1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
#! /usr/bin/python
import os
import sys
from optparse import OptionParser
from Bio import SeqIO
import re
sys.path.append("/work/wangqion/python_scripts/")
import seq_trimmer_model
base_regex = re.compile("[^A-Za-z]")
class SequenceMatch:
def __init__(self, query, match):
self.query = query
self.match = match
self.mismatches = list()
self.indels = list()
self.avg_qscore = -1
def process_qual(self, line):
self.avg_qscore = float(line.strip().split()[1])
def process_mismatch(self, line):
##ref_pos from mismatch and indel starts from 1
lexemes = line.strip().split()
mismatch = dict()
mismatch["r_char"] = lexemes[3]
mismatch["q_char"] = lexemes[4]
mismatch["query_pos"] = lexemes[5]
mismatch["ref_pos"] = lexemes[6]
mismatch["qscore"] = lexemes[7]
self.mismatches.append(mismatch)
def process_indel(self, line):
##ref_pos from mismatch and indel starts from 1
lexemes = line.strip().split()
indel = dict()
indel["ref_homo_count"] = lexemes[3]
indel["query_homo_count"] = lexemes[4]
indel["badchar"] = lexemes[5]
indel["query_pos"] = lexemes[6]
indel["ref_pos"] = lexemes[7]
indel["qscore"] = lexemes[8]
self.indels.append(indel)
def read_files(match_file, mismatch_file, indel_file, qscore_file):
seq_dict = dict()
for line in open(match_file):
line = line.strip()
if ( line != "" and line[0] == ">"):
lexemes = line.split()
seq_dict[lexemes[1]] = SequenceMatch(lexemes[1], lexemes[2])
#
for line in open(mismatch_file):
line = line.strip()
if ( line != ""):
lexemes = line.split()
seq_dict[lexemes[0]].process_mismatch(line)
#
for line in open(indel_file):
line = line.strip()
if ( line != ""):
lexemes = line.split()
seq_dict[lexemes[0]].process_indel(line)
#
if qscore_file != None:
for line in open(qscore_file):
line = line.strip()
if ( line != ""):
lexemes = line.split()
seq_dict[lexemes[0]].process_qual(line)
return seq_dict
def removeBadseq(bad_idfile, seq_dict):
for line in open(bad_idfile):
line = line.strip()
if ( line != ""):
lexemes = line.split()
if ( lexemes[0] in seq_dict):
del seq_dict[lexemes[0]]
def removeFailedChopseq(chop_seq_dict, seq_dict):
for seqID in seq_dict.keys():
if ( seqID not in chop_seq_dict):
del seq_dict[seqID]
def process_std_seq(infile):
## need the definition for the sequences
std_dict = dict()
for line in open(infile):
line = line.strip()
if ( line != "" and line[0] == ">"):
lexemes = line.split()
if (len(lexemes) <2 ):
definition = lexemes[0].replace(">", "")
else:
definition = ""
for index in range( 1, len(lexemes)):
definition += " " + lexemes[index]
std_dict[lexemes[0].replace(">", "")] = definition
return std_dict
def process_model_pos_map(infile):
## unalign_pos (start from 0, need to change to 1 since the ref_pos from mismatch and indel starts from 1), model_pos
## format: seqid frame unalign_pos model_pos
seq_modelpos_dict = dict()
for line in open(infile):
line = line.strip()
if ( line != ""):
lexemes = line.split("\t")
modelpos_dict = seq_modelpos_dict.get(lexemes[0], dict())
adjusted_unalign_pos = int(lexemes[1]) -1
modelpos_dict[adjusted_unalign_pos] = lexemes[2]
seq_modelpos_dict[lexemes[0]] = modelpos_dict
return seq_modelpos_dict
# calculate the total number of seqs matched to the std seqs
def get_totalseq_count(seq_dict, qscore_cutoff):
total_seq = 0
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
if seq.avg_qscore > qscore_cutoff or seq.avg_qscore == -1:
total_seq += 1
return total_seq
# print the match count to the std seqs
def get_match_count(seq_dict, qscore_cutoff):
match_count_dict = dict()
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
## if there is no quality score info, we just count it
if seq.avg_qscore > qscore_cutoff or seq.avg_qscore == -1:
match_count_dict[seq.match] = match_count_dict.get(seq.match,0) +1
return match_count_dict
## print the copies of the standard sequences from the same organism
def get_std_copy(std_dict):
name_dict = dict()
print "\n### standard sequences ###"
print "standard_id\tdefinition"
for id in sorted(std_dict.keys()):
print "%s\t%s" %(id, std_dict[id])
name = std_dict[id]
name_dict[name] = name_dict.get(name, 0) +1
print "\n### standard sequence copies ###"
print "standard_definition\tcount"
for name in sorted(name_dict.keys()):
print "%s\t%s" %(name, name_dict.get(name))
def get_total_match_count(seq_dict, std_dict):
q0_match_count_dict = get_match_count(seq_dict, 0)
totalseq_count = get_totalseq_count(seq_dict, 0)
print "\n### best reference match count for seq with average QScore >=0 ###"
print "standard_seqID\tdefinition\tQScore_0_count\tQScore_0_pct"
for id in sorted(q0_match_count_dict.keys()):
print "%s\t%s\t%s\t%s" %(id, std_dict[id], q0_match_count_dict[id], float(100*q0_match_count_dict.get(id,0))/float(totalseq_count))
##compare the match count based on different qscore cutoff
def compare_match_count(seq_dict, std_dict, qscore_cutoff):
q0_match_count_dict = get_match_count(seq_dict, 0)
totalseq_count = get_totalseq_count(seq_dict, 0)
#qcutoff_match_count_dict = get_match_count(seq_dict, qscore_cutoff)
print "\n### percent sequences passed the Qscore cutoff comparing to the ones passing QScore 0 ###"
header = "Qscore_cutoff";
for id in sorted(q0_match_count_dict.keys()):
header += "\t" + id
print "%s" %(header)
for cutoff in range ( 15 , qscore_cutoff):
qcutoff_match_count_dict = get_match_count(seq_dict, cutoff)
outstring = str(cutoff)
for id in sorted(q0_match_count_dict.keys()):
outstring += "\t" + str(float(100*qcutoff_match_count_dict.get(id,0))/float(q0_match_count_dict[id]))
print "%s" %(outstring)
# print the number_errors, seq count
def get_error_count(seq_dict):
count_dict = dict()
total_mismatches = 0
total_indels = 0
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
mismatch_indels = len(seq.mismatches) + len(seq.indels)
count_dict[mismatch_indels] = count_dict.get(mismatch_indels,0) +1
total_mismatches += len(seq.mismatches)
total_indels += len(seq.indels)
total_seqs = get_totalseq_count(seq_dict, 0)
print "\n### total mismatches and indels ###"
print "Total seqs\tTotal Mismatches\tTotal Indels"
print "%s\t%s\t%s\t" %(total_seqs, total_mismatches, total_indels)
print "\n### mismatches and indels sequence count###"
print "no_mismatch_indels\tcount\tpercent_seq\tpercent_error"
for key in sorted(count_dict.keys()):
print "%s\t%s\t%s\t%s" %(key, count_dict[key], float(100*count_dict[key])/float( len(seq_dict.keys()) ), float(100*key*count_dict[key])/float(total_mismatches+total_indels ))
# group by each standard sequence, print the number_errors, seq count
def get_error_count_by_std(seq_dict):
match_dict = dict()
total_mismatch_indels = 0
seq_error_dict = dict()
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
mismatch_indels = len(seq.mismatches) + len(seq.indels)
match_dict[seq.match]= match_dict.get(seq.match, dict())
count_dict = match_dict.get(seq.match)
count_dict[mismatch_indels] = count_dict.get(mismatch_indels,0) +1
total_mismatch_indels += mismatch_indels
seq_error_dict[seq.match] = int(seq_error_dict.get(seq.match, 0)) + mismatch_indels
print "\n### mismatches and indels sequence count group by standard sequence###"
print "standard_seqID\ttotal_no_mismatch_indels\tpercent_error"
for std_ID in seq_error_dict.keys():
print "%s\t%s\t%s" %(std_ID, seq_error_dict.get(std_ID), float(100*seq_error_dict.get(std_ID))/float(total_mismatch_indels))
print
print "standard_seqID\tno_mismatch_indels\tcount\tpercent_error"
for std_ID in sorted(match_dict.keys()):
print ""
count_dict = match_dict.get(std_ID)
for key in sorted(count_dict.keys()):
if ( int(seq_error_dict.get(std_ID)) == 0):
print "%s\t%s\t%s\t%s" %(std_ID, key, count_dict[key], 0)
else:
print "%s\t%s\t%s\t%s" %(std_ID, key, count_dict[key], float(100*key*count_dict[key])/float( int(seq_error_dict.get(std_ID))))
def get_hotspot(seq_dict, seq_modelpos_dict):
mismatch_count_dict = dict()
indel_count_dict = dict()
total_mismatches = 0
total_indels = 0
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
for mismatch in seq.mismatches:
if ( int(mismatch["ref_pos"]) in seq_modelpos_dict.get(seq.match)):
modelpos = int(seq_modelpos_dict.get(seq.match).get( int(mismatch["ref_pos"])))
else:
modelpos = -1
mismatch_count_dict[modelpos] = mismatch_count_dict.get(modelpos, 0) +1
total_mismatches += 1
for indel in seq.indels:
if ( int(indel["ref_pos"]) in seq_modelpos_dict.get(seq.match)) :
modelpos = int(seq_modelpos_dict.get(seq.match).get(int(indel["ref_pos"])) )
else:
modelpos = -1
indel_count_dict[modelpos] = indel_count_dict.get(modelpos, 0) +1
total_indels += 1
print "\n### mismatch hot spots###"
print "std_model_pos\tcount\tpercent mismatches\tcumulative mismatches"
total = 0
for key in sorted(mismatch_count_dict.keys()):
total += mismatch_count_dict[key]
print "%s\t%s\t%s\t%s" %(key, mismatch_count_dict[key], float(100*mismatch_count_dict[key])/float(total_mismatches ), float(100*total)/float( total_mismatches))
print "\n### indel hot spots###"
print "std_model_pos\tcount\tpercent indels\tcumulative indels"
total = 0
for key in sorted(indel_count_dict.keys()):
total += indel_count_dict[key]
print "%s\t%s\t%s\t%s" %(key, indel_count_dict[key], float(100*indel_count_dict[key])/float( total_indels ), float(100*total)/float( total_indels) )
## remove the mismatch and indels occurs outside the allowed model_pos range
def remove_dontcare_error(seq_dict, seq_modelpos_dict, start_pos, end_pos):
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
temp_mismatches = list()
for index in range( len(seq.mismatches) ):
mismatch = seq.mismatches[index]
## there are cases where the nucleotides don't code a amino acid and don't have corresponding alignment position
modelpos = int(seq_modelpos_dict.get(seq.match).get( int(mismatch["ref_pos"]), -1))
if ( modelpos >= start_pos and modelpos <= end_pos):
temp_mismatches.append(mismatch)
#else:
# print "remove mismatch %s\t%s\t%s" %(seqID, modelpos, mismatch)
seq.mismatches = temp_mismatches
temp_indels = list();
for index in range( len(seq.indels) ):
indel = seq.indels[index]
modelpos = int(seq_modelpos_dict.get(seq.match).get( int(indel["ref_pos"]), -1))
if ( modelpos >= start_pos and modelpos <= end_pos):
temp_indels.append(indel)
#else :
# print "remove indel %s\t%s\t%s" %(seqID, modelpos, indel)
seq.indels = temp_indels
#Mismatch mapped to each standard sequence
## refseq --> ref_pos --> r_char + q_char --> count
def get_mismatch_stdseq(seq_dict, seq_modelpos_dict):
mismatch_dict = dict()
totalseq_count_dict = get_match_count(seq_dict, 0)
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
for mismatch in seq.mismatches:
mismatch_dict[seq.match]= mismatch_dict.get(seq.match, dict())
refpos_dict = mismatch_dict.get(seq.match)
refpos_dict[mismatch["ref_pos"]] = refpos_dict.get(mismatch["ref_pos"], dict())
mismatch_char_dict = refpos_dict.get(mismatch["ref_pos"])
concat_key = mismatch["r_char"] + "\t" + mismatch["q_char"]
mismatch_char_dict[concat_key] = mismatch_char_dict.get(concat_key, 0) +1
print "\n### mismatch map to standard sequence ###"
print "standard_seqID\tstd_unalign_pos\tstd_model_pos\tr_char\tq_char\tcount\tpercent"
for std_ID in sorted(mismatch_dict.keys()):
print ""
refpos_dict = mismatch_dict.get(std_ID)
for ref_pos in sorted(refpos_dict.keys()):
modelpos = seq_modelpos_dict.get(std_ID).get( int(ref_pos))
mismatch_char_dict = refpos_dict.get(ref_pos)
for mismatch_chars in sorted(mismatch_char_dict.keys()):
print "%s\t%s\t%s" %(std_ID, mismatch_char_dict.get(mismatch_chars), totalseq_count_dict.get(std_ID))
print "%s\t%s\t%s\t%s\t%s\t%s" %(std_ID, ref_pos, modelpos, mismatch_chars, mismatch_char_dict.get(mismatch_chars), float(100*mismatch_char_dict.get(mismatch_chars))/float(totalseq_count_dict.get(std_ID)))
#indel mapped to each standard sequence
## refseq --> ref_pos --> count
def get_indel_stdseq(seq_dict, seq_modelpos_dict):
indel_dict = dict()
totalseq_count_dict = get_match_count(seq_dict, 0)
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
for indel in seq.indels:
indel_dict[seq.match] = indel_dict.get(seq.match, dict())
refpos_dict = indel_dict.get(seq.match)
refpos_dict[indel["ref_pos"]] = refpos_dict.get(indel["ref_pos"], 0) +1
print "\n### indels map to standard sequence ###"
print "standard_seqID\tstd_unalign_pos\tstd_model_pos\tcount\tpercent"
for std_ID in sorted(indel_dict.keys()):
print ""
refpos_dict = indel_dict.get(std_ID)
for ref_pos in sorted(refpos_dict.keys()):
modelpos = seq_modelpos_dict.get(std_ID).get( int(ref_pos))
print "%s\t%s\t%s\t%s\t%s" %(std_ID, ref_pos, modelpos, refpos_dict.get(ref_pos), (float(100*refpos_dict.get(ref_pos))/float(totalseq_count_dict.get(std_ID))) )
## base substitutions errors
def get_base_sub_error(seq_dict):
count_dict = dict()
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
for mismatch in seq.mismatches:
concat_key = mismatch["r_char"] + "\t" + mismatch["q_char"]
count_dict[concat_key] = count_dict.get(concat_key, 0) +1
print "\n### base substitutions errors ###"
print "standard_base\tquery_base\tcount"
for mismatch_chars in sorted(count_dict.keys()):
print "%s\t%s" %( mismatch_chars, count_dict.get(mismatch_chars))
## Insertion errors ##
def get_indel_error(seq_dict):
insertion_count_dict = dict()
deletion_count_dict = dict()
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
for indel in seq.indels:
concat_key = indel["ref_homo_count"] + "\t" + indel["query_homo_count"]
if (int(indel["ref_homo_count"]) < int(indel["query_homo_count"])):
insertion_count_dict[concat_key] = insertion_count_dict.get(concat_key, 0) +1
else:
deletion_count_dict[concat_key] = deletion_count_dict.get(concat_key, 0) +1
print "\n### Insertion errors ###"
print "ref_homo_count\tquery_homo_count\tcount"
for key in sorted(insertion_count_dict.keys()):
print "%s\t%s" %( key, insertion_count_dict.get(key))
print "\n### deletion errors ###"
print "ref_homo_count\tquery_homo_count\tcount"
for key in sorted(deletion_count_dict.keys()):
print "%s\t%s" %( key, deletion_count_dict.get(key))
## of sequences with # of mismatch + indels binned by Qscore
def get_error_by_qscore(seq_dict):
qscore_dict = dict()
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
qscore = int(seq.avg_qscore)
qscore_dict[qscore] = qscore_dict.get(qscore, dict())
count_dict = qscore_dict.get(qscore)
count_dict["no_seqs"] = count_dict.get("no_seqs", 0) +1
count_dict["no_mis_indels"] = count_dict.get("no_mis_indels", 0) + len(seq.mismatches) + len(seq.indels)
print "\n### number of sequences with # of mismatch + indels binned by Qscore ###"
print "qscore\tno_seqs\tno_mis_indels\terror_per_seq"
for qscore in sorted(qscore_dict.keys()):
count_dict = qscore_dict.get(qscore)
print "%s\t%s\t%s\t%s" %(qscore, count_dict["no_seqs"], count_dict["no_mis_indels"], float(count_dict["no_mis_indels"])/count_dict["no_seqs"] )
#avg qscore histogram
def qscore_histogram(seq_dict):
count_dict = dict()
sum = 0
num_seqs = 0
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
qscore = int(seq.avg_qscore)
count_dict[qscore] = count_dict.get(qscore,0) +1
sum += seq.avg_qscore
num_seqs += 1
print "\n### Q score ###"
if ( num_seqs== 0):
print "Average Q score: NA"
else:
print "Average Q score: %s" %( (sum/num_seqs))
print "\n### Q score histogram ###"
print "Qscore\tcount\tpercent"
total = 0
for key in sorted(count_dict.keys()):
total += count_dict[key]
print "%s\t%s\t%s" %(key, count_dict[key], float(100*count_dict[key])/float( len(seq_dict.keys()) ))
## plot number of errors and number of seqs passed the Q score filter
def qscore_seqpassed(seq_dict):
qscore_dict = dict();
min_display_qscore = 10;
max_qscore = 40;
max_error = 10;
for seqID in seq_dict.keys():
seq = seq_dict[seqID]
mismatch_indels = len(seq.mismatches) + len(seq.indels)
q = 0
while ( q <= max_qscore):
if ( seq.avg_qscore >= q):
qscore_dict[q] = qscore_dict.get(q, dict())
error_dict = qscore_dict.get(q)
if ( mismatch_indels < max_error):
error_dict[mismatch_indels] = error_dict.get(mismatch_indels, 0) +1
else :
error_dict[max_error] = error_dict.get(max_error, 0) +1
q += 1
print "\n## percent of seqs with the specified error that passed the Q score"
header = "Qscore"
for e in range(0, max_error):
header = header + "\tE" + str(e)
header += "\tE>=" + str(max_error)
print "%s" %(header)
q0_error_dict = qscore_dict.get(0)
q = min_display_qscore
while ( q <= max_qscore):
if q not in qscore_dict.keys():
q +=1
continue;
error_dict = qscore_dict.get(q)
val = str(q)
for e in range(0, max_error+1):
if e in error_dict.keys():
val += "\t" + str( float(qscore_dict.get(q).get(e)) *100/ float(q0_error_dict.get(e)) )
else:
val += "\t" + str(0)
print "%s" %(val)
q +=1
'''
print "\n## number of seqs with the specified error that passed the Q score"
print "%s" %(header)
q0_error_dict = qscore_dict.get(0)
q = min_display_qscore
while ( q <= max_qscore):
if q not in qscore_dict.keys():
q +=1
continue;
error_dict = qscore_dict.get(q)
val = str(q)
for e in range(0, max_error+1):
if e in error_dict.keys():
val += "\t" + str( float(qscore_dict.get(q).get(e)) )
else:
val += "\t" + str(0)
print "%s" %(val)
q +=1
'''
## calculate error for seqs after chopping based on the alignment
def calSeqError(seq_dict, chop_seq_dict):
count_dict = dict()
total_number_seqs = 0
for seqID in chop_seq_dict.keys():
if (seqID not in seq_dict.keys() ):
continue
if (seqID.startswith("#=") ):
continue
total_number_seqs += 1
seq = seq_dict[seqID]
chopped_len = len(re.subn(base_regex, "", str(chop_seq_dict.get(seqID)))[0])
mismatch_indels = len(seq.mismatches) + len(seq.indels)
# step 0.1%
pct_error = 1000*float(mismatch_indels) /chopped_len
#print "found %s\t%s\t%s\t%s\t%s" %(seqID, pct_error, mismatch_indels, chopped_len, int(pct_error) )
count_dict[int(pct_error)] = count_dict.get(int(pct_error),0) +1
print "\n### error/seq after chopping the seqs ###"
print "percent_error\tpercent_seq_passed"
cum = 0
for key in sorted(count_dict.keys()):
cum += count_dict[key]
## back to percent
print "%s\t%s" %(float(key)/float(10), float(cum)/float(total_number_seqs))
## remove seq with certain % error
def rmSeqwithError(seq_dict, chop_seq_dict, error_cutoff):
for seqID in chop_seq_dict.keys():
if (seqID not in seq_dict.keys() ):
continue
seq = seq_dict[seqID]
chopped_len = len(re.subn(base_regex, "", str(chop_seq_dict.get(seqID)))[0])
mismatch_indels = len(seq.mismatches) + len(seq.indels)
error = float(mismatch_indels) /chopped_len
if ( error > error_cutoff):
del seq_dict[seqID]
def getFileName(fileNameWithPath):
lexemes = fileNameWithPath.split('/')
return lexemes[len(lexemes)-1]
if __name__ == "__main__":
usage="usage: %prog [options] pairwise.txt mismatch.txt indel.txt standard_nucl_seqs.fa"
parser = OptionParser(usage=usage)
parser.add_option("-q", "--qual", dest="quality_file",help="quality output file from errorcheck program", metavar="FILE")
parser.add_option("-i", "--ignore", dest="ignore_ids",help="ignored sequence ids", metavar="FILE")
parser.add_option("-c", "--ignore_chimera", dest="ignore_chimera_ids",help="ignored chimera sequence ids", metavar="FILE")
parser.add_option("-m", "--model_pos_mapping", dest="model_pos_mapping",help="model position mapping file for standard seqs", metavar="FILE")
parser.add_option("-s", "--start", dest="start_model_pos", help="start DNA model position to be included")
parser.add_option("-e", "--end", dest="end_model_pos", help="end DNA model position to be included")
parser.add_option("-a", "--align", dest="aligned_query_file", help="to calculate errors in the query file")
(options, args) = parser.parse_args()
if len(args) != 4:
parser.error("Incorrect number of arguments")
argsStr = ''
for arg in args:
argsStr += getFileName(arg) + " "
print "arguments: %s" %( argsStr)
qual_file = None
if options.quality_file:
qual_file = options.quality_file
if options.start_model_pos:
if not options.end_model_pos:
options.end_model_pos = sys.maxint
if options.end_model_pos:
if not options.start_model_pos:
options.start_model_pos = -sys.maxint -1
seq_dict = read_files(args[0], args[1], args[2], qual_file);
std_dict = process_std_seq(args[3])
if options.model_pos_mapping:
print "read model position mapppig file: %s" %( getFileName(options.model_pos_mapping))
seqs_model_pos_dict = process_model_pos_map(options.model_pos_mapping)
if options.ignore_ids:
print "remove ignored ids from file: %s" %(getFileName(options.ignore_ids))
removeBadseq(options.ignore_ids, seq_dict)
if options.ignore_chimera_ids:
print "remove ignored chimera ids from file: %s" %(getFileName(options.ignore_chimera_ids))
removeBadseq(options.ignore_chimera_ids, seq_dict)
if options.start_model_pos or options.end_model_pos:
print "remove positons outside of this range: \t%s\t%s" %(options.start_model_pos, options.end_model_pos)
if not options.model_pos_mapping :
parser.error("start_model_pos or end_model_pos requires a model_pos_mapping file")
remove_dontcare_error(seq_dict, seqs_model_pos_dict, int(options.start_model_pos), int(options.end_model_pos))
if options.aligned_query_file:
if not options.start_model_pos and not options.end_model_pos :
parser.error("requires start_model_pos and end_model_pos to calculate the error in the sequences using the alignment file to slice")
else:
print "chop the sequences form start to end: \t%s\t%s" %(options.start_model_pos, options.end_model_pos)
seq_before_chop = get_totalseq_count(seq_dict, 0)
chop_seq_dict= seq_trimmer_model.chop(options.aligned_query_file, int(options.start_model_pos), int(options.end_model_pos))
removeFailedChopseq(chop_seq_dict, seq_dict)
seq_after_chop = get_totalseq_count(seq_dict, 0)
calSeqError(seq_dict, chop_seq_dict)
rmSeqwithError(seq_dict, chop_seq_dict, 0.03)
seq_after_rmerror = get_totalseq_count(seq_dict, 0)
print "\ntotal number of seqs before chop\tafter chop\tafter remove 3%error"
print "%s\t%s\t%s" %(seq_before_chop, seq_after_chop, seq_after_rmerror)
q0_match_count_dict = get_match_count(seq_dict, 0)
totalseq_count = get_totalseq_count(seq_dict, 0)
print "\n### best reference match count for seq "
print "standard_seqID\tdefinition\tseq_count\tseq%"
for id in sorted(q0_match_count_dict.keys()):
print "%s\t%s\t%s\t%s" %(id, std_dict[id], q0_match_count_dict[id], float(100*q0_match_count_dict.get(id,0))/float(totalseq_count))
sys.exit()
print ""
get_std_copy(std_dict)
get_error_count(seq_dict)
get_total_match_count(seq_dict, std_dict)
compare_match_count(seq_dict, std_dict,40)
qscore_seqpassed(seq_dict)
get_error_count_by_std(seq_dict)
qscore_histogram(seq_dict)
get_error_by_qscore(seq_dict)
get_base_sub_error(seq_dict)
get_indel_error(seq_dict)
if options.model_pos_mapping :
get_hotspot(seq_dict,seqs_model_pos_dict)
get_mismatch_stdseq(seq_dict, seqs_model_pos_dict)
get_indel_stdseq(seq_dict, seqs_model_pos_dict)
|