1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
/*
* Copyright (c) 2018 Mellanox Technologies, Ltd. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __INFINIBAND_VERBS_IOCTL_H
#define __INFINIBAND_VERBS_IOCTL_H
#include <config.h>
#include <stdint.h>
#include <assert.h>
#include <rdma/rdma_user_ioctl_cmds.h>
#include <infiniband/verbs.h>
#include <ccan/container_of.h>
#include <util/compiler.h>
static inline uint64_t ioctl_ptr_to_u64(const void *ptr)
{
if (sizeof(ptr) == sizeof(uint64_t))
return (uintptr_t)ptr;
/*
* Some CPU architectures require sign extension when converting from
* a 32 bit to 64 bit pointer. This should match the kernel
* implementation of compat_ptr() for the architecture.
*/
#if defined(__tilegx__)
return (int64_t)(intptr_t)ptr;
#else
return (uintptr_t)ptr;
#endif
}
static inline void _scrub_ptr_attr(void **ptr)
{
#if UINTPTR_MAX == UINT64_MAX
/* Do nothing */
#else
RDMA_UAPI_PTR(void *, data) *scrub_data;
scrub_data = container_of(ptr, typeof(*scrub_data), data);
scrub_data->data_data_u64 = ioctl_ptr_to_u64(scrub_data->data);
#endif
}
#define scrub_ptr_attr(ptr) _scrub_ptr_attr((void **)(&ptr))
/*
* The command buffer is organized as a linked list of blocks of attributes.
* Each stack frame allocates its block and then calls up toward to core code
* which will do the ioctl. The frame that does the ioctl calls the special
* FINAL variant which will allocate enough space to linearize the attribute
* buffer for the kernel.
*
* The current range of attributes to fill is next_attr -> last_attr.
*/
struct ibv_command_buffer {
struct ibv_command_buffer *next;
struct ib_uverbs_attr *next_attr;
struct ib_uverbs_attr *last_attr;
/*
* Used by the legacy write interface to keep track of where the UHW
* buffer is located and the 'headroom' space that the common code
* uses to construct the command header and common command struct
* directly before the drivers' UHW.
*/
uint8_t uhw_in_idx;
uint8_t uhw_out_idx;
uint8_t uhw_in_headroom_dwords;
uint8_t uhw_out_headroom_dwords;
uint8_t buffer_error:1;
/*
* These flags control what execute_ioctl_fallback does if the kernel
* does not support ioctl
*/
uint8_t fallback_require_ex:1;
uint8_t fallback_ioctl_only:1;
struct ib_uverbs_ioctl_hdr hdr;
};
enum {_UHW_NO_INDEX = 0xFF};
/*
* Constructing an array of ibv_command_buffer is a reasonable way to expand
* the VLA in hdr.attrs on the stack and also allocate some internal state in
* a single contiguous stack memory region. It will over-allocate the region in
* some cases, but this approach allows the number of elements to be dynamic,
* and not fixed as a compile time constant.
*/
#define _IOCTL_NUM_CMDB(_num_attrs) \
((sizeof(struct ibv_command_buffer) + \
sizeof(struct ib_uverbs_attr) * (_num_attrs) + \
sizeof(struct ibv_command_buffer) - 1) / \
sizeof(struct ibv_command_buffer))
unsigned int __ioctl_final_num_attrs(unsigned int num_attrs,
struct ibv_command_buffer *link);
/* If the user doesn't provide a link then don't create a VLA */
#define _ioctl_final_num_attrs(_num_attrs, _link) \
((__builtin_constant_p(!(_link)) && !(_link)) \
? (_num_attrs) \
: __ioctl_final_num_attrs(_num_attrs, _link))
#define _COMMAND_BUFFER_INIT(_hdr, _object_id, _method_id, _num_attrs, _link) \
((struct ibv_command_buffer){ \
.hdr = \
{ \
.object_id = (_object_id), \
.method_id = (_method_id), \
}, \
.next = _link, \
.uhw_in_idx = _UHW_NO_INDEX, \
.uhw_out_idx = _UHW_NO_INDEX, \
.next_attr = (_hdr).attrs, \
.last_attr = (_hdr).attrs + _num_attrs})
/*
* C99 does not permit an initializer for VLAs, so this function does the init
* instead. It is called in the wonky way so that DELCARE_COMMAND_BUFFER can
* still be a 'variable', and we so we don't require C11 mode.
*/
static inline int _ioctl_init_cmdb(struct ibv_command_buffer *cmd,
uint16_t object_id, uint16_t method_id,
size_t num_attrs,
struct ibv_command_buffer *link)
{
*cmd = _COMMAND_BUFFER_INIT(cmd->hdr, object_id, method_id, num_attrs,
link);
return 0;
}
/*
* Construct an IOCTL command buffer on the stack with enough space for
* _num_attrs elements. _num_attrs does not have to be a compile time constant.
* _link is a previous COMMAND_BUFFER in the call chain.
*/
#ifndef __CHECKER__
#define DECLARE_COMMAND_BUFFER_LINK(_name, _object_id, _method_id, _num_attrs, \
_link) \
const unsigned int __##_name##total = \
_ioctl_final_num_attrs(_num_attrs, _link); \
struct ibv_command_buffer _name[_IOCTL_NUM_CMDB(__##_name##total)]; \
int __attribute__((unused)) __##_name##dummy = _ioctl_init_cmdb( \
_name, _object_id, _method_id, __##_name##total, _link)
#else
/*
* sparse enforces kernel rules which forbids VLAs. Make the VLA into a static
* array when running sparse. Don't actually run the sparse compile result.
* Sparse also doesn't like arrays of VLAs
*/
#define DECLARE_COMMAND_BUFFER_LINK(_name, _object_id, _method_id, _num_attrs, \
_link) \
uint64_t __##_name##storage[10]; \
struct ibv_command_buffer *_name = (void *)__##_name##storage[10]; \
int __attribute__((unused)) __##_name##dummy = \
_ioctl_init_cmdb(_name, _object_id, _method_id, 10, _link)
#endif
#define DECLARE_COMMAND_BUFFER(_name, _object_id, _method_id, _num_attrs) \
DECLARE_COMMAND_BUFFER_LINK(_name, _object_id, _method_id, _num_attrs, \
NULL)
int execute_ioctl(struct ibv_context *context, struct ibv_command_buffer *cmd);
static inline struct ib_uverbs_attr *
_ioctl_next_attr(struct ibv_command_buffer *cmd, uint16_t attr_id)
{
struct ib_uverbs_attr *attr;
assert(cmd->next_attr < cmd->last_attr);
attr = cmd->next_attr++;
*attr = (struct ib_uverbs_attr){
.attr_id = attr_id,
/*
* All attributes default to mandatory. Wrapper the fill_*
* call in attr_optional() to make it optional.
*/
.flags = UVERBS_ATTR_F_MANDATORY,
};
return attr;
}
/*
* This construction is insane, an expression with a side effect that returns
* from the calling function, but it is a non-invasive way to get the compiler
* to elide the IOCTL support in the backwards compat command functions
* without disturbing native ioctl support.
*
* A command function will set last_attr on the stack to NULL, and if it is
* coded properly, the compiler will prove that last_attr is never changed and
* elide the function. Unfortunately this penalizes native ioctl uses with the
* extra if overhead.
*
* For this reason, _ioctl_next_attr must never be called outside a fill
* function.
*/
#if VERBS_WRITE_ONLY
#define _ioctl_next_attr(cmd, attr_id) \
({ \
if (!((cmd)->last_attr)) \
return NULL; \
_ioctl_next_attr(cmd, attr_id); \
})
#endif
/* Make the attribute optional. */
static inline struct ib_uverbs_attr *attr_optional(struct ib_uverbs_attr *attr)
{
if (!attr)
return attr;
attr->flags &= ~UVERBS_ATTR_F_MANDATORY;
return attr;
}
/* Send attributes of kernel type UVERBS_ATTR_TYPE_IDR */
static inline struct ib_uverbs_attr *
fill_attr_in_obj(struct ibv_command_buffer *cmd, uint16_t attr_id, uint32_t idr)
{
struct ib_uverbs_attr *attr = _ioctl_next_attr(cmd, attr_id);
/* UVERBS_ATTR_TYPE_IDR uses a 64 bit value for the idr # */
attr->data = idr;
return attr;
}
static inline struct ib_uverbs_attr *
fill_attr_out_obj(struct ibv_command_buffer *cmd, uint16_t attr_id)
{
return fill_attr_in_obj(cmd, attr_id, 0);
}
static inline uint32_t read_attr_obj(uint16_t attr_id,
struct ib_uverbs_attr *attr)
{
assert(attr->attr_id == attr_id);
return attr->data;
}
/* Send attributes of kernel type UVERBS_ATTR_TYPE_PTR_IN */
static inline struct ib_uverbs_attr *
fill_attr_in(struct ibv_command_buffer *cmd, uint16_t attr_id, const void *data,
size_t len)
{
struct ib_uverbs_attr *attr = _ioctl_next_attr(cmd, attr_id);
if (unlikely(len > UINT16_MAX))
cmd->buffer_error = 1;
attr->len = len;
if (len <= sizeof(uint64_t))
memcpy(&attr->data, data, len);
else
attr->data = ioctl_ptr_to_u64(data);
return attr;
}
#define fill_attr_in_ptr(cmd, attr_id, ptr) \
fill_attr_in(cmd, attr_id, ptr, sizeof(*ptr))
/* Send attributes of various inline kernel types */
static inline struct ib_uverbs_attr *
fill_attr_in_uint64(struct ibv_command_buffer *cmd, uint16_t attr_id,
uint64_t data)
{
struct ib_uverbs_attr *attr = _ioctl_next_attr(cmd, attr_id);
attr->len = sizeof(data);
attr->data = data;
return attr;
}
#define fill_attr_const_in(cmd, attr_id, _data) \
fill_attr_in_uint64(cmd, attr_id, _data)
static inline struct ib_uverbs_attr *
fill_attr_in_uint32(struct ibv_command_buffer *cmd, uint16_t attr_id,
uint32_t data)
{
struct ib_uverbs_attr *attr = _ioctl_next_attr(cmd, attr_id);
attr->len = sizeof(data);
memcpy(&attr->data, &data, sizeof(data));
return attr;
}
static inline struct ib_uverbs_attr *
fill_attr_in_fd(struct ibv_command_buffer *cmd, uint16_t attr_id, int fd)
{
struct ib_uverbs_attr *attr;
if (fd == -1)
return NULL;
attr = _ioctl_next_attr(cmd, attr_id);
/* UVERBS_ATTR_TYPE_FD uses a 64 bit value for the idr # */
attr->data = fd;
return attr;
}
static inline struct ib_uverbs_attr *
fill_attr_out_fd(struct ibv_command_buffer *cmd, uint16_t attr_id, int fd)
{
struct ib_uverbs_attr *attr = _ioctl_next_attr(cmd, attr_id);
attr->data = 0;
return attr;
}
static inline int read_attr_fd(uint16_t attr_id, struct ib_uverbs_attr *attr)
{
assert(attr->attr_id == attr_id);
/* The kernel cannot fail to create a FD here, it never returns -1 */
return attr->data;
}
/* Send attributes of kernel type UVERBS_ATTR_TYPE_PTR_OUT */
static inline struct ib_uverbs_attr *
fill_attr_out(struct ibv_command_buffer *cmd, uint16_t attr_id, void *data,
size_t len)
{
struct ib_uverbs_attr *attr = _ioctl_next_attr(cmd, attr_id);
if (unlikely(len > UINT16_MAX))
cmd->buffer_error = 1;
attr->len = len;
attr->data = ioctl_ptr_to_u64(data);
return attr;
}
#define fill_attr_out_ptr(cmd, attr_id, ptr) \
fill_attr_out(cmd, attr_id, ptr, sizeof(*(ptr)))
/* If size*nelems overflows size_t this returns SIZE_MAX */
static inline size_t _array_len(size_t size, size_t nelems)
{
if (size != 0 &&
SIZE_MAX / size <= nelems)
return SIZE_MAX;
return size * nelems;
}
#define fill_attr_out_ptr_array(cmd, attr_id, ptr, nelems) \
fill_attr_out(cmd, attr_id, ptr, _array_len(sizeof(*ptr), nelems))
#define fill_attr_in_ptr_array(cmd, attr_id, ptr, nelems) \
fill_attr_in(cmd, attr_id, ptr, _array_len(sizeof(*ptr), nelems))
static inline size_t __check_divide(size_t val, unsigned int div)
{
assert(val % div == 0);
return val / div;
}
static inline struct ib_uverbs_attr *
fill_attr_in_enum(struct ibv_command_buffer *cmd, uint16_t attr_id,
uint8_t elem_id, const void *data, size_t len)
{
struct ib_uverbs_attr *attr;
attr = fill_attr_in(cmd, attr_id, data, len);
attr->attr_data.enum_data.elem_id = elem_id;
return attr;
}
/* Send attributes of kernel type UVERBS_ATTR_TYPE_IDRS_ARRAY */
static inline struct ib_uverbs_attr *
fill_attr_in_objs_arr(struct ibv_command_buffer *cmd, uint16_t attr_id,
const uint32_t *idrs_arr, size_t nelems)
{
return fill_attr_in(cmd, attr_id, idrs_arr,
_array_len(sizeof(*idrs_arr), nelems));
}
#endif
|