1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*
* TrainingInfoTest.java
*
* Copyright 2006 Michigan State University Board of Trustees
*
* Created on September 19, 2003, 10:23 AM
*/
package edu.msu.cme.rdp.classifier.rrnaclassifier;
import edu.msu.cme.rdp.classifier.ClassificationResult;
import edu.msu.cme.rdp.classifier.Classifier;
import edu.msu.cme.rdp.classifier.GenusWordConditionalProb;
import edu.msu.cme.rdp.classifier.HierarchyTree;
import edu.msu.cme.rdp.classifier.RankAssignment;
import edu.msu.cme.rdp.classifier.TrainingInfo;
import edu.msu.cme.rdp.classifier.utils.ClassifierSequence;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;
/**
* A test class for TrainingInfo.
* @author wangqion
*/
public class TrainingInfoTest extends TestCase {
public TrainingInfoTest(java.lang.String testName) {
super(testName);
}
public static void main(java.lang.String[] args) {
junit.textui.TestRunner.run(suite());
}
public static Test suite() {
TestSuite suite = new TestSuite(TrainingInfoTest.class);
return suite;
}
/** Test of createTree method, of class classification.TrainingInfo. */
public void testCreateTree() {
System.out.println("testCreateTree");
}
/** Test of createLogWordPriorArr method, of class classification.TrainingInfo. */
public void testCreateLogWordPriorArr() throws Exception{
System.out.println("testCreateLogWordPriorArr");
InputStream dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/testLogWordPrior.txt");
Reader in = new InputStreamReader( dstream );
TrainingInfo train = new TrainingInfo();
train.createLogWordPriorArr(in);
float wordPrior = train.getLogWordPrior(10);
assertEquals(wordPrior, -2.77, 0.1);
wordPrior = train.getLogWordPrior(55);
assertEquals(wordPrior, -1.67, 0.1);
// test getWordPairPriorDiff()
wordPrior = train.getLogWordPrior(24573);
assertEquals(wordPrior, -2.77, 0.01);
float revWordPrior = train.getLogWordPrior(10912);
assertEquals(revWordPrior, -1.67, 0.01);
float wordPriorDiff = train.getWordPairPriorDiff(24573);
assertEquals(wordPriorDiff, (wordPrior - revWordPrior), 0.01);
float revWordPriorDiff = train.getWordPairPriorDiff(10912);
assertEquals(revWordPriorDiff, (revWordPrior - wordPrior), 0.01);
assertEquals( (wordPriorDiff + revWordPriorDiff), 0, 0.01);
}
/** Test of createGenusWordProbLis method, of class classification.TrainingInfo. */
public void testCreateGenusWordProbList() throws Exception{
System.out.println("testCreateGenusWordConditionalProbList");
InputStream dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/testGenus_probList.txt");
Reader in = new InputStreamReader( dstream );
TrainingInfo train = new TrainingInfo();
train.createGenusWordProbList(in);
GenusWordConditionalProb gProb = train.getWordConditionalProbObject(8);
int genusIndex = gProb.getGenusIndex();
float prob = gProb.getProbability();
assertEquals(genusIndex, 4);
assertEquals(prob, -0.15, 0.1);
gProb = train.getWordConditionalProbObject(1865);
genusIndex = gProb.getGenusIndex();
prob = gProb.getProbability();
assertEquals(genusIndex, 0);
assertEquals(prob, -0.5, 0.1);
}
/** Test of makeProbIndexArr method, of class classification.TrainingInfo. */
public void testCreateProbIndexArr() throws Exception {
System.out.println("testCreateProbIndexArr");
InputStream dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/testProbIndex.txt");
Reader in = new InputStreamReader( dstream );
TrainingInfo train = new TrainingInfo();
train.createProbIndexArr(in);
int start = train.getStartIndex(100);
int stop = train.getStopIndex(65535);
assertEquals(start, 1);
assertEquals(stop, 1866);
}
/** Test of getRootTree method, of class classification.TrainingInfo. */
public void testCreateClassifier() throws Exception{
System.out.println("testCreateClassifier");
TrainingInfo train = new TrainingInfo();
InputStream dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/testGenus_probList.txt");
Reader in = new InputStreamReader( dstream );
train.createGenusWordProbList(in);
dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/test_bergeyTrainingTree.xml");
in = new InputStreamReader( dstream );
train.createTree(in);
dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/testProbIndex.txt");
in = new InputStreamReader( dstream );
train.createProbIndexArr(in);
dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/testLogWordPrior.txt");
in = new InputStreamReader( dstream );
train.createLogWordPriorArr(in);
int genusNodeListSize = train.getGenusNodeListSize();
assertEquals(genusNodeListSize, 6);
HierarchyTree genusNode = train.getGenusNodebyIndex(3);
assertEquals(genusNode.getGenusIndex(), 3);
assertEquals(genusNode.getName(), "Pseudomonas");
int leaveCount = genusNode.getLeaveCount();
float logLeaveCount = train.getLogLeaveCount(1);
assertEquals((double)leaveCount, Math.exp(logLeaveCount) -1, 0.1);
HierarchyTree rootTree = train.getRootTree();
assertEquals(rootTree.getName(), "Bacteria");
assertNotNull( rootTree.getSubclasses());
Classifier aClassifier = train.createClassifier();
//test addConfidence()
HashMap<HierarchyTree, RankAssignment> determinedMap = new HashMap <HierarchyTree, RankAssignment>();
HierarchyTree determinedGenusNode = train.getGenusNodebyIndex(4);
HierarchyTree Enterobacteriales = determinedGenusNode.getParent().getParent();
HierarchyTree Gammaproteobacteria = Enterobacteriales.getParent();
HierarchyTree aNode = determinedGenusNode;
while (aNode != null){
determinedMap.put(aNode, new RankAssignment(aNode, 0));
aNode = aNode.getParent();
}
HierarchyTree bestNode = train.getGenusNodebyIndex(1); // Vibrio
aClassifier.addConfidence(bestNode, determinedMap);
assertEquals( determinedMap.get(determinedGenusNode).getConfidence(), 0.0f, 0.0001); //Enterobacter
assertEquals( determinedMap.get(Enterobacteriales).getConfidence(), 0.0f, 0.0001); //Enterobacteriales
assertEquals( determinedMap.get(Gammaproteobacteria).getConfidence(), 1.0f, 0.0001); //Gammaproteobacteria
bestNode = train.getGenusNodebyIndex(4); //Enterobacter
aClassifier.addConfidence(bestNode, determinedMap);
assertEquals( determinedMap.get(determinedGenusNode).getConfidence(), 1.0f, 0.0001); //Enterobacter
assertEquals( determinedMap.get(Enterobacteriales).getConfidence(), 1.0f, 0.0001); //Enterobacteriales
assertEquals( determinedMap.get(Gammaproteobacteria).getConfidence(), 2.0f, 0.0001); //Gammaproteobacteria
aClassifier.addConfidence(train.getGenusNodebyIndex(4), determinedMap); //Enterobacter
aClassifier.addConfidence(train.getGenusNodebyIndex(0), determinedMap); //Clostridium
assertEquals( determinedMap.get(determinedGenusNode).getConfidence(), 2.0f, 0.0001); //Enterobacter
assertEquals( determinedMap.get(Enterobacteriales).getConfidence(), 2.0f, 0.0001); //Enterobacteriales
assertEquals( determinedMap.get(Gammaproteobacteria).getConfidence(), 3.0f, 0.0001); //Gammaproteobacteria
assertEquals( determinedMap.get(rootTree).getConfidence(), 4.0f, 0.0001); //Bacteria
// end test addConfidence()
// end of
dstream = TrainingInfoTest.class.getResourceAsStream("/test/classifier/testQuerySeq.fasta");
in = new InputStreamReader( dstream );
BufferedReader infile = new BufferedReader(in);
// test the first sequence
String sequence = "";
infile.readLine();
sequence = infile.readLine();
sequence = sequence.toUpperCase();
ClassifierSequence pSeq = new ClassifierSequence("name", "title", sequence);
ClassificationResult result = aClassifier.classify(pSeq);
Iterator it = result.getAssignments().iterator();
RankAssignment classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , rootTree.getName());
assertEquals(classResult.getConfidence(), 1.0, 0.1);
classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , "Proteobacteria");
it.next();
classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , "Rhizobiales");
it.next();
classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , "Rhizobium");
//displayResult(result);
// end of test first sequence
// test the second sequence
infile.readLine();
sequence = infile.readLine();
sequence = sequence.toUpperCase();
pSeq = new ClassifierSequence("name", "title", sequence);
result = aClassifier.classify(pSeq);
it = result.getAssignments().iterator();
classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , rootTree.getName());
assertEquals(classResult.getConfidence(), 1.0, 0.1);
classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , "Firmicutes");
it.next();
classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , "Clostridiales");
it.next();
classResult = (RankAssignment) it.next();
assertEquals(classResult.getBestClass().getName() , "Clostridium");
// end of test second sequence
}
private void displayResult(ClassificationResult result){
List assignments = result.getAssignments();
Iterator it = assignments.iterator();
while (it.hasNext()){
RankAssignment classResult = (RankAssignment) it.next();
System.err.print("\n" + classResult.getBestClass().getName() + " " + classResult.getConfidence());
}
}
}
|