File: cl_map.c

package info (click to toggle)
rdma-core 61.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,124 kB
  • sloc: ansic: 176,798; python: 15,496; sh: 2,742; perl: 1,465; makefile: 73
file content (700 lines) | stat: -rw-r--r-- 19,524 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/*
 * Copyright (c) 2004-2009 Voltaire, Inc. All rights reserved.
 * Copyright (c) 2002-2005 Mellanox Technologies LTD. All rights reserved.
 * Copyright (c) 1996-2003 Intel Corporation. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * Abstract:
 *	Implementation of quick map, a binary tree where the caller always
 *	provides all necessary storage.
 *
 */

/*****************************************************************************
*
* Map
*
* Map is an associative array.  By providing a key, the caller can retrieve
* an object from the map.  All objects in the map have an associated key,
* as specified by the caller when the object was inserted into the map.
* In addition to random access, the caller can traverse the map much like
* a linked list, either forwards from the first object or backwards from
* the last object.  The objects in the map are always traversed in
* order since the nodes are stored sorted.
*
* This implementation of Map uses a red black tree verified against
* Cormen-Leiserson-Rivest text, McGraw-Hill Edition, fourteenth
* printing, 1994.
*
*****************************************************************************/

#include <util/cl_qmap.h>
#include <string.h>

static inline void __cl_primitive_insert(cl_list_item_t *const p_list_item,
					 cl_list_item_t *const p_new_item)
{
        /* CL_ASSERT that a non-null pointer is provided. */
        assert(p_list_item);
        /* CL_ASSERT that a non-null pointer is provided. */
	assert(p_new_item);

	p_new_item->p_next = p_list_item;
        p_new_item->p_prev = p_list_item->p_prev;
        p_list_item->p_prev = p_new_item;
        p_new_item->p_prev->p_next = p_new_item;
}

static inline void __cl_primitive_remove(cl_list_item_t *const p_list_item)
{
        /* CL_ASSERT that a non-null pointer is provided. */
        assert(p_list_item);

        /* set the back pointer */
        p_list_item->p_next->p_prev = p_list_item->p_prev;
        /* set the next pointer */
        p_list_item->p_prev->p_next = p_list_item->p_next;

        /* if we're debugging, spruce up the pointers to help find bugs */
#if defined( _DEBUG_ )
        if (p_list_item != p_list_item->p_next) {
                p_list_item->p_next = NULL;
                p_list_item->p_prev = NULL;
        }
#endif                          /* defined( _DEBUG_ ) */
}

/******************************************************************************
 IMPLEMENTATION OF QUICK MAP
******************************************************************************/

/*
 * Get the root.
 */
static inline cl_map_item_t *__cl_map_root(const cl_qmap_t * const p_map)
{
	assert(p_map);
	return (p_map->root.p_left);
}

/*
 * Returns whether a given item is on the left of its parent.
 */
static bool __cl_map_is_left_child(const cl_map_item_t * const p_item)
{
	assert(p_item);
	assert(p_item->p_up);
	assert(p_item->p_up != p_item);

	return (p_item->p_up->p_left == p_item);
}

/*
 * Retrieve the pointer to the parent's pointer to an item.
 */
static cl_map_item_t **__cl_map_get_parent_ptr_to_item(cl_map_item_t *
						       const p_item)
{
	assert(p_item);
	assert(p_item->p_up);
	assert(p_item->p_up != p_item);

	if (__cl_map_is_left_child(p_item))
		return (&p_item->p_up->p_left);

	assert(p_item->p_up->p_right == p_item);
	return (&p_item->p_up->p_right);
}

/*
 * Rotate a node to the left.  This rotation affects the least number of links
 * between nodes and brings the level of C up by one while increasing the depth
 * of A one.  Note that the links to/from W, X, Y, and Z are not affected.
 *
 *	    R				      R
 *	    |				      |
 *	    A				      C
 *	  /   \			        /   \
 *	W       C			  A       Z
 *	       / \			 / \
 *	      B   Z			W   B
 *	     / \			   / \
 *	    X   Y			  X   Y
 */
static void __cl_map_rot_left(cl_qmap_t * const p_map,
			      cl_map_item_t * const p_item)
{
	cl_map_item_t **pp_root;

	assert(p_map);
	assert(p_item);
	assert(p_item->p_right != &p_map->nil);

	pp_root = __cl_map_get_parent_ptr_to_item(p_item);

	/* Point R to C instead of A. */
	*pp_root = p_item->p_right;
	/* Set C's parent to R. */
	(*pp_root)->p_up = p_item->p_up;

	/* Set A's right to B */
	p_item->p_right = (*pp_root)->p_left;
	/*
	 * Set B's parent to A.  We trap for B being NIL since the
	 * caller may depend on NIL not changing.
	 */
	if ((*pp_root)->p_left != &p_map->nil)
		(*pp_root)->p_left->p_up = p_item;

	/* Set C's left to A. */
	(*pp_root)->p_left = p_item;
	/* Set A's parent to C. */
	p_item->p_up = *pp_root;
}

/*
 * Rotate a node to the right.  This rotation affects the least number of links
 * between nodes and brings the level of A up by one while increasing the depth
 * of C one.  Note that the links to/from W, X, Y, and Z are not affected.
 *
 *	        R				     R
 *	        |				     |
 *	        C				     A
 *	      /   \				   /   \
 *	    A       Z			 W       C
 *	   / \    				        / \
 *	  W   B   				       B   Z
 *	     / \				      / \
 *	    X   Y				     X   Y
 */
static void __cl_map_rot_right(cl_qmap_t * const p_map,
			       cl_map_item_t * const p_item)
{
	cl_map_item_t **pp_root;

	assert(p_map);
	assert(p_item);
	assert(p_item->p_left != &p_map->nil);

	/* Point R to A instead of C. */
	pp_root = __cl_map_get_parent_ptr_to_item(p_item);
	(*pp_root) = p_item->p_left;
	/* Set A's parent to R. */
	(*pp_root)->p_up = p_item->p_up;

	/* Set C's left to B */
	p_item->p_left = (*pp_root)->p_right;
	/*
	 * Set B's parent to C.  We trap for B being NIL since the
	 * caller may depend on NIL not changing.
	 */
	if ((*pp_root)->p_right != &p_map->nil)
		(*pp_root)->p_right->p_up = p_item;

	/* Set A's right to C. */
	(*pp_root)->p_right = p_item;
	/* Set C's parent to A. */
	p_item->p_up = *pp_root;
}

void cl_qmap_init(cl_qmap_t * const p_map)
{
	assert(p_map);

	memset(p_map, 0, sizeof(cl_qmap_t));

	/* special setup for the root node */
	p_map->root.p_up = &p_map->root;
	p_map->root.p_left = &p_map->nil;
	p_map->root.p_right = &p_map->nil;
	p_map->root.color = CL_MAP_BLACK;

	/* Setup the node used as terminator for all leaves. */
	p_map->nil.p_up = &p_map->nil;
	p_map->nil.p_left = &p_map->nil;
	p_map->nil.p_right = &p_map->nil;
	p_map->nil.color = CL_MAP_BLACK;

	cl_qmap_remove_all(p_map);
}

cl_map_item_t *cl_qmap_get(const cl_qmap_t * const p_map,
			   const uint64_t key)
{
	cl_map_item_t *p_item;

	assert(p_map);

	p_item = __cl_map_root(p_map);

	while (p_item != &p_map->nil) {
		if (key == p_item->key)
			break;	/* just right */

		if (key < p_item->key)
			p_item = p_item->p_left;	/* too small */
		else
			p_item = p_item->p_right;	/* too big */
	}

	return (p_item);
}

cl_map_item_t *cl_qmap_get_next(const cl_qmap_t * const p_map,
				const uint64_t key)
{
	cl_map_item_t *p_item;
	cl_map_item_t *p_item_found;

	assert(p_map);

	p_item = __cl_map_root(p_map);
	p_item_found = (cl_map_item_t *) & p_map->nil;

	while (p_item != &p_map->nil) {
		if (key < p_item->key) {
			p_item_found = p_item;
			p_item = p_item->p_left;
		} else {
			p_item = p_item->p_right;
		}
	}

	return (p_item_found);
}

void cl_qmap_apply_func(const cl_qmap_t * const p_map,
			cl_pfn_qmap_apply_t pfn_func,
			const void *const context)
{
	cl_map_item_t *p_map_item;

	/* Note that context can have any arbitrary value. */
	assert(p_map);
	assert(pfn_func);

	p_map_item = cl_qmap_head(p_map);
	while (p_map_item != cl_qmap_end(p_map)) {
		pfn_func(p_map_item, (void *)context);
		p_map_item = cl_qmap_next(p_map_item);
	}
}

/*
 * Balance a tree starting at a given item back to the root.
 */
static void __cl_map_ins_bal(cl_qmap_t * const p_map,
			     cl_map_item_t * p_item)
{
	cl_map_item_t *p_grand_uncle;

	assert(p_map);
	assert(p_item);
	assert(p_item != &p_map->root);

	while (p_item->p_up->color == CL_MAP_RED) {
		if (__cl_map_is_left_child(p_item->p_up)) {
			p_grand_uncle = p_item->p_up->p_up->p_right;
			assert(p_grand_uncle);
			if (p_grand_uncle->color == CL_MAP_RED) {
				p_grand_uncle->color = CL_MAP_BLACK;
				p_item->p_up->color = CL_MAP_BLACK;
				p_item->p_up->p_up->color = CL_MAP_RED;
				p_item = p_item->p_up->p_up;
				continue;
			}

			if (!__cl_map_is_left_child(p_item)) {
				p_item = p_item->p_up;
				__cl_map_rot_left(p_map, p_item);
			}
			p_item->p_up->color = CL_MAP_BLACK;
			p_item->p_up->p_up->color = CL_MAP_RED;
			__cl_map_rot_right(p_map, p_item->p_up->p_up);
		} else {
			p_grand_uncle = p_item->p_up->p_up->p_left;
			assert(p_grand_uncle);
			if (p_grand_uncle->color == CL_MAP_RED) {
				p_grand_uncle->color = CL_MAP_BLACK;
				p_item->p_up->color = CL_MAP_BLACK;
				p_item->p_up->p_up->color = CL_MAP_RED;
				p_item = p_item->p_up->p_up;
				continue;
			}

			if (__cl_map_is_left_child(p_item)) {
				p_item = p_item->p_up;
				__cl_map_rot_right(p_map, p_item);
			}
			p_item->p_up->color = CL_MAP_BLACK;
			p_item->p_up->p_up->color = CL_MAP_RED;
			__cl_map_rot_left(p_map, p_item->p_up->p_up);
		}
	}
}

cl_map_item_t *cl_qmap_insert(cl_qmap_t * const p_map,
			      const uint64_t key,
			      cl_map_item_t * const p_item)
{
	cl_map_item_t *p_insert_at, *p_comp_item;

	assert(p_map);
	assert(p_item);
	assert(p_map->root.p_up == &p_map->root);
	assert(p_map->root.color != CL_MAP_RED);
	assert(p_map->nil.color != CL_MAP_RED);

	p_item->p_left = &p_map->nil;
	p_item->p_right = &p_map->nil;
	p_item->key = key;
	p_item->color = CL_MAP_RED;

	/* Find the insertion location. */
	p_insert_at = &p_map->root;
	p_comp_item = __cl_map_root(p_map);

	while (p_comp_item != &p_map->nil) {
		p_insert_at = p_comp_item;

		if (key == p_insert_at->key)
			return (p_insert_at);

		/* Traverse the tree until the correct insertion point is found. */
		if (key < p_insert_at->key)
			p_comp_item = p_insert_at->p_left;
		else
			p_comp_item = p_insert_at->p_right;
	}

	assert(p_insert_at != &p_map->nil);
	assert(p_comp_item == &p_map->nil);
	/* Insert the item. */
	if (p_insert_at == &p_map->root) {
		p_insert_at->p_left = p_item;
		/*
		 * Primitive insert places the new item in front of
		 * the existing item.
		 */
		__cl_primitive_insert(&p_map->nil.pool_item.list_item,
				      &p_item->pool_item.list_item);
	} else if (key < p_insert_at->key) {
		p_insert_at->p_left = p_item;
		/*
		 * Primitive insert places the new item in front of
		 * the existing item.
		 */
		__cl_primitive_insert(&p_insert_at->pool_item.list_item,
				      &p_item->pool_item.list_item);
	} else {
		p_insert_at->p_right = p_item;
		/*
		 * Primitive insert places the new item in front of
		 * the existing item.
		 */
		__cl_primitive_insert(p_insert_at->pool_item.list_item.p_next,
				      &p_item->pool_item.list_item);
	}
	/* Increase the count. */
	p_map->count++;

	p_item->p_up = p_insert_at;

	/*
	 * We have added depth to this section of the tree.
	 * Rebalance as necessary as we retrace our path through the tree
	 * and update colors.
	 */
	__cl_map_ins_bal(p_map, p_item);

	__cl_map_root(p_map)->color = CL_MAP_BLACK;

	/*
	 * Note that it is not necessary to re-color the nil node black because all
	 * red color assignments are made via the p_up pointer, and nil is never
	 * set as the value of a p_up pointer.
	 */

#ifdef _DEBUG_
	/* Set the pointer to the map in the map item for consistency checking. */
	p_item->p_map = p_map;
#endif

	return (p_item);
}

static void __cl_map_del_bal(cl_qmap_t * const p_map,
			     cl_map_item_t * p_item)
{
	cl_map_item_t *p_uncle;

	while ((p_item->color != CL_MAP_RED) && (p_item->p_up != &p_map->root)) {
		if (__cl_map_is_left_child(p_item)) {
			p_uncle = p_item->p_up->p_right;

			if (p_uncle->color == CL_MAP_RED) {
				p_uncle->color = CL_MAP_BLACK;
				p_item->p_up->color = CL_MAP_RED;
				__cl_map_rot_left(p_map, p_item->p_up);
				p_uncle = p_item->p_up->p_right;
			}

			if (p_uncle->p_right->color != CL_MAP_RED) {
				if (p_uncle->p_left->color != CL_MAP_RED) {
					p_uncle->color = CL_MAP_RED;
					p_item = p_item->p_up;
					continue;
				}

				p_uncle->p_left->color = CL_MAP_BLACK;
				p_uncle->color = CL_MAP_RED;
				__cl_map_rot_right(p_map, p_uncle);
				p_uncle = p_item->p_up->p_right;
			}
			p_uncle->color = p_item->p_up->color;
			p_item->p_up->color = CL_MAP_BLACK;
			p_uncle->p_right->color = CL_MAP_BLACK;
			__cl_map_rot_left(p_map, p_item->p_up);
			break;
		} else {
			p_uncle = p_item->p_up->p_left;

			if (p_uncle->color == CL_MAP_RED) {
				p_uncle->color = CL_MAP_BLACK;
				p_item->p_up->color = CL_MAP_RED;
				__cl_map_rot_right(p_map, p_item->p_up);
				p_uncle = p_item->p_up->p_left;
			}

			if (p_uncle->p_left->color != CL_MAP_RED) {
				if (p_uncle->p_right->color != CL_MAP_RED) {
					p_uncle->color = CL_MAP_RED;
					p_item = p_item->p_up;
					continue;
				}

				p_uncle->p_right->color = CL_MAP_BLACK;
				p_uncle->color = CL_MAP_RED;
				__cl_map_rot_left(p_map, p_uncle);
				p_uncle = p_item->p_up->p_left;
			}
			p_uncle->color = p_item->p_up->color;
			p_item->p_up->color = CL_MAP_BLACK;
			p_uncle->p_left->color = CL_MAP_BLACK;
			__cl_map_rot_right(p_map, p_item->p_up);
			break;
		}
	}
	p_item->color = CL_MAP_BLACK;
}

void cl_qmap_remove_item(cl_qmap_t * const p_map,
			 cl_map_item_t * const p_item)
{
	cl_map_item_t *p_child, *p_del_item;

	assert(p_map);
	assert(p_item);

	if (p_item == cl_qmap_end(p_map))
		return;

	if ((p_item->p_right == &p_map->nil) || (p_item->p_left == &p_map->nil)) {
		/* The item being removed has children on at most on side. */
		p_del_item = p_item;
	} else {
		/*
		 * The item being removed has children on both side.
		 * We select the item that will replace it.  After removing
		 * the substitute item and rebalancing, the tree will have the
		 * correct topology.  Exchanging the substitute for the item
		 * will finalize the removal.
		 */
		p_del_item = cl_qmap_next(p_item);
		assert(p_del_item != &p_map->nil);
	}

	/* Remove the item from the list. */
	__cl_primitive_remove(&p_item->pool_item.list_item);
	/* Decrement the item count. */
	p_map->count--;

	/* Get the pointer to the new root's child, if any. */
	if (p_del_item->p_left != &p_map->nil)
		p_child = p_del_item->p_left;
	else
		p_child = p_del_item->p_right;

	/*
	 * This assignment may modify the parent pointer of the nil node.
	 * This is inconsequential.
	 */
	p_child->p_up = p_del_item->p_up;
	(*__cl_map_get_parent_ptr_to_item(p_del_item)) = p_child;

	if (p_del_item->color != CL_MAP_RED)
		__cl_map_del_bal(p_map, p_child);

	/*
	 * Note that the splicing done below does not need to occur before
	 * the tree is balanced, since the actual topology changes are made by the
	 * preceding code.  The topology is preserved by the color assignment made
	 * below (reader should be reminded that p_del_item == p_item in some cases).
	 */
	if (p_del_item != p_item) {
		/*
		 * Finalize the removal of the specified item by exchanging it with
		 * the substitute which we removed above.
		 */
		p_del_item->p_up = p_item->p_up;
		p_del_item->p_left = p_item->p_left;
		p_del_item->p_right = p_item->p_right;
		(*__cl_map_get_parent_ptr_to_item(p_item)) = p_del_item;
		p_item->p_right->p_up = p_del_item;
		p_item->p_left->p_up = p_del_item;
		p_del_item->color = p_item->color;
	}

	assert(p_map->nil.color != CL_MAP_RED);

#ifdef _DEBUG_
	/* Clear the pointer to the map since the item has been removed. */
	p_item->p_map = NULL;
#endif
}

cl_map_item_t *cl_qmap_remove(cl_qmap_t * const p_map, const uint64_t key)
{
	cl_map_item_t *p_item;

	assert(p_map);

	/* Seek the node with the specified key */
	p_item = cl_qmap_get(p_map, key);

	cl_qmap_remove_item(p_map, p_item);

	return (p_item);
}

void cl_qmap_merge(cl_qmap_t * const p_dest_map,
		   cl_qmap_t * const p_src_map)
{
	cl_map_item_t *p_item, *p_item2, *p_next;

	assert(p_dest_map);
	assert(p_src_map);

	p_item = cl_qmap_head(p_src_map);

	while (p_item != cl_qmap_end(p_src_map)) {
		p_next = cl_qmap_next(p_item);

		/* Remove the item from its current map. */
		cl_qmap_remove_item(p_src_map, p_item);
		/* Insert the item into the destination map. */
		p_item2 =
		    cl_qmap_insert(p_dest_map, cl_qmap_key(p_item), p_item);
		/* Check that the item was successfully inserted. */
		if (p_item2 != p_item) {
			/* Put the item in back in the source map. */
			p_item2 =
			    cl_qmap_insert(p_src_map, cl_qmap_key(p_item),
					   p_item);
			assert(p_item2 == p_item);
		}
		p_item = p_next;
	}
}

static void __cl_qmap_delta_move(cl_qmap_t * const p_dest,
				 cl_qmap_t * const p_src,
				 cl_map_item_t ** const pp_item)
{
	cl_map_item_t __attribute__((__unused__)) *p_temp;
	cl_map_item_t *p_next;

	/*
	 * Get the next item so that we can ensure that pp_item points to
	 * a valid item upon return from the function.
	 */
	p_next = cl_qmap_next(*pp_item);
	/* Move the old item from its current map the the old map. */
	cl_qmap_remove_item(p_src, *pp_item);
	p_temp = cl_qmap_insert(p_dest, cl_qmap_key(*pp_item), *pp_item);
	/* We should never have duplicates. */
	assert(p_temp == *pp_item);
	/* Point pp_item to a valid item in the source map. */
	(*pp_item) = p_next;
}

void cl_qmap_delta(cl_qmap_t * const p_map1,
		   cl_qmap_t * const p_map2,
		   cl_qmap_t * const p_new, cl_qmap_t * const p_old)
{
	cl_map_item_t *p_item1, *p_item2;
	uint64_t key1, key2;

	assert(p_map1);
	assert(p_map2);
	assert(p_new);
	assert(p_old);
	assert(cl_is_qmap_empty(p_new));
	assert(cl_is_qmap_empty(p_old));

	p_item1 = cl_qmap_head(p_map1);
	p_item2 = cl_qmap_head(p_map2);

	while (p_item1 != cl_qmap_end(p_map1) && p_item2 != cl_qmap_end(p_map2)) {
		key1 = cl_qmap_key(p_item1);
		key2 = cl_qmap_key(p_item2);
		if (key1 < key2) {
			/* We found an old item. */
			__cl_qmap_delta_move(p_old, p_map1, &p_item1);
		} else if (key1 > key2) {
			/* We found a new item. */
			__cl_qmap_delta_move(p_new, p_map2, &p_item2);
		} else {
			/* Move both forward since they have the same key. */
			p_item1 = cl_qmap_next(p_item1);
			p_item2 = cl_qmap_next(p_item2);
		}
	}

	/* Process the remainder if the end of either source map was reached. */
	while (p_item2 != cl_qmap_end(p_map2))
		__cl_qmap_delta_move(p_new, p_map2, &p_item2);

	while (p_item1 != cl_qmap_end(p_map1))
		__cl_qmap_delta_move(p_old, p_map1, &p_item1);
}