomTypeSet);
  auto mapCp = refShape.colorAtomType2IndexVectorMap;
  Align3D::restrictColorAtomType2IndexVectorMap(mapCp, jointColorAtomTypeSet);
  // Take copy of the color atom mappings so as not to alter the input shape
  // which might be re-used.
  auto fitMapCp = fitShape.colorAtomType2IndexVectorMap;
  Align3D::restrictColorAtomType2IndexVectorMap(fitMapCp,
                                                jointColorAtomTypeSet);

  DEBUG_MSG("Running alignment...");
  double nbr_st = 0.0;
  double nbr_ct = 0.0;
  Align3D::Neighbor_Conformers(
      refShape.coord.data(), refShape.alpha_vector,
      refShape.volumeAtomIndexVector, mapCp, refShape.sov, refShape.sof,
      fitShape.coord.data(), fitShape.alpha_vector,
      fitShape.volumeAtomIndexVector, fitMapCp, fitShape.sov, fitShape.sof,
      !jointColorAtomTypeSet.empty(), max_preiters, max_postiters, opt_param,
      matrix.data(), nbr_st, nbr_ct);

  DEBUG_MSG("Done!");
  DEBUG_MSG("nbr_st: " << nbr_st);
  DEBUG_MSG("nbr_ct: " << nbr_ct);

  std::vector<float> transformed(fitShape.coord.size());
  Align3D::VApplyRotTransMatrix(transformed.data(), fitShape.coord.data(),
                                fitShape.coord.size() / 3, matrix.data());
  fitShape.coord = transformed;
  return std::make_pair(nbr_st, nbr_ct);
}

void TransformConformer(const std::vector<double> &finalTrans,
                        const std::vector<float> &matrix, ShapeInput &fitShape,
                        Conformer &fitConf) {
  // we reuse/modify the coord member of fitShape in order to avoid memory
  // allocations
  const unsigned int nAtoms = fitConf.getOwningMol().getNumAtoms();
  if (nAtoms > fitShape.volumeAtomIndexVector.size()) {
    // Hs are missing... make sure we have space for them
    fitShape.coord.resize(3 * nAtoms);
  }
  // initialize the fitShape coords with the starting atomic positions from
  // the conformer shifted to the center of "mass" coordinates.
  for (unsigned int i = 0; i < nAtoms; ++i) {
    const auto &pos = fitConf.getAtomPos(i);
    fitShape.coord[i * 3] = pos.x + fitShape.shift[0];
    fitShape.coord[i * 3 + 1] = pos.y + fitShape.shift[1];
    fitShape.coord[i * 3 + 2] = pos.z + fitShape.shift[2];
  }

  std::vector<float> transformed(nAtoms * 3);
  Align3D::VApplyRotTransMatrix(transformed.data(), fitShape.coord.data(),
                                nAtoms, matrix.data());

  // now set the coordinates in the conformer; undo the shift of the reference
  // shape to center of "mass" coordinates
  for (unsigned i = 0; i < nAtoms; ++i) {
    RDGeom::Point3D &pos = fitConf.getAtomPos(i);
    pos.x = transformed[i * 3] - finalTrans[0];
    pos.y = transformed[(i * 3) + 1] - finalTrans[1];
    pos.z = transformed[(i * 3) + 2] - finalTrans[2];
  }
}

std::pair<double, double> AlignMolecule(
    const ShapeInput &refShape, ROMol &fit, std::vector<float> &matrix,
    int fitConfId, bool useColors, double opt_param, unsigned int max_preiters,
    unsigned int max_postiters, bool applyRefShift) {
  PRECONDITION(matrix.size() == 12, "bad matrix size");
  Align3D::setUseCutOff(true);

  DEBUG_MSG("Fit details:");
  ShapeInputOptions shapeOpts;
  shapeOpts.useColors = useColors;
  auto fitShape = PrepareConformer(fit, fitConfId, shapeOpts);
  auto tanis = AlignShape(refShape, fitShape, matrix, opt_param, max_preiters,
                          max_postiters);

  // transform fit coords
  Conformer &fit_conformer = fit.getConformer(fitConfId);
  std::vector<double> finalTrans{0.0, 0.0, 0.0};
  if (applyRefShift) {
    finalTrans = refShape.shift;
  }
  TransformConformer(finalTrans, matrix, fitShape, fit_conformer);
  fit.setProp("shape_align_shape_tanimoto", tanis.first);
  fit.setProp("shape_align_color_tanimoto", tanis.second);

  return tanis;
}

std::pair<double, double> AlignMolecule(const ROMol &ref, ROMol &fit,
                                        std::vector<float> &matrix,
                                        int refConfId, int fitConfId,
                                        bool useColors, double opt_param,
                                        unsigned int max_preiters,
                                        unsigned int max_postiters) {
  Align3D::setUseCutOff(true);

  DEBUG_MSG("Reference details:");
  ShapeInputOptions shapeOpts;
  shapeOpts.useColors = useColors;
  auto refShape = PrepareConformer(ref, refConfId, shapeOpts);

  auto scores = AlignMolecule(refShape, fit, matrix, fitConfId, useColors,
                              opt_param, max_preiters, max_postiters, true);
  return scores;
}